Table 7.
DL-based methods using the 2017 AAPM Thoracic Auto-segmentation Challenge datasets.
Metric | Method | Esophagus | Heart | Left Lung | Right Lung | Spinal Cord |
---|---|---|---|---|---|---|
DSC | DCNN Team Elekta* | 0.72±0.10 | 0.93±0.02 | 0.97±0.02 | 0.97±0.02 | 0.88±0.037 |
3D U-Net [265] | 0.72±0.10 | 0.93±0.02 | 0.97±0.02 | 0.97±0.02 | 0.89±0.04 | |
Multi-class CNN Team Mirada* | 0.71±0.12 | 0.91±0.02 | 0.98±0.02 | 0.97±0.02 | 0.87±0.110 | |
2D ResNet Team Beaumont* | 0.61±0.11 | 0.92±0.02 | 0.96±0.03 | 0.95±0.05 | 0.85±0.035 | |
3D and 2D U-Net Team WUSTL* | 0.55±0.20 | 0.85±0.04 | 0.95±0.03 | 0.96±0.02 | 0.83±0.080 | |
U-Net-GAN [45] | 0.75±0.08 | 0.87±0.05 | 0.97±0.01 | 0.97±0.01 | 0.90±0.04 | |
MSD (mm) | DCNN Team Elekta* | 2.23±2.82 | 2.05±0.62 | 0.74±0.31 | 1.08±0.54 | 0.73±0.21 |
3D U-Net [265] | 2.34±2.38 | 2.30±0.49 | 0.59±0.29 | 0.93±0.57 | 0.66±0.25 | |
Multi-class CNN Team Mirada* | 2.08±1.94 | 2.98±0.93 | 0.62±0.35 | 0.91±0.52 | 0.76±0.60 | |
2D ResNet Team Beaumont* | 2.48±1.15 | 2.61±0.69 | 2.90±6.94 | 2.70±4.84 | 1.03±0.84 | |
3D and 2D U-Net Team WUSTL* | 13.10±10.39 | 4.55±1.59 | 1.22±0.61 | 1.13±0.49 | 2.10±2.49 | |
U-Net-GAN [45] | 1.05±0.66 | 1.49±0.85 | 0.61±0.73 | 0.65±0.53 | 0.38±0.27 | |
HD95 (mm) | DCNN Team Elekta* | 7.3+10.31 | 5.8±1.98 | 2.9±1.32 | 4.7±2.50 | 2.0±0.37 |
3D U-Net [265] | 8.71+10.59 | 6.57±1.50 | 2.10±0.94 | 3.96±2.85 | 1.89±0.63 | |
Multi-class CNN Team Mirada* | 7.8±8.17 | 9.0±4.29 | 2.3±1.30 | 3.7±2.08 | 2.0±1.15 | |
2D ResNet Team Beaumont* | 8.0±3.80 | 8.8±5.31 | 7.8±19.13 | 14.5±34.4 | 2.3±0.50 | |
3D and 2D U-Net Team WUSTL* | 37.0±26.88 | 13.8±5.49 | 4.4±3.41 | 4.1±2.11 | 8.10±10.72 | |
U-Net-GAN [45] | 4.52±3.81 | 4.58±3.67 | 2.07±1.93 | 2.50±3.34 | 1.19±0.46 |
Note: Participating methods of the AAPM thorax challenge [263].