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Abstract

Purpose: Fractures in vertebral bodies are among the most common complications of
osteoporosis and other bone diseases. However, studies that aim to predict future fractures and
assess general spine health must manually delineate vertebral bodies and intervertebral discs in
imaging studies for further radiomic analysis. This study aims to develop a deep learning system
that can automatically and rapidly segment (delineate) vertebrae and discs in MR, CT, and X-ray
imaging studies.

Results: We constructed a neural network to output 2D segmentations for MR, CT, and X-ray
imaging studies. We trained the network on 4490 MR, 550 CT, and 1935 X-ray imaging studies
(post-data augmentation) spanning a wide variety of patient populations, bone disease statuses,
and ages from 2005-2020. Evaluated using 5-fold cross validation, the network was able to
produce median Dice scores > 0.95 across all modalities for vertebral bodies and intervertebral
discs (on the most central slice for MR/CT and on image for X-ray). Furthermore, radiomic
features (skewness, kurtosis, mean of positive value pixels, and entropy) calculated from predicted
segmentation masks were highly accurate (r = 0.96 across all radiomic features when compared to
ground truth). Mean time to produce outputs was < 1.7 seconds across all modalities.
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Conclusions: Our network was able to rapidly produce segmentations for vertebral bodies and
intervertebral discs for MR, CT, and X-ray imaging studies. Furthermore, radiomic quantities
derived from these segmentations were highly accurate. Since this network produced outputs
rapidly for these modalities which are commonly used, it can be put to immediate use for radiomic
and clinical imaging studies assessing spine health.
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Artificial Intelligence; Radiomics; Vertebral Bodies and Intervertebral Discs; Bone Disease; Image
Analysis

1. Introduction:

In the United States, millions of individuals suffer complications as a result of spine and
bone disorders each year. For example, among the 10 million individuals who are diagnosed
with osteoporosis, almost 50% of fractures arise from vertebral bodies [1], [2].
Complications of bone diseases, vertebral fractures in particular, present an especially high
burden on individuals, resulting in reduced mobility, increased back pain, increased
depression, and increased mortality among patients [3].

Recently, quantitative research efforts have been undertaken to determine how imaging data
can be used to gather information about underlying bone/spine disease or diagnose diseases.
Quantities derived from imaging studies, termed collectively as radiomics, have allowed
researchers to accurately predict underlying bone health. For example, MR-based radiomic
features differentiated metastatic from non-metastatic vertebral bodies in patients with bone
marrow metastatic disease [4]. Other studies show how radiomics-based models can
automatically diagnose hematologic marrow diseases from MR studies at a level comparable
to trained radiologists [5].

However, an issue with radiomics analyses is that they rely on individuals to segment (i.e.
outline) regions of interest for quantification. This segmentation process is time-consuming,
since it is done manually for each vertebral body in an imaging study, and is a hamper to the
deployment of radiomics based solutions in the clinical field. Artificial intelligence (Al)
algorithms offer a way to automate the segmentation process in a rapid and accurate manner.
A specific subset of Al, called deep learning (DL), offers algorithms that can extract features
from images to detect and classify objects. In medical research, these DL algorithms
(specifically neural networks) have been used to predict diagnoses and mark clinically
relevant areas in imaging studies. Neural networks are especially well posed to solve
problems in medical imaging since they are able to efficiently learn how to solve problems
involving classification and image feature extraction [6].

In a DL system, it is possible to create a neural network that detects vertebral bodies within
imaging studies and segments (delineates) them. These segmentations can be input to
popular radiomics software and to produce quantities (e.g. skewness, kurtosis, mean pixel
value, and entropy) based on the underlying pixel-values isolated within segmentation
outlines, independent of modality. Prior approaches to this problem have shown DL systems
can work for performing segmentation within one imaging modality [7]-[9]; however, no
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study has been able to show a network design that performs well across multiple modalities.
Furthermore, some of these approaches only work well on one region of the spine (lumbar,
thoracic, or cervical) thus limiting clinical applicability.

In this study, we report the development of a DL system for segmentation of vertebral bodies
from MR, CT, and X-ray imaging studies. Our solution can produce accurate segmentations
(evaluated by Dice scores) of vertebral bodies on a automatically selected 2D slice in a rapid
manner. Additionally, we show the system can accurately segment intervertebral discs in
MR imaging studies. We also demonstrate that the network is spine-region invariant and can
maintain accuracy across lumbar, thoracic, and cervical vertebrae/discs. Lastly, we compare
the radiomic quantities generated from predicted segmentations (skewness, kurtosis, mean of
positively valued pixels, and entropy) to those from manually made segmentations to verify
that this network can be used for radiomics-based studies. An overview of the capabilities
and potential applications of the neural network in comparison to current methods is shown
in Figure 1.

Materials + Methods:

2.1 Deep Learning System Overview:

The deep learning system (a set of neural networks) works in three steps. First, intermediate
features are extracted out of an input image for the network to learn on. Second, vertebral
bodies and discs are localized (location denoted with a rectangular bounding box) using the
intermediate features from the prior step. Lastly, each bounding box (vertebral body/disc) is
segmented by the network. Outputs of the segmentation step shows which pixels correspond
to a vertebral body/disc and which parts are surrounding tissue. Figure 2 shows an overview
of the network design (named SpineTK) which is based on a region-based convolutional
neural network architecture. Three instances of the SpineTK DL system are trained, one
version for each modality the network is trained to work on (MR, CT, and X-ray). In
practice, the system can receive an imaging study as input. For each slice in the imaging
study, vertebral bodies bounding boxes are produced and the slice that contains the most
number of visible vertebral bodies (ref Supplemental Materials/Methods: Section 3 for full
description of slice selection algorithm) is selected for further analysis. Then, a
segmentation mask is predicted for each vertebral body/disc in that slice. These
segmentation masks can be input into most radiomics evaluation software programs. Details
on components of the DL system and its individual neural networks can be found in
Supplemental Materials/Methods: Section 4,6. Prior to evaluation, the DL system must be
“trained”, a process by which the system learns to extract relevant image features to
optimize segmentation, on imaging studies and ground-truth vertebral body/disc
segmentations.

2.2 Patient Population and Dataset Description:

In order to make SpineTK robust to variability in patient populations, imaging studies used
to train and evaluate the network covered a large patient population across several centers
with a range of underlying bone density statuses (normal, osteopenia, osteoporosis) to
demonstrate the network’s efficacy in these patient populations. MR imaging studies were
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obtained from individuals who underwent imaging at the Hospital of the University of
Pennsylvania Radiology Center and affiliated centers from January 1, 2005 to January 20,
2014. X-ray radiographs were randomly selected from the Hospital of the University of
Pennsylvania radiology archives, covering a number of centers across the Pennsylvania and
New Jersey areas from September 10, 2019 to June 15, 2020. CT imaging studies came from
an institutional collaborator and a public segmentation challenge dataset (VerSe 2019 [10]
phase 1 and 2 data primarily from Germany). All datasets included individuals with
indications for back pain, fracture, or osteoporosis and were deidentified (IRB approval was
obtained for this study). Images were excluded from training/evaluation due to images being
corrupt (12/1153 cases MR, 10/160 cases CT, 3/492 X-ray) or images being of such low
resolution that ground truth annotations could not be accurately made by human annotators
(18/1153 MR, 13/160 CT, 5/492 X-ray). The total number of resulting source imaging
studies were 1123 MR, 137 CT, and 484 X-ray images that were augmented prior to training
the network.

MR cases were majority female (88%) aged 67 + 11 (+1 SD) years. Approximately 17% of
these individuals had osteopenia (using criteria —2.5 < T-Score < -1) and 9% had
osteoporosis (T-Score < —2.5). CT cases were majority female (67%) aged 65 * 5 years.
Approximately 41% of these individuals had osteopenia and 49% had osteoporosis. X-ray
patients were somewhat evenly split between males and females (54% female) aged 57 + 17
years old (no T-score data). X-ray radiographs were gathered in intraoperative settings or
outpatient settings (primarily due to follow-up on prior fracture or investigating unspecified
back pain). Refer to the last row of Table 1 for patient characteristics as well as imaging
characteristics.

2.3 Neural Network Training and Testing:

The neural network underlying SpineTK was trained to produce segmentations using
imaging studies that were annotated with manually made segmentations. Each case in the
MR, CT, and X-ray datasets were segmented (using ITK-SNAP [12]) by one of 24 trained
experts with several hundred hours of segmentation experience each (and segmentations are
checked for accuracy by another trained expert). Annotated cases were allocated to either
train the network or evaluate the network (i.e. test the network) such that the cases used to
evaluate the network’s accuracy were not used to train the network.

To increase the robustness of the neural network to variations in imaging studies, data
allocated to train the network was augmented (i.e. replicated with transformations) with five
transformations which randomly change the rotation, contrast, brightness, crop, and vertical/
horizontal flip of underlying case data (ref Supplemental Materials/Methods: Section 2 for
exact parameters for augmentations). Table 1 shows the number of imaging slices prior to
and after augmentation for each imaging modality, resulting in a 5x increase in the effective
size of the training set.

For evaluation, 5-fold cross validation was carried out to report whether the network was
easily influenced by variations in training data. In this procedure, cases were split into 5
parts prior to augmentation. 4/5 parts are used to train the network along with their
augmented counterparts, and the remaining part is used to evaluate (test) the network. This
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allocation was repeated five times such that each part (called a “fold”) serves as testing data
exactly one time, producing 5 results for each network. In the remainder of the paper, we
specified results in the main text as averages of the five folds to give an accurate
representation of the capabilities of the network. We also performed analyses to show that,
within each fold, training and testing data did not significantly differ from each other for
patient population characteristics (age, sex, T-score) using a 2-sample t-test (a = 0.05, refer
to Supplemental Table 1: Row(a)).

The network was trained using NVIDIA Tesla K80 GPUs with 12 GB of RAM provided on
the free-tier of the Google CoLab cloud computing service. All case images were converted
to a PNG format (using pydicom v2.1.1) to load imaging data into computer memory. Pixel
values were all scaled to the range of 0-255 for standardization, using OpenCV v4.4.0 and
NumPy v1.19.0 [13]-[15]. Full description of training parameters and programmatic
libraries used can be found in Supplemental Materials/Methods: Section 5.

2.4 Evaluation:

2.4.1 Network Evaluation Time—The ability of the network to process data quickly
was measured by evaluating how long it takes to produce a segmentation output after being
run on a testing dataset input. Evaluation time was averaged over all of the testing cases.

2.4.2 Slice Selection and Vertebral Body Detection Accuracy—Since it is
necessary for the network to detect vertebral bodies prior to segmentation, performance of
vertebral body detection was evaluated in terms of accuracy. A vertebral body counted as a
true detection only when its bounding box exceeded a 70% overlap, using an Intersection
over Union (loU) metric with the ground-truth bounding box (derived from manually
annotated segmentation masks). This cutoff was selected through a separate precision-recall
curve analysis that showed this threshold achieved a balance between precision and
sensitivity on the object detection task.

Additionally, the network must also select the correct slice (typically the most medial slice)
to evaluate for segmentations. To measure the network’s ability to select the correct slice, we
determined the number of slices between the slice the neural network selected for evaluation
and the one our annotators selected for segmentation. We report this metric as an error
distance and determine if that error distance is significantly different from zero (using a 1-
sample t-test where it is favorable for the A<sub>o</sub> [ = error distance is not
significantly different from 0] to not be rejected).

2.4.3 Segmentation Accuracy—Segmentation accuracy was measured in terms of a
Dice similarity coefficient (DSC, aka Dice Score) which was calculated using the following
formula

2|XnY|
X[+ [Y]

DSC =

Where X is the set of predicted mask pixel locations, and Y'is the set of ground-truth
annotated pixel locations. DSCs range from 0 to 1 where 1 indicates a segmentation that
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matches the ground truth segmentation for all pixel locations in the segmentation masks (i.e.
a 100% accurate segmentation). We evaluated the DSC for each modality and each vertebral
body in the testing dataset of each fold. We also qualitatively assessed the output of
segmentations for each network.

2.4.4 Radiomic Quantity Agreement—To determine whether the outputs of the
network can be used for radiomics measurements, we used the predicted segmentation
masks (for each vertebral body) from the network to evaluate 4 radiomic quantities:
skewness, kurtosis, mean of positive valued pixels, and entropy. These values were chosen
because of their demonstrated utility in prior vertebral bone health assessments ([4], [5]) and
the fact that their values are highly dependent on pixels within segmentation masks. We
compared these values (generated from outputs of the neural network) to the quantities
generated from ground-truth segmentation masks. We then determined if the values derived
from the predicted segmentations are significantly different from the values derived from the
ground-truth segmentations (using a paired t-test: a = 0.05; A<sub>o</sub> = the predicted-
segmentation-derived radiomics values are not significantly different from the ground-truth-
derived radiomics values).

3. Results:

3.1 Network Evaluation Time:

Evaluation time (measured as the amount of seconds it takes for the network to evaluate an
image from the testing dataset for each imaging modality once loaded into memory) reached
an average of 1.656+0.117 s (MR: 1.566+0.098 s, CT: 1.697+0.141 s, X-ray: 1.683+0.119 s)
for the segmentation task. All evaluation times are measured on NVIDIA Tesla K80s GPUs
with 12 GB of RAM available via Google CoLab (free tier).

3.2 Vertebral Body Detection Accuracy:

Slice selection accuracy was evaluated across all folds for both modalities. Average accuracy
across all folds for MR images was 86.5% (range: 85.3%-87.5%) with mean error distances
(i.e. difference between predicted slice number and manually selected slice number) in the
range of —0.04 to 0.04. For CT images, the average across all folds was 86.7% (range:
81.5%-92.6%) with mean error distances in the range - 0.04 to 0.19. At maximum, the
network selected a slice that was 2 slices away from the slice the human annotator selected.
All folds reported non-significant differences in slice selection compared to human annotator
(all p>0.05), indicating the automated slice selection procedure was not different compared
to a human. Individual fold results can be found in Supplemental Table 1 (Row b).

For all subsequent evaluation procedures, the network was evaluated only on the same slice
as the human annotators. Across all folds, modalities, and regions of the spine, the networks
achieved an average of 95.2% accuracy at detecting vertebral bodies (range = 90-99%; ref
Supplemental Table 1-Row c for fold-specific data). Accuracy exceeded 90% accuracy in
each of the regions (lumbar, thoracic, cervical) across all folds. To analyze where the
network failed to detect data, manual analysis was done on one fold. This analysis examined
the vertebrae that did not reach loU threshold and grouped these missed vertebrae into four
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categories. Specific numbers of vertebral body misdetections by category (vertebral body
detected but below threshold, obstructive devices in scan, fused vertebrae, or imaging
artifacts present) can be found in Table 2.

3.3 Segmentation Accuracy:

We evaluated the ability for the DL system to produce segmentations for vertebral bodies.
For the MR segmentation network, the median DSC was 0.958 (IQR 25t1-75t percentile:
0.944-0.963) across all regions and folds. Additionally, for the MRI segmentation network,
we were able to output segmentations of intervertebral discs. The median DSC for discs was
0.959 (IQR: 0.942-0.971) across all folds and regions. For the CT segmentation network,
the median DSC was 0.967 (IQR: 0.954-0.972) across all regions and folds. For the X-ray
segmentation network, the median DSC was 0.957 (IQR: 0.934-0.964). Qualitatively, we
report that most segmentations tend to oversegment (include more pixels than ground-truth)
and undersegment (exclude pixels from ground truth) mainly in areas isolated to the edges
and corners of vertebral bodies, with the vast majority of inner regions of the vertebral body
being segmented correctly. Data on individual folds can be found in Supplemental Table 1
(Row d). We also visualize the results from one fold of data in Figure 3.

3.4 Radiomics Quantities Accuracy:

To demonstrate the applicability of segmentations produced from the network, we also
calculated the following quantities from pixels included in predicted segmentation masks:
kurtosis, skewness, entropy, and mean of positive valued pixels. We then compared these
values (derived from predicted masks) to values generated from ground-truth masks. For the
MR network (on bone), average error (i.e. average difference between radiomic values
derived from predicted vs ground-truth masks) was between 0.001-0.008 for Kurtosis,
0.001-0.003 for Skewness, 0.001-0.003 for Entropy, and —0.019-0.010 for mean of positive
valued pixels (MPP) across all folds (average r-values for all features = 0.96, average relative
errors all < 5.8%). For the CT network, average error was between —0.064—-0.003 for
Kurtosis, 0.019-0.010 for Skewness, —0.006—0.009 for Entropy, and —0.211-0.353 for MPP
across all folds (average r-values for all features = 0.96, average relative errors all < 6.2%).
For the X-ray network, average error was between —0.003-0.013 for Kurtosis, —0.002-0.005
for Skewness, —0.003-0.002 for Entropy, and - 0.018-0.187 for MPP across all folds
(average r-values for all features = 0.97, average relative errors all < 5.4%). Using a paired t-
test, we found that values derived from predicted segmentation masks were not significantly
different from the ground-truth derived values (all p> 0.05). Agreement data is summarized
in Bland-Altman plots in Figure 4 for one fold of data along with standard deviations for
error values. Data from each of the individual folds is summarized in Supplemental Table 1
(Row e).

4. Discussion & Conclusion:

We showed that the deep learning algorithm was able to successfully detect and segment
vertebral bodies on a automatically selected central slice. For each version, one per modality,
we evaluated the network’s ability to choose the most relevant slice for analysis, detect
vertebrae, and segment vertebrae/discs. We further examined segmentation outputs to
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determine their utility in radiomics measures and found that radiomic quantities calculated
from network segmentation masks did not significantly differ from those generated from
manually made segmentation masks. To the authors’ knowledge, this is the first DL system
of its type that has attempted to work on multiple modalities and has achieved the level of
accuracy across the output metrics we established.

In comparison to prior works, our network outperforms them in the segmentation task. Vania
et al [8] produce a U-Net architecture that achieves a 2D Dice coefficient of 0.94 for CT
images only (though they do so in the axial plan; no details were provided on the training
set). Our network achieves a median Dice coefficient of 0.967. Lu et al [9] demonstrate a U-
Net approach on Lumbar Sagittal MR-images achieves a mean Dice coefficient of 0.93 (T2
MR, trained and tested on 4075 cases). For lumbar MR images, our network achieves a
median Dice Coefficient of 0.960 (IQR: 0.951-0.966) across all folds. Cho et al [16] also
use a U-Net segmentation approach on sagittal X-ray images and achieve a DSC of 0.841
(region unspecified, 629 lumbar radiographs used to train, 151 used to test). Our network
achieves a median DSC of 0.957 (IQR: 0.934-0.964). Chen et al [7] take a another approach
using a J-CNN and achieve a DSC of 0.910 on CT images (242 training cases, 60 test cases).
Our network exceeds that metric (as mentioned above). No currently existing literature
explains how segmentations can be used for radiomic quantities and (to the authors’
knowledge) this paper mentions the first results of applying segmentations to calculate
radiomic features. In comparison to the aforementioned architectures, we note that our
architecture may perform better due to its ability to extract image features and segment only
within detected objects. These two steps reduce the feature space the segmentation network
needs to learn on, leading to higher accuracy.

This network can contribute to clinical medicine and research studies through its ability to
produce segmentations quickly (< 2 seconds/slice) for deformities on relatively inexpensive
hardware. Furthermore, outputs from the network can be directly input into popular
radiomics software packages/libraries to produce measurements automatically for further
bone health analysis/diagnostic studies. Since the network produces segmentations across
multiple modalities, this network can be useful to be useful to researchers and clinicians
calculating radiomic quantities for a variety of diseases.

We also note that our network design can be used to repurpose this network towards other
tasks. We have demonstrated that this network can be trained to segment the training data
accurately in < 30 minutes (on publicly available free, compute power) once training data is
annotated. Similarly, it can be used to train on other modalities and imaging planes.
Additionally, we show that the network can achieve high accuracy by training on only
hundreds of images annotated, due to the network’s use of image augmentation and a pre-
trained feature extraction backbone. These factors enable researchers to repurpose this
network’s capabilities without need for using extensive resources on manual annotation.

Generally, our network architecture currently works to produce segmentations for a single
2D slice. While this constraint is sufficient for calculating radiomic quantities in patients
without scoliosis, it may not capture all vertebrae on a single central slice in patients with
severe scoliosis in MR/CT imaging studies, limiting the applicability of the network
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architecture in those cases. Other limitations from the network primarily arise from the
underlying data. Undetected vertebrae came from cases that had other obstructive devices,
fused vertebrae, etc. By using more cases that have these occlusions, it may be possible to
increase detection accuracy. Furthermore, for minimizing over and under segmentation
errors, higher resolution scans can be used to train the network (allowing the network to
gather more information about segmentation parameters to be used near edges of vertebral
bodies and discs). Lastly, the data we had access to may not accurately reflect the underlying
patient population for all potential use cases (especially considering that there is a significant
male/female imbalance in the MR and CT datasets). These imbalances can affect results for
populations underrepresented in the training dataset. This network will be evaluated and
retrained on new datasets as they become available, working towards achieving
comprehensive applicability in the clinical setting.

4.1 Conclusion:

We were able to create a deep learning system that can produce segmentations of vertebrae
and intervertebral discs automatically, rapidly, and accurately across all regions of the spine
and multiple modalities (MR, CT, X-ray). Outputs from the network can be used to calculate
measurements for radiomic studies and clinical assessments of spine health. Future
directions for this study include training the network to produce 3D volumes for vertebral
bodies and discs and to examine its utility in a clinical care setting and performing a
rigorous comparison of this model to other architectures on a standardized dataset.

Research Data for this Article: Due to the sensitive nature of the imaging studies,
participants were assured raw data would remain confidential and would not be shared. Data
not avaflable / The data that has been used is confidential, Resulting models trained in this
study and code used to evaluate imaging studies will be made available upon publication.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations:

MR Magnetic Resonance (Imaging)

CT Computed Tomography

Al Artificial Intelligence

DL Deep Learning
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Highlights:

A deep learning system was created that can automatically segment vertebral
bodies and intervertebral discs for MR, CT, and X-ray imaging studies. It can
do so across all spine regions with high accuracy.

The system achieved a median Dice Score of = 0.95 (measure of 2D
segmentation accuracy, best = 1) on an automatically detected central slice. It
was also able to quantify radiomic features highly accurately (r = 0.96 across
skewness, kurtosis, mean pixel value, and entropy) across all three modalities.

This deep learning system could produce segmentations in < 1.7 seconds/slice
on average using free cloud compute power and can be used immediately for
radiomic studies and assessments of spine health.
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Current Method
Texture analyses and
O il Radiomics studies are
., time consuming
w Researchers and physicians rely on segmentations of vertebral bodies/discs to conduct

radiomic feature analyses or monitor vertebra/disc volume changes in imaging studies.
However delineating segmentations is time consuming as it must be done manually.

\ 4

Our Method

Detect vertebrae and

Feed imaging select slice with most
data to trained . visible vertebrae for
neural network deformity analysis

A\ 4

Automatic Vertebral body and disc segmentations

T 1

E Bone Density, Texture, |
"""""""" * 1 and other Radiomic E

1

] analyses i

Intervertebral Disc
Morphometry

Figure 1: Basic overview of our proposed method in this study.
Currently, researchers and physicians must manually segment vertebral bodies and discs to

calculate radiomic features. This process is highly time-consuming and subjective. Our
method instead shows that a neural network can produce vertebral body and intervertebral
disc segmentations. These segmentations can then be used for future studies that examine
radiomic features/pixel values in relation to bone density, texture analyses, and diagnostic
studies. Furthermore, intervertebral disc segmentations can be used to examine disc
morphometry and monitor changes in disc cross-sectional area over time.
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Figure 2: Basic outline of neural network.
The network is composed of three parts: a Feature Generation Network (FGN), a Region

Recognition Network (RRN), and a Landmark Detection Network. The FGN performs
several image transformation steps (called convolutions) in stages 1-4 to create features that
can be learned on (dimensions of images after transformations are applied reported as
[features(#), height(px) x width(px)] in the figure). Intermediate outputs from the FGN are
each used to train the RRN which produces an “Objectness” logits map (showing probability
of an approximate region containing an object) and anchor deltas (which are preliminary
bounding boxes for desired objects). Then the objectness map and the preliminary bounding
boxes are combined (along with intermediate features from the FGN), bounding boxes are
refined, and final boxes are classified as “vertebral body”, “intervertebral disc”, or
background. Next, the network delineates (segments) vertebral bodies and discs by
producing a pixel-by-pixel mask (pixel value 1 = vertebral body present, 0 = background).
Three networks are trained in this paper — one for each modality (MR, CT, X-ray). Network
architecture adapted from Mask R-CNN [11] (RCNN = Region based Convolutional Neural
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Networks), layer names changed for clarity. Refer to Materials & Methods for link to
implementation and ref Supplemental Figure 1 and Supplemental Materials/Methods:
Section 6 for full explanation of network + full depiction of convolutional layer parameters.
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Figure 3: Segmentation results.
For each row, left pane corresponds to Dice score for that imaging modality across

individual vertebral bodies (C1, C2 excluded because of absence from testing set). Box and
whisker plots show median, 25th-75th percentile range and 1.5x IQR + outliers. Right three
panels correspond to an input image, output of segmentations from the network evaluated on
testing images (note the different colors that designate individual vertebral bodies as
separate entities), and a difference map highlighting where segmentations differ from ground
truth manually annotated for the input image. We highlight that these images contain some
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of the best (e.g. X-ray: cyan vertebral body DSC 0.99) and some of the worst segmentations
(e.g. CT: dark purple vertebral body DSC 0.91) in our network. Supplemental Figure 2
contains vertebra-by-vertebra and intervertebral disc Dice scores. Data visualized is from
fold 3.
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Figure 4: Agreement Results for Radiomics Measurements.
For each modality (MR, CT, X-ray; rows) and each radiomic feature (skewness, mean of

positive valued pixels, kurtosis, entropy), a Bland-Altmann plot is pictured to display
agreement data. Central line = mean difference. Dashed upper and lower lines indicate + 1
SD. X axis is mean of actual and predicted value, Y axis is difference between mean and

predicted value.
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Table 1.
Dataset Information.

Overview of data used to train and test the neural network. For each fold, 80% of cases are reserved to train
the network to detect vertebral bodies and produce landmark annotations. 20% of cases in each fold are
reserved for testing and are never used to train the network (i.e. the network has not “seen” them before).
Training cases are augmented, increasing the effective training set size 5x. Additional information is provided
about the number of vertebrae in the data sets that are located in the lumbar, thoracic, and cervical regions of
the spine (note there were no X-rays containing cervical vertebrae in the dataset we have). Statistics on patient
characteristics for age, sex, and T-Score are also reported (* CT BMD/T-Score data from institutional
collaborator is incomplete and statistic is only calculated on known data). T-Score measurements were
collected from DXA scans done within one year of MR/CT scan. Note, MR scanner types were not mentioned
due to the large time range over which these scans were gathered (comprising of dozens of different scanner
types/manufacturers). We present the imaging characteristics instead.

Measure Modality | Metric
# of imaging studies training data MR 898
generated from (prior to augmentation)
CT 110
X-Ray 387
# of training imaging studies (after MR 4490
augmentation)
CT 550

X-Ray 1935

# of testing images MR 225
CT 27
X-Ray 97
# of vertebrae in each spine region (entire MR Lumbar: 2895; Thoracic: 1396; Cervical: 3402

dataset, pre-augmentation)
CT Lumbar: 749; Thoracic: 377; Cervical: 542

X-Ray Lumbar: 2396; Thoracic: 599; Cervical: N/A

Patient characteristics MR Age: 67 =11 (1 SD); 88% Female; T-Score = 0.36 + 2.1 (1 SD)

CT Age: 65+ 5 (1 SD); 67% Female*; T-Score = -2.48 + 1.13 (1 SD)*

X-Ray Age: 57 £ 17 (1 SD); 54% Female; T-Score = N/A (patient scans were
gathered in intraoperative settings or outpatient settings. Primary reasons
for conducting scans were back pain/monitoring due to prior fracture
history).

Imaging Characteristics MR MR images T1 and T2 weighted images were acquired via a fast-spin echo
sequence Magnetic Field Strength: 1.5T-3T; Slice Thickness: 3-4 mm;
Repetition Time: Mean (625.77) Range (250-5000); Echo Time: Mean (11.86),
Range (5.56-101.02); Pixel Size: Mean (0.55mm), Range (0.25mm-1.50mm);
Matrix Size: width, height, and row measurements, Mean (487.56) Range (256—
1024).

CT CT scans were performed with or without contrast and imaging data were
acquired with scanners in helical mode, with slice thickness of 0.5-1mm, and
with a peak tube voltage of 120-140 kVp on Phillips Brilliance 64, iCT 256, &
1Qon scanners and Siemens Somatom Definition AS and AS+ scanners.

X-Ray Spine X-ray radiographs were acquired with a numerous equipment types and
imaging conditions and were resized to 3520 x 4280 pixels (0.19mm per pixel).
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This table outlines the common reasons for why vertebrae were missed from the object detector in the 3" fold
testing set. Main categories are outlined in the 2nd through 4th column.

Network Modality Vertebra detected Obstructive devices Fused Imaging Total Accuracy
(Type) but below loU (e.g. screws, wires) vertebrae artifacts

threshold
MRI (Landmark) 30 0 4 0 1505/1539 = 97.8%
CT (Landmark) 0 2 5 8 312/327 = 95.4%
X-ray (Landmark) 8 20 0 1 582/611 = 95.2%
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