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Abstract

Background: Cross-sectional studies have shown lower cerebral blood flow (CBF) in 

Alzheimer’s disease (AD) but longitudinal CBF changes in AD are still unknown.

Objective: To reveal the longitudinal CBF changes in normal control (NC) and the AD 

continuum using Arterial Spin Labeling perfusion MRI (ASL MRI)

Methods: CBF was calculated from two longitudinal ASL scans acquired in 2.22 ± 1.43 years 

apart from 140 subjects from the Alzheimeŕs Disease Neuroimaging Initiative (ADNI). At the 

baseline scan, the cohort contained 41 NC, 74 mild cognitive impairment patients (MCI), and 25 

AD patients. 21 NC converted into MCI and 17 MCI converted into AD at the follow-up. 

Longitudinal CBF changes were assessed using paired-t test for non-converters and converters 

separately at each voxel and in the meta-ROI. Age and sex were used as covariates.

Results: CBF reductions were observed in all subjects. Stable NC (n=20) showed CBF reduction 

in the hippocampus and precuneus. Stable MCI patients (n=57) showed spatially more extended 

CBF reduction patterns in hippocampus, middle temporal lobe, ventral striatum, prefrontal cortex, 

and cerebellum. NC-MCI converters showed CBF reduction in hippocampus and cerebellum and 

CBF increase in caudate. MCI-AD converters showed CBF reduction in hippocampus and 

prefrontal cortex. CBF changes were not related with longitudinal neurocognitive changes.

Conclusion: Normal aging and AD continuum showed common longitudinal CBF reductions in 

hippocampus independent of disease and its conversion. Disease conversion independent 

longitudinal CBF reductions escalated in the MCI.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by amyloid 

deposition and cognitive impairment [1, 2]. Cerebral blood flow (CBF) is a fundamental 

physiological measure, and reduced CBF (hypoperfusion) has been observed repeatedly in 

AD using neuroimaging [3, 4], suggesting AD-related neurovascular and neuronal 

dysfunctions. Hypoperfusion may even represent a major cause of AD pathology and 

subsequent cognitive decline [5]. Arterial spin labeling (ASL) perfusion MRI is a non-

invasive technique for quantifying CBF without using exogenous tracers [6, 7]. It is 

relatively low-cost and can be repeated many times, therefore its use is highly appealing in 

longitudinal AD studies. ASL hypoperfusion patterns in MCI and AD subjects have been 

reported in [8–12]. While encouraging, most of these findings were based on cross-sectional 

data, longitudinal CBF changes in the AD population have not been under-studied. Based on 

ASL CBF data from a small sample size, Wang reported AD conversion and reversion-

related CBF decrease and increase [13]. Also based on a small sample size, Staffaroni et al. 

[14] reported that individuals with MCI who later converted to AD had lower baseline 

perfusion in the precuneus, middle cingulum, inferior parietal and middle frontal cortices 

than non-converters. Examination of changes in longitudinal CBF and their association to 

disease progression is still lacking in the literature. The purpose of this study is to examine 

the longitudinal CBF changes in the course of disease progression using the large samples 

available from AD Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). To the best of our 

knowledge, this study represents the first of its type published in the literature.

MATERIALS AND METHODS

Participants

Data used were obtained from the ADNI database. ADNI was launched in 2003 by the 

National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, the Food and Drug Administration (FDA), private pharmaceutical 

companies and non-profit organizations, as a $60 million, 5-year public private partnership. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, as well as clinical 

and neuropsychological assessments can be combined to measure the progression of MCI to 

early AD. The ADNI 2 (phase 2) includes a sub-study of ASL MRI for participants scanned 

on the Siemens 3T MRI platform (~ 1/3 of enrolled subjects). This multi-site study allows 

for the assessment of ASL MRI sensitivity to disease severity across the spectrum from 

cognitively normal adults, early and late mild cognitive impairment (EMCI, LMCI), and 

mild AD. For up-to-date information, see www.adni-info.org. Subjects recruited in ADNI 

GO and ADNI II with MPRAGE and ASL-MRI images were included and the cohort 

included in this study contains 41 normal controls (NC); age: 72.9 ± 6.9 years (mean ± 
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standard deviation), 74 MCI patients, age: 70.5 ± 7.0 years, and 25 AD patients, age: 72.0± 

6.38 years. More detail of the demographic information can be found in the Table 1.

Image acquisition

Both high-resolution structural MRI data and ASL-MRI data were downloaded. The 

structural images were acquired using a 3D MPRAGE T1-weighted sequence with the 

following parameters: TR/TE/TI = 2300/2.98/900 ms, 176 sagittal slices, within plane FOV 

= 256 × 240 mm2, voxel size = 1.1 × 1.1 × 1.2 mm3, flip angle = 9°, bandwidth = 240 Hz/

pix. ASL data were acquired using the Siemens product 2D PICORE sequence, which is a 

pulsed ASL sequence using the Q2TIPs technique for defining the spin bolus [15]. The 

acquisition parameters were TR/TE = 3400/12 ms, TI1/TI2 = 700/1900 ms, FOV = 256 mm, 

24 sequential 4 mm thick slices with a 25% gap between the adjacent slices, partial Fourier 

factor = 6/8, bandwidth = 2368 Hz/pix, and imaging matrix = 64 × 64.

ASL data processing

Similar to our previous study [10], a SPM12 (http://www.fil.ion.ucl.ac.uk/spm) based 

toolbox, ASLtbx [16,17] was used for preprocessing all MR images. The steps for 

processing ASL images include motion correction [17], temporal denoising, spatial 

smoothing, CBF quantification, outlier cleaning [18], partial volume correction, and spatial 

registration to the Montreal Neurology Institute (MNI) standard brain space. Temporal 

filtering was achieved by using a high-pass Butterworth filter (cutoff frequency = 0.01Hz) 

and temporal nuisance cleaning. Temporal nuisances including head motion time courses (3 

translations and 3 rotations), and the cerebrospinal fluid (CSF) mean signal time course were 

regressed out from ASL image series at each voxel. CSF mask was defined during the T1-

weighted structural image segmentation. Spatial smoothing was performed with an isotropic 

Gaussian kernel with a full-width-at-half-maximum of 6 mm. The preprocessed ASL label 

and control image pairs were then successively subtracted, and the control-label difference 

was converted into a quantitative CBF value using the one-compartment model included in 

ASLtbx. The detailed model parameters can be found in other references [19]. Quality 

assurance measures consisted of three different methods: 1) using the method proposed in 

[20], 2) subjects with CBF mapping out of the range of mean CBF ± 3*std were rejected. 20 

AD patients’ CBF maps were rejected; and 3) three manual checks of the registration CBF 

images to the MNI space. The mean ASL image was registered to the high resolution 

structural T1 images using SPM 12. The corresponding registration transform was used to 

register the CBF maps into the structural MRI

Structural images were segmented into grey matter (GM), white matter (WM), and CSF 

using the segmentation tool provided in SPM12. These images were projected into the native 

ASL image space based on the registration correspondence between the mean ASL control 

image and the structural image; and they were subsequently used for extracting the CBF 

signals for temporal denoising and partial volume correction. The Diffeomorphic 

Anatomical Registration Through Exponential Lie Algebra (DARTEL) routine [19] 

implemented in SPM12 was used to generate a local template for all subjects based on their 

segmented GM and WM probability maps. The local template was registered into the MNI 

standard space using a linear affine transformation. With these two transformations, each 
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individual subject’s brain was mapped into the MNI space. The slice-wise adaptive outlier 

cleaning algorithm [17] was applied to the resulting CBF time series. Partial volume effect 

(PVE) correction was performed at each voxel in the GM using a previously described 

approach. The PVE corrected CBF map was then registered into the structural image space 

using the same registration transformation from the mean ASL control image to the 

structural image described above. The meta-region-of-interest (meta-ROI) identified by 

Landau et al. [21] was used to extract mean CBF in the temporal parietal regions which have 

been shown to be sensitive to AD-related CBF changes [10,22].

Statistical analysis

Table 1 shows the demographic information, whereby the group differences were determined 

by X2 for sex and 2 sample t-tests for continuous variables. The values are shown in the form 

of mean±SD. Only sex was significantly different between the patients and NC. 

Additionally, Pearson correlation was computed between the change of meta-ROI and the 

change of Mini-Mental State Examination (MMSE) (This score was selected based on the 

closest in date to the date of acquisition for the ASL-MRI images.)

Subjects were classified into two categories based on their disease diagnosis results at each 

time scan timepoint using the clinical assessment data obtained at the date close to the image 

data acquisition date: 1) non-converters: subjects who did not have a change in diagnosis 

across all sessions (i.e., NC to NC, MCI to MCI, AD to AD), 2) converters: subjects whose 

diagnosis progressed beyond their baseline diagnosis (i.e., NC to MCI, or MCI to AD). 

Since only 5 AD subjects remained after ASL CBF image quality check, we did not run 

statistical analysis for the AD to AD subgroup. Paired-t test as implemented in SPM12 was 

used to assess the longitudinal CBF difference at the two scan dates at each voxel and for 

each subgroup separately. Sex, age, and education were included as covariates. A voxelwise 

statistical significance threshold was set to p<0.001. The Monte Carlo simulation-based 

cluster size estimation was used for correcting the multiple comparisons [23]. For 

visualization, BSPVIEW [24] was used.

Mean metaROI CBF was extracted and compared across time for each group of subjects. 

Neurocognitive decline was assessed by MMSE, working memory (the LIMMTOTAL 

(LIMM) and LDELTOTAL (LDEL) score), and daily function measure (the Functional 

Assessment Questionnaire (FAQ)). Longitudinal neurocognitive decline was examined with 

paired t-test for each group separately. Correlations between the longitudinal metaROI CBF 

change and the longitudinal neurocognitive score changes were calculated using Pearson 

correlation analysis. Sex and time difference between the two assessments was included as 

nuisance. Because hippocampus is pivotal to memory and has been frequently implicated in 

AD, we repeated the above analyses for the bilateral hippocampus mean CBF. The 

hippocampus was defined by the Wakeforest PickAtlas [25] and covers the entire 

hippocampus while the metaROI only contains a small sphere in the hippocampus.
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RESULTS

Longitudinal CBF changes in non-converters

Fig. 1 shows the voxelwise longitudinal CBF difference for both stable NC and stable MCI 

patients. 20 stable NC subjects had two ASL scans within 2.45 ±1.50 years. Fig 1A shows 

the significant CBF changes in the stable NC. The threshold was t > 3.57 at a p < 0.001 and 

a cluster size > 57. CBF reduction was found in the right and left hippocampus and left 

fusiform gyrus. Furthermore, the meta-ROI CBF computed for this group was 52.4 ml/100 

g / min and 51.86 ml ml/100 g /min in the first and last sessions, respectively.

Time difference between the two ASL scans for the 57 stable MCI patients was 2.18 ±1.43 

years. Fig. 1B shows their significant longitudinal CBF changes. The voxel-wise statistical 

significance threshold was t > 3.24 at a p < 0.001. The cluster size threshold was 57. 

Significant CBF reduction was found in left and right hippocampus, left and right 

cerebellum, basal ganglia, and left fusiform gyrus. The meta-ROI CBF for this group had a 

mean of 53.35 ml ml/100 g/min and 51.20 ml /100 g/min in the first and last sessions, 

respectively.

Longitudinal CBF changes in converters

Fig. 2 shows the voxelwise longitudinal CBF difference for the converters: NC to MCI and 

MCI to AD. 21 NC to MCI converters had two ASL scans within 3.00 ±1.18 years. Fig 2 A 

shows the significant longitudinal CBF changes in the NC to MCI converters at the 

statistical significance level of t > 3.55 at a p < 0.001 and a cluster size > 57. A reduction of 

CBF was found in the left and right hippocampus, right cerebellum, and an increase of CBF 

was found in the right putamen and right caudate nucleus. The meta-ROI CBF for this group 

showed a mean of 56.84 ml/100 g/min and 54.80 ml /100 g/min in the first and last sessions, 

respectively. No significant difference was observed (p-value = 0.42).

17 MCI to AD converters had two ASL MRI scans within 1.71 ±1.26 years. Fig. 2B shows 

the longitudinal CBF changes defined by a statistical threshold of t > 3.6861 at a p < 0.001 

and a cluster size > 57. Longitudinal CBF reduction was found in the right hippocampus and 

right superior orbital gyrus.

Table 2 lists the mean CBF of the metaROI for each subgroup at both baseline and the 

followup time. Table 3 lists the mean CBF of bilateral hippocampus for each subgroup at 

both baseline and the followup. Hippocampus ROI was defined by the PickAtlas. 

Longitudinal CBF reduction in the stable MCI patients was statistically significant in both 

metaROI and the hippocampus ROI, resulted in a significant longitudinal CBF reduction in 

both ROIs in the entire group.

Stable NC (NC-NC) showed significant longitudinal memory decline as measured by LIMM 

(p=0.04) and LDEL (p=0.003). Stable MCI patients showed significant memory decline 

(LIMM, p=0.02; LDEL, p=0.0002) and significant daily function impairment as measured 

by FAQ (p=0.0005). NC-MCI converters showed significant longitudinal memory decline 

(LIMM, p=0.05). MCI-AD converters showed significant memory decline (LDEL, 
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p=1.4e-6) and FAQ decline (p=0.001). Longitudinal CBF changes were not related to 

longitudinal neuro-cognitive decline in any group (p>0.1).

DISCUSSION

We examined longitudinal CBF changes in normal aging, and patients in the AD continuum. 

In subjects without disease progression (non-converters), statistically significant longitudinal 

CBF reduction was observed in the hippocampus and cerebellum in both stable NC and MCI 

subjects. In subjects with disease status change at the second timepoint (converters), CBF 

reduction was found in the left and right hippocampus and right cerebellum in NC subjects 

who converted to MCI. MCI to AD converters showed CBF reduction in the right 

hippocampus and in the right superior orbital gyrus. No significant longitudinal changes 

were observed in the grey matter mean CBF and the meta-ROI mean CBF in all populations. 

Change of mean grey matter CBF or meta-ROI CBF was not significantly related to the 

change of neurocognitive changes as measured by MMSE, working memory indices, and 

FAQ.

Cross-sectional studies [26] have suggested longitudinal CBF reductions occur in aging and 

AD. Our data provide direct evidence of the longitudinal CBF changes in hippocampus in 

both healthy elderly and AD patients with or without disease progression. The hippocampus 

is a pivotal region for both aging and AD as it is the major region involved in episodic 

memory. Hippocampal CBF reduction overserved in both non-converters and converters 

suggests a disease independent hippocampal function decline during the progressive aging 

process. Cross-sectional studies have suggested larger longitudinal hippocampal CBF 

reductions in the AD continuum than in normal aging [4,10], in line with the hallmark fast 

memory decline in AD. One reason for missing the disease related longitudinal CBF could 

be the limited sample size in the converter groups. In the current study, the stable MCI group 

had the largest sample size and their longitudinal CBF reduction patterns appeared to be the 

largest among all four groups. Another reason could be the symptom progression 

heterogeneity. Even for the “stabilized” NC and MCI patients, we still found significant 

memory decline and daily function decline at the second scan time. In other words, some of 

the nonconverter NC and MCI might be better grouped into converters or early converters as 

also suggested by the AD subtyping concept [27]. In addition to the hippocampus, aging-

related CBF reduction (the time effect) was demonstrated in both normal elderly and MCI in 

other regions, including the medial prefrontal cortex, cingulate cortex, and ventral striatum. 

The medial prefrontal cortex and cingulate are involved in memory and decision making 

[28]. Reduction of CBF, seen over time, in the medial prefrontal cortex may be related to 

aging-related memory and decision making decay. Hypoperfusion in cingulate was 

consistent with an early SPECT imaging study [29], where cingulate hypoperfusion was 

found to be predictive of AD. Cingulate is involved in self-referencing [30], which is related 

to memory. Hypoperfusion in cingulate cortex in aging and MCI may indicate impairments 

of self-referencing function. The “stable” MCI group showed longitudinal hypoperfusion in 

ventral striatum, indicating an impairment of reward information processing and motor 

function in MCI since ventral striatum is pivotal to those brain functions and has been 

reported to be affected in aging and AD [31, 32, 33].
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Hypoperfusion was observed in the lateral striatum in the putamen and temporal cortex after 

patients converted to MCI from normal aging. However, this pattern was diminished in the 

MCI to AD conversion group. While we do not know the exact reason for this discrepancy, 

one reason may be the small number of patients included in the MCI to AD conversion 

group. Disease severity-related CBF reduction in the parietal cortex, precuneus, and 

temporal cortex was reported in a previous ADNI ASL study [10]. In our current study, we 

did not find a hypoperfusion pattern in the parietal cortex and precuneus. Future studies are 

needed to investigate this discrepancy.

No significant correlation was found between the longitudinal CBF change and the 

longitudinal neurocognitive decline in either the nonconverters or the converters. While this 

result may suggest a non-linear relationship between the longitudinal CBF change and the 

longitudinal neurocognitive changes, it may also be caused by the large population 

heterogeneity as we mentioned above and the relatively low signal-to-noise-ratio of the 

PASL sequence used in ADNI II ASL data acquisitions.

Hypoperfusion patterns in MCI and AD detected by ASL CBF have been shown to be 

comparable to hypo-metabolism patterns detected by PET-FDG [22,34,35]. Cerebral 

metabolism rate of glucose (CMRglu) measured by PET has been long postulated to 

progressively decline as the disease progresses [36]. A future important study could be 

assessing the longitudinal CMRglu decline in the same groups as included in this paper or 

combining ASL CBF and PET-FDG CMRglu for better delineating the longitudinal brain vs 

behavioral relationship.

Several limitations have been discussed above, including the relatively small sample size in 

three of the four groups, the relatively low signal-to-noise-ratio of the ADNI PASL data, and 

the neurocognitive progression inheterogeneity in each group. Larger sample size may be 

available when more ADNI data will be released. High quality ASL data are available from 

ADNI phase III study but there were few subjects who had converted from NC to MCI or 

from MCI to AD by the time we performed this study. Group subtyping is possible when 

larger cohort is available. This study was also limited in terms of lack of AD pathology 

analysis. We did not include longitudinal AD pathological data as few subjects had the data 

at both time points and AD pathology may not be sensitive to detect longitudinal 

neurocognitive decline [37,38,39,40]. Another limitation is the unclear caffeine intake 

information at both the baseline scan and the followup scan. The ADNI patient enrollment 

excluded the use of antihypertensive agents and benzodiazepines but it is unclear for 

whether caffeine intake was controlled at each imaging date. Previous studies have shown 

that caffeine can cause transient acute CBF reductions [41,42]. It is possible that part of the 

longitudinal CBF reduction might be contributed by caffeine intake difference between the 

two timepoints.

Conclusion

Using ADNI longitudinal ASL data, we found consistent longitudinal CBF reduction in the 

hippocampus in normal aging and in the progression of AD. Also, striatal CBF changes 

were found in the progression of NC to MCI, suggesting this is a sign of early disease 

progression and may be used as an additional biomarker for early disease detection.
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Figure 1. 
Voxel-wise statistical analysis results of the within-subject CBF changes in patients with no 

change of disease status at both assessed time points. CBF changes were marked with the 

red clusters. Figure 1-A is the longitudinal CBF reductions in the 20 non-converter NC 

subjects; significant CBF reduction was found in the left and right hippocampus and left 

fusiform gyrus. Figure 1-B shows the longitudinal CBF reductions in the 57 non-converter 

MCI patients; significant reduction of CBF was found on left and right hippocampus, left 

and right cerebellum, basal ganglia, and left fusiform gyrus. The number underneath each 

image slice indicate the slice location in the MNI standard brain space.
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Figure 2: 
Voxel-wise statistical analysis results for the converter groups. Figure 2-A shows the CBF 

change patterns in the 21 NC to MCI converters; significant reduction of the CBF was found 

on the left and right hippocampus, right cerebellum, and an increase in CBF in the right 

putamen and right caudate nucleus. Figure 2-B shows the CBF change patterns for 17 MCI 

to AD converters; significant CBF reduction was found in the right hippocampus and right 

superior orbital gyrus. The number underneath each image slice indicate the slice location in 

the MNI standard brain space.
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TABLE 1:

Demographic characteristics of study subjects

NC MCI AD

Number of subjects 41 74 25

Age (yrs) 72.9±6.9 70.5±7.0 72±6.38

Age range (yrs) 60 – 85 56 – 85 61 – 82

Female:Male 25:16 43:31** 15:10**

Years of education (SD) 16.4±2.3 16.4±2.8 16.4±3.1

mean GM CBF (ml /100 g/min) 53.35±17.36 52.64±15.37 45.13±13.30

MMSE 27.10±7.76 25.85±7.95 23.56±5.77

**
means significantly different from controls.
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TABLE 2:

Meta-ROI CBF in the baseline and the second time point

Group N CBF at baseline CBF at second time point p-value

NC to NC 20 53.35 (17.58) 51.23 (15.14) 0.69

MCI to MCI 57 54.72 (16.55) 50.72 (15.99) 0.19

NC to MCI 21 57.97 (17.60) 54.00 (13.68) 0.42

MCI to AD 17 45.70 (7.23) 43.50 (13.19) 0.55

All Subjects 115 53.74 (16.16) 50.34 (15.19) 0.10

Values were shown in the format of mean and standard deviation in the parenthesis. CBF is in the unit of ml/100 g/min. N represents the number of 
subjects in each group after the remove of outliers.
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TABLE 3:

Hippocampal CBF in the baseline and the second time point

Group N CBF at baseline
(ml/100 g/min)

CBF at second time point
(ml/100 g/min)

p-value

NC to NC 20 41.83 (10.54) 40.19 (12.38) 0.34

MCI to MCI 57 41.63 (9.04) 37.11 (9.84) 0.0002*

NC to MCI 21 44.59 (12.15) 38.51 (8.02) 0.06

MCI to AD 17 39.09 (7.14) 37.54 (10.19) 0.38

All Subjects 115 41.83 (9.71) 37.97 (10.02) 2.48x10−5**

*
and ** indicate statistically significant results defined by p<0.05. Values were shown in the format of mean and standard deviation in the 

parenthesis. CBF is in the unit of ml/100 g/min. N represents the number of subjects in each group after the remove of outliers.
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