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Abstract

Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. 

Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a 

loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is 

important to understand how bone cells sense and transduce these mechanical cues into biological 

changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity 

or to mimic mechanical load. Many studies have identified individual cytoskeletal components – 

microtubules, actin, and intermediate filaments – as mechano-sensors in bone. However, given the 

high interconnectedness and interaction between individual cytoskeletal components, and that they 

can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, 

rather than one specific component, is necessary for proper bone cell mechano-transduction. This 

review will examine the role of each cytoskeletal element in bone cell mechano-transduction and 

will present a unified view of how these elements interact and work together to create a mechano-

sensor that is necessary to control bone formation following mechanical stress.

Keywords

Cytoskeleton; Microtubules; Actin; Intermediate Filaments; Osteocyte; Mechano-transduction

I. Introduction

Bone senses and adapts to changes in its mechanical environment, settling at a homeostatic 

setpoint around the “typical” loading events it experiences. Significant changes to its 

mechanical environment, such as those that happen with heavy weightlifting, push the bone 

out of its homeostatic setpoint into an anabolic zone, which spurs bone formation to adapt to 

this increase in strain1. Conversely, a sustained lack of mechanical loading, such as during 
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disuse, paralysis, and injury or defects in the ability to sense and transduce mechanical 

loading cues - as occurs in aging –pushes bone into a catabolic zone and resets the 

homeostatic setpoint at a lower bone mass. The resulting decrease in bone mass can lead to 

an increase risk of fracture. As such, understanding how bone cells sense and transduce 

mechanical signals into biological changes is important to develop new therapeutic targets to 

address conditions of low bone mass and consequent frailty.

Bone is a porous structure filled with interstitial fluid, bound by semi-permeable fibrous 

periosteal and endosteal membranes. Mechanical loading of bone causes pressurization of 

interstitial fluid, resulting in fluid shear stress experienced by mechano-sensitive bone-

embedded osteocytes, surface osteoblasts, and their progenitors in the endosteal and 

periosteal membranes2–4. These cells sense and respond to mechanical events, activating 

mechano-transduction cascades that translate mechanical cues into biological signals to 

regulate bone formation and remodeling. In bone cells, the initiation of mechano-

transduction cascades, which invariably involves intracellular calcium signaling, results in 

the regulation of bone effector molecules such as sclerostin, nitric oxide, prostaglandin E2 

(PGE2), insulin like growth factor 1 (IGF1), parathyroid hormone related protein (PTHrP), 

and RANKL5–7. Identification of these effectors of bone mechano-signaling has led to 

therapeutic agents that improve bone mass. For example, sclerostin is a fundamentally 

important regulator of bone formation in response to anabolic bone loads. Sclerostin, a 

glycoprotein that is secreted by bone embedded osteocytes, inhibits the differentiation and 

activity of bone forming osteoblasts by disrupting Wnt/β-catenin signaling8. Mechanical 

loading decreases sclerostin, relieving the repression on osteoblast differentiation, and 

unleashing de novo bone formation. Targeting this mechano-transduction effector has proven 

to be useful strategy to improve bone mass. Antagonizing sclerostin protein using 

neutralizing antibodies with the drug Romosozumab is effective at increasing bone mass and 

has been approved by the FDA to treat osteoporosis in post-menopausal women at a high 

risk for fracture9,10.

While many of the downstream effectors of osteocyte mechano-transduction are known, 

precisely how bone cells sense mechanical cues and translate them into signaling events that 

lead to mechano-activated bone formation is much less clear. Understanding the mechano-

sensors and the downstream pathways that control this ensemble of bone effectors represents 

important, untapped therapeutic opportunities for improving bone mass. While targeting a 

single effector, such as sclerostin with Romosozumab, is effective at improving bone mass, 

better understanding the elements that are mechano-responsive in osteocytes will reveal new 

therapeutic targets that can be exploited to expand treatment options for conditions of low 

bone mass and skeletal fragility. This review will focus on recent data that implicates the 

cellular cytoskeleton as a sensor, integrator, and transducer of mechanical loading signals in 

bone, revealing a structure that is integral to mechano-sensing in bone that may contain 

druggable targets to improve bone mass and quality.

II. Cytoskeletal Elements in Osteocyte Mechano-Signaling

The cellular cytoskeleton provides internal structure and support to the cell and its 

organelles. Under mechanical stress, the cytoskeleton compresses and provides an opposing 
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outward force. Additionally, the cytoskeleton indirectly links with the extracellular matrix 

and other cells through adherence junctions and forms specialized cell projections, making it 

well-positioned to sense mechanical forces like fluid shear stress, stresses on extracellular 

matrix attachments, and changes in stiffness, all of which compress, pull, and tug on cells 

and their extracellular connections (Figure 1A–B). Therefore, the cytoskeleton has obvious 

potential as a mechano-sensor.

The cytoskeleton is made of three main components – actin microfilaments, microtubule 

filaments, and intermediate filaments (Figure 1A and 1B). Septins and spectrins are 

additional components of the cytoskeleton, but little is known about their role in bone 

mechano-transduction. Each component has its own specific makeup and specialized 

function, although the organization of cytoskeletal proteins together creates an interacting 

dynamic network that can disassemble and reassemble to adapt to changing intra- and 

extracellular cues. As a result of this integration, specifically assessing the contribution of an 

individual cytoskeletal component to mechano-signaling can prove quite challenging.

The cytoskeleton is a well characterized mechano-transducer in many different cell types, 

serving as a signaling hub via interactions with mechanically activated calcium channels, ion 

channels, kinases, and GPCRs to initiate mechano-to-chemo signaling events essential to 

mechano-transduction11–13. In bone, microtubules, actin, primary cilia, integrins, and focal 

adhesions have all been linked to mechanically-induced bone responses. These cytoskeletal 

elements transduce mechanical signals to many different classes of mechano-transducers - 

such as calcium channels (i.e. Piezo14–18, transient receptor potential (TRP)19–22, and 

voltage-gated calcium (CaV)23,24 channels), Nitric Oxide Synthases (NOS)25,26, NADPH 

Oxidase 2 (NOX2)19,25,27, purinergic signaling20,28–30, and connexin4331 - to drive changes 

in bone cell function. These changes in cell function arise from changes in important 

effectors such as sclerostin, nitric oxide, PGE2, and the expression of osteoblast genes 

(Figure 1B–C).

Depending on the specific make up, modification, and cross-linking of the individual 

cytoskeletal components, the integrated cytoskeleton can vary drastically in its stiffness and 

in its with association with signaling proteins like ion channels, enzymes, and kinases. This 

property allows the cytoskeleton to be an adaptive mechano-sensor that can vary depending 

on the its current mechanical environment – which becomes its homeostatic setpoint. 

Changes from this homeostatic reference then elicit changes in osteocyte function. 

Additionally, sustained changes in the mechanical environment can cause a remodeling and 

adaptation of the cytoskeleton to establish a new homeostatic setpoint.

Here, we will expand on these cytoskeletal elements and their interactions to present a 

unified vision of how numerous mechano-sensors can integrate through the cytoskeleton to 

regulate bone cell homeostasis. Given the interconnectedness of and crosstalk between 

individual elements of the cytoskeleton, the cytoskeleton serves as a central hub of mechano-

signaling in bone. As such, understanding how cytoskeletal components sense and transduce 

mechanical signals, individually and in unison, may ultimately reveal therapeutic targets that 

can be exploited to mimic mechanical stress and modulate bone formation.
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i. Microtubule Structure and Dynamics

Microtubules are dynamic cytoskeletal filaments composed of α-tubulin and β-tubulin 

dimers that provide structural support to cells, work in conjunction with dynein and kinesin 

motors to facilitate vesicular and organellar transport, and are critical to cell division. 

Globular α-tubulin and β-tubulin dimers bound to GTP are incorporated into growing 25 nm 

diameter hollow filaments that originate at microtubule organizing centers (MTOCs) and 

extend to the periphery of the cell. Hydrolysis of bound GTP to GDP lowers the affinity for 

adjacent dimers, favoring depolymerization of microtubules (Figure 2A). It is this intrinsic 

dynamic instability and constant turn over that allows microtubules to readily adapt to 

changes in cellular dynamics32.

Specific post-translational modifications to the α/β-tubulin dimers can alter the stability, 

biophysical properties, protein-protein interactions, and functions of microtubules33. These 

diverse tubulin post-translational modifications, such as detyrosination, acetylation, 

methylation, polyglutamylation, glycylation, polyamination, phosphorylation, 

ubiquitinylation, sumoylation, and palmitoylation, are referred to as the tubulin code33,34. 

This tubulin code is critical as it confers specific functions to a subset of microtubules, 

allowing for the same base protein (α/β-tubulin) to carry out multiple functions depending 

on how they are modified.

With respect to mechano-transduction, two of these microtubule post-translational 

modifications – acetylation and detyrosination – are particularly important. Acetylation 

occurs within the lumen of the hollow microtubule filament where α-tubulin acetyl 

transferase (αTAT) transfers acetyl groups from acetyl-CoA to the lysine 40 residue on α-

tubulin35. Acetylated microtubules are more stable and flexible, which makes them more 

resistant to snapping under mechanical stress36,37 (Figure 2B). This enhanced stability then 

allows for the opportunity for an additional post-translational modification to occur: 

detyrosination. Microtubule filaments become detyrosinated when the terminal tyrosine 

residue of the C-terminal tail of α-tubulin is cleaved by vasohibin 1 (VASH1) or vasohibin 2 

(VASH2) in complex with small vasohibin binding protein (SVBP), revealing a glutamate 

residue38–41. Following microtubule depolymerization, tubulin tyrosine ligase (TTL) then 

acts on the α-tubulin tail, reattaching the terminal tyrosine to reverse this detyrosination. 

Similar to acetylation, microtubule detyrosination enhances the microtubule‟s ability to 

withstand mechanical load, allowing it to bend and buckle, without breaking, under 

mechanical stress42 (Figure 2C). Accordingly, this subset of acetylated and detyrosinated 

microtubules display increased flexibility and resistance to breakage that may be ideal for 

mechano-sensing and, importantly, are distinct from the dynamic pool of microtubules 

involved in cell division and organellar trafficking. These properties make this subset of 

mechano-responsive microtubule filaments an intriguing druggable target. These 

detyrosinated and acetylated microtubules are enriched in the long, dendrite-like cellular 

processes that extend from osteocytes, as well as in the primary cilia that extends from the 

cell body19,43–47 (Figure 2B–C, arrows). This is relevant because both the osteocyte 

dendritic processes and primary cilia have been implicated in bone mechano-signaling48–51.
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ii. Microtubules in Bone Mechano-Transduction

Interest in microtubules as mechano-transducers in osteocytes is supported by parallel 

analyses of the dual role of microtubules in both the cytoskeleton as a whole and in the 

primary cilia. Several important studies laid the groundwork for microtubules as mechano-

transducers in bone. In osteocytes, microtubules rearrange and increase their density in 

response to fluid shear stress52. Interestingly, the rearrangement of the microtubule 

cytoskeleton does not seem to occur in osteoblasts, which are believed to be less mechano-

responsive than osteocytes53,54. Disrupting microtubules impairs mechano-transduction in 

bone cells, preventing fluid shear stress-induced calcium influx, down regulation of 

sclerostin protein, changes in Col1a1 and Mmp1 gene expression, and blunts the 

phosphorylation of various signaling kinases, including calcium/calmodulin kinase II 

(CaMKII), extracellular signal-regulated kinases 1/2 (ERK1/2), and focal adhesion kinase 

(FAK)19,55,56.

Recent work from our lab has revealed a signaling cascade, which is dependent upon a 

subset of detyrosinated microtubules, that links the fluid shear response of osteocytes to the 

loss of sclerostin protein (Figure 3A). Briefly, the application of fluid shear stress to cultured 

osteocytes initiates the production of reactive oxygen species from NOX2, the opening of 

transient receptor potential cation channel subfamily V member 4 (TRPV4) cation channels, 

which leads to calcium influx, the activation of CaMKII, and the stimulation of lysosomes 

that rapidly degraded sclerostin protein19,20,25.

Integral to the activation of this pathway is a subset of detyrosinated microtubules and their 

effect on cytoskeletal stiffness19. As osteocyte microtubule detyrosination increases, 

cytoskeletal stiffness also increases. The degree of detyrosination and, by extension, the 

degree of cytoskeletal stiffness, tunes the ability of the cells to respond to a specific fluid 

shear force to elicit calcium influx into the cell (Figure 3B). High levels of microtubule 

detyrosination make the cytoskeleton stiffer and resistant to fluid shear stress-induced 

calcium influx, activation of CaMKII, and loss of sclerostin protein. Low levels of 

microtubule detyrosination make the cytoskeleton too compliant and also prevents the 

mechano-response. However, a moderate level of detyrosination creates a “Goldilocks zone” 

of cytoskeletal stiffness that permits robust mechano-responsiveness, initiating the a cascade 

of NOX2-dependent reactive oxygen species, TRPV4 activation, calcium influx, CaMKII 

phosphorylation, and the degradation of sclerostin by the lysosome19,25. The finding that 

stiffness of the cytoskeleton can be tuned by the level of microtubule detyrosination parallels 

work in skeletal and cardiac muscle, where detyrosination affects mechano-sensitivity, 

NOX2 activation, and calcium signaling, indicating a conserved mechanism of mechano-

transduction through detyrosinated microtubules across various cell types57.

While we have not yet shown that targeting detyrosinated microtubules in vivo alters the 

bone mechano-response, we have observed that the mechano-transduction pathway (Figure 

3A) beginning with microtubules and ending in the degradation of sclerostin protein is 

necessary for the in vivo activation of bone formation in response to mechanical loading25. 

In vitro, microtubules are necessary for sensing fluid shear stress and subsequent activation 

of NOX2 that ultimately leads to the lysosomal degradation of sclerostin to permit bone 

formation19,25. In support of the relevance of this microtubule-dependent mechano-
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transduction pathway in vivo, inhibiting NOX2 pharmacologically prevents load-induced 

bone formation25. Similarly, blocking lysosomal function, which is responsible for the 

mechano-activated degradation of sclerostin protein, also prevents load-induced bone 

formation in vivo25. While these findings indirectly support a role for microtubules in the in 
vivo bone mechano-response, NOX2 activation and the lysosomal degradation of sclerostin 

originate at the level of mechano-sensing through the microtubule cytoskeleton.

Not only are detyrosinated microtubules involved in mechano-sensing and the activation of 

NOX2-ROS early in this pathway, detyrosinated microtubules may also be involved in 

sclerostin degradation at the terminus of this pathway. Detyrosinated microtubules are 

integral for the localization of lysosomes throughout the cell, with lysosomes accumulating 

on detyrosinated microtubules. Low detyrosination is associated with decreased lysosome 

abundance and the fusion of autophagosomes with lysosomes, which likely disrupts protein 

turnover58. This suggests the role of detyrosinated tubulin in bone cell mechano-signaling 

and mechano-responsiveness may be unsurprisingly multifactorial.

The issue of where these microtubules are acting to initiate these signaling events is less 

clear. Does fluid shear stress act through microtubules at extracellular matrix (ECM) 

attachment sites, where microtubules and actin interact with focal adhesions, at sites of cell-

cell adhesions where the cytoskeleton links to cadherin junctions, or does the mechano-

sensing occur throughout the cytoplasm? Another possibility is that mechano-sensing 

happens in the microtubule-based primary cilium.

There has been long-standing interest in the role of the primary cilium, a microtubule-based 

structure, in bone homeostasis and mechano-sensing. The non-motile primary cilium 

consists of nine circumferentially arranged microtubule doublets, named the axoneme, that 

extend outward from the MTOC into the extracellular space on the apical cell surface59. 

Like other microtubule mechano-sensors, microtubules of the primary cilium are heavily 

post-translationally modified by acetylation and detyrosination (Figure 2B–C, arrows). This 

microtubule-based antenna, once considered a vestigial organelle, has been implicated as a 

mechano-sensor in liver and kidney epithelial cells, spurring studies examining its role in 

osteocyte mechano-sensing60. The role of the primary cilium in osteocyte mechano-

transduction has been widely reviewed49,50,61,62. Here, we highlight those findings that 

support the primary cilium’s role in mechanical load-induced bone formation, as studied in 
vitro and in vivo.

Genetic disruption of components of the primary cilium supports its role as a mechano-

sensing organelle in vivo. Conditional deletion of Pkd1, which encodes polycystin-1, a 

putative mechano-sensor enriched in primary cilia63,64, or Kif3a, a subunit of a kinesin 

motor complex that is integral for intraflagellar transport of microtubule subunits and other 

axoneme proteins to primary cilia, in osteoblasts or osteocytes reduces load-induced bone 

formation and bone quality65–67. Similarly, disrupting intraflagellar transport in vitro 
prevents fluid shear stress-induced remodeling of microtubules and the upregulation of 

osteogenic genes52,68,69. The effects of targeting intraflagellar transport may also be due to 

alterations in the length of the primary cilium. Under fluid shear stress, the primary cilium 

amplifies applied strain, which is highly dependent on the length of the primary cilium, with 
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longer cilium experiencing more tip deflection and, therefore, higher strain70–72. The 

opposite is also true, with shorter cilium being less mechano-responsive51,71,72. This strain 

amplification and deflection of the primary cilium is likely integral for activating mechano-

transduction cascades in osteocytes. Mechanical stimulation of the primary cilia is 

associated with calcium influx through TRPV4 calcium-permeable ion channels73 and 

activation of adenylyl cyclase 674,75. The adenylyl cyclase 6-dependent production of cyclic-

AMP is necessary for fluid shear stress-induced gene expression changes in vitro and load-

induced bone formation in vivo74,75.

Whether the calcium influx through TRPV4 happens through channels actually on the 

primary cilium or are activated near the primary cilium is less clear51,76; studies that show 

calcium influx is activated by the primary cilium may be measuring calcium influx due to 

stress on the microtubule cytoskeleton as a whole. Indeed, it is very difficult to separate 

changes in the microtubule cytoskeleton as a whole and those in the primary cilia as they are 

functionally interconnected and difficult to independently target. Indeed, a recent study has 

highlighted this controversy in finding that stimulating the primary cilium directly does not 

cause calcium influx into the primary cilium76. This could mean that the subsequent calcium 

signaling typically observed after primary cilium activation is due to indirect activation of 

other cytoskeletal or plasma membrane-associated components or the primary cilium 

activates other, non-calcium effectors in response to mechanical events. Despite this 

controversy, interfering with cilium structure, length, or function does impact osteocyte 

mechano-responsiveness, supporting that this microtubule-based structure contributes to the 

osteocyte mechano-response directly or indirectly.

While all the studies above implicate both the microtubule cytoskeleton and the primary 

cilium as mechano-sensors in osteocytes, it is important to reiterate that it is challenging to 

discriminate the effect targeting microtubules has on the cell body microtubule cytoskeleton 

and on the primary cilium. Given that the primary cilium is a microtubule-based structure 

that originates from the same MTOC that anchors the cell body microtubule cytoskeleton 

and shares many of the same post-translational modifications, disrupting microtubules or the 

primary cilia likely has effects on the cytosolic microtubule cytoskeleton and vice versa52. 

Furthermore, the microtubules themselves directly and indirectly interact with other 

cytoskeletal components, like actin, actin binding proteins, and the large class of 

intermediate filaments, that each have also been linked to mechano-signaling.

iii. Actin Filament Structure and Dynamics

Actin microfilaments are polymers of individual globular actin monomers (G-actin) that 

assemble together, along with a number of co-factor and regulatory proteins, to form 

stabilized filaments (F-actin) of about 6 nm diameter. These thin and semi-flexible filaments 

allow for mechanical support and maintenance of cell shape but are also integral to cellular 

movement and locomotion77,78. Actin exists in a state of constant remodeling, where 

filaments grow at the positive end and depolymerize at the minus end. ATP-bound G-actin 

can be incorporated into the growing actin filament. Actin has intrinsic ATPase activity, 

which cleaves the ATP to ADP, thus favoring disassembly into G-actin monomers (Figure 
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4A). As the state of the cell changes, the equilibrium can be pushed to favor G-actin or F-

actin depending on the co-factors and binding proteins present on each actin type.

In non-contractile cells, actin is organized into many different structures, such as stress 

fibers, lamellipodia, and filipodia, which help with cell anchoring and aid with outside-in 

signaling (Figure 4B). The Rho family of small GTPases is integral to controlling actin 

dynamics to create these specialized structures. Members of the Rho family are activated 

downstream of G-protein coupled receptors, receptor tyrosine kinases, integrins, and other 

macromolecular structures that link the extracellular environment to affect intracellular 

changes. While there are 20 members of the Rho family79, focus has remained on three 

specific members in bone: RhoA, Rac1, and Cdc42 (Figure 1B and Figure 4B). RhoA 

stimulates actin polymerization and the formation of stress fibers through its effector 

proteins Rho-associated protein kinase (ROCK) and the formin mDia180–84. ROCK, through 

LIM domain kinase (LIMK) proteins85–87, inactivates cofilin to promote actin stability by 

preventing cofilin from binding to ADP-bound monomers in F-actin and severing the 

filaments, which would create free ends to allow for the release of actin monomers86,87. 

Rac1 contributes to the formation of lamellipodia, which are cell membrane ruffles 

containing branched actin fibers and are important for cell motility88,89. Cdc42 regulates the 

formation of filipodia, which contains linear actin fibers and are important for the anchoring 

of cells through focal adhesions88,89.

Focal adhesions contain actin stress fibers and, along with actin binding proteins such as α-

actinin, talin, and vinculin, as well as integrins, form an attachment to the ECM to facilitate 

anchoring of the cell and its cytoskeleton to its substrate90–92. These focal adhesions are also 

rich with signaling molecules like FAK and Rho-family kinases, which uniquely positions 

focal adhesions as a signaling hub that can transduce changes in the extracellular 

environment, such as changes in mechanical stress, to the cytoskeleton, and to other nearby 

structures to influence cell function.

iv. Actin Microfilaments in Bone Mechano-Transduction

Actin filaments are enriched in the mechano-sensitive dendrite-like cell processes of 

osteocytes, similar to detyrosinated and acetylated microtubules30,31,79–81 (Figure 1A, 2B–

C). Likewise, in response to fluid shear stress, actin stress fibers rearrange forming dense 

stress fibers oriented parallel to the direction of fluid shear stress54,96–105. These stress fibers 

can form as early as 15-minutes post-fluid shear stress55. This actin rearrangement is 

necessary for the activation of downstream signaling events following fluid shear stress 

stimulation. Disrupting actin and actin rearrangement prevents fluid shear stress-induced 

PGE2 production and prevents changes in Ptgs2/COX-2 mRNA and protein 

expression54,99,102,105,105–109. Similar to detyrosinated microtubules, actin stress fibers also 

increase cell stiffness, which may allow them to adapt the set point for mechano-sensitivity. 

In line with this concept, suppressing actin reorganization by silencing LIMK2 exacerbates 

the fluid shear stress-induced increase in COX-2 protein expression104, possibly due to a 

decrease in cellular stiffness, therefore increasing cell mechano-sensitivity110.

Studies focusing on mammalian target of rapamycin complex 2 (mTORc2) show that actin 

remodeling contributes to bone maintenance and the bone mechano-response. mTORc2 
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which contributes to cell spreading, actin polymerization, and strain-induced stress fiber 

formation, is a complex that is distinct from the nutrient, energy, and redox sensor 

mTORc1111,112. Their differential functions are associated with their composition - 

mTORc2 contains Rictor, whereas mTORc1 contains Raptor113,114. Conditionally deleting 

Rictor in osteochondroprogenitors, early or late osteoblasts, or osteocytes all produce bone 

phenotypes115–118. Though there are some sex-specific effects, all models generally have 

decreased bone mass, especially in cortical parameters, and decreased mineralization101–104. 

These phenotypes may be due to mesenchymal stem cells being pushed towards adipogenic 

differentiation, rather than osteogenic differentiation111. In strain matched loading 

experiments, deletion of Rictor in osteochondroprogenitors or osteocytes causes decreased 

periosteal mineral apposition rates (MAR) and bone formation rates (BFR) compared to 

control animals115,117. Rictor deletion also decreases the length and number of the mechano-

sensitive osteocyte cell dendrite-like processes, which may explain the deficits in the loading 

response in conditional deletion animals117.

mTORc2 controls actin dynamics possibly through interacting with Rac and RhoA 

GTPases111,112. The small GTPases RhoA, Rac1, and Cdc42 can directly or indirectly 

regulate local actin filament assembly and disassembly. Fluid shear stress activates these 

small GTPases, which are necessary for β-catenin-dependent TCF/LEF activation to allow 

for the induction of Wnt target genes such as Ptgs2, Spp1, and Runx296,101,108,119. At a 

protein regulation level, RhoA, through its effector proteins ROCK and LIMK, allows for 

fluid shear stress-induced stress fiber formation and the activation of ERK1/2, p38, c-FOS, 

and COX-2103,104,108. Supporting a role of these small GTPases in vivo, deletion of Cdc42 

in chondrocytes decreases calcification and decreases trabecular bone mineralization120. 

Similarly, Rac1 conditional deletion in osteoblasts and osteocytes causes a decrease in 

trabecular and cortical bone parameters, indicating that these small GTPases contribute to 

proper bone development121.

A key way that the actin cytoskeleton integrates with its mechanical environment is via focal 

adhesions. Focal adhesions are multi-protein complexes that create a physical linkage 

between the cytoskeleton and the ECM through integrins and facilitate in outside-in 

signaling, allowing cells to adapt to extracellular changes, including changing mechanical 

forces. Integrins are transmembrane, heterodimeric proteins made of an alpha subunit, of 

which there are 18, and a beta subunit, of which there are 8, that associate to form 24 unique 

heterodimeric integrins122. They are able to bind directly to components of the ECM, such 

as laminin, collagens, and fibronectin, through their extracellular domains. Intracellularly, 

integrins interact with the actin cytoskeleton, actin binding proteins like talin, α-actinin, 

filamin, vinculin, and the microtubule network via KANK to create a tether between the 

ECM and the cytoskeleton. It is through interaction with numerous cytoskeletal-binding 

proteins that integrins can activate many signal transduction cascades, such as FAK 

signaling, PI3K signaling, and integrin-linked kinase (ILK) signaling.

In situ, osteocytes have discrete structures that contain β3 integrins and resemble focal 

adhesions. These structures connect the osteocyte cell processes to the canalicular wall and 

amplify small strains, allowing for the transduction of mechanical signals into biological 

changes123–125. Stimulating focal adhesions in osteocytic cell processes amplifies applied 
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strains and initiates a stronger calcium signal than stimulating the cell body or areas without 

firm attachment to the substrate23,48,72,125,126. Opposingly, disrupting β3 integrin attachment 

prevents calcium influx, blunts PGE2 release, BMP2 secretion and gene expression changes, 

and Alp, Ptgs2, and Spp1 gene expression changes after fluid shear stress97,105,106,127–129. 

Blocking αv, α2, α5, β3 or β1 integrins by preincubation with antibodies, disrupting 

expression with siRNA, or plating cells on a substrate that does not allow integrin 

attachment prevents fluid shear stress-induced increases in pERK, pJNK, and p-P38, which 

regulate gene expression of Ptgs2 and Spp1129,130.

In vivo, knocking out β1 integrins in mesenchymal cells with Twist2-Cre causes 

hypomineralization of E19.5 mouse embryos and results in poor survival after birth131. 

Deletion of β1 integrins in pre-osteoblasts using the Osterix-Cre mouse strain causes lagging 

skull mineralization and decreased cortical bone mineral density; however, deletion of β1 

integrins or transgenic expression of a dominant negative β1 integrin construct in mature 

osteoblasts and osteocytes using the Osteocalcin-Cre mice has very little effect on bone 

mineralization131,132. In contrast to its role in late osteoblasts and osteocytes, knocking out 

β1 integrins in early osteoblasts with the Col1a1-Cre mice blunts the accrual of load-induced 

bone formation, indicating that, similar to in vitro results, β1 integrins are important for 

bone mechano-transduction in vivo.

FAK, a non-receptor tyrosine kinase, associates with the cytoskeleton through integrins, 

talin, and paxillin at focal adhesions. In bone cells, specifically, FAK colocalizes with 

integrins, whose attachment contributes to the phosphorylation and activation of FAK, and 

plays a role in mechano-transduction and the regulation of mechano-responsive genes and 

proteins133,134. Similar to targeting integrins, disrupting FAK signaling blunts Akt 

activation, β-catenin stabilization, and fluid shear stress-induced changes in C-fos135. FAK 

also regulates the expression of the sclerostin encoding gene, Sost, with FAK inhibition 

leading to decreased Sost gene expression and blunted fluid shear stress-induced decreases 

in Sost133. Deleting FAK in osteoblasts with a Col2.3-Cre blunts load-induced bone 

formation, but conditional knockout animals have the same relative increase in bone 

formation rate in loaded limbs compared to non-loaded limbs as control animals, indicating 

that, while FAK is important for bone mechano-transduction both in vitro and in vivo, a 

compensatory mechanism may exist in vivo that is absent in vitro136. In aggregate, actin and 

its many regulators play a large role in bone cell mechano-transduction and the development 

of bone with or without mechanical perturbations.

v. Intermediate Filaments in Osteoblasts and Osteocytes

Intermediate filaments, dubbed “intermediate” due to their diameter being between the small 

actin microfilaments and larger microtubules, comprise the third class of cytoskeletal 

proteins. Approximately 70 genes code for intermediate filament proteins of 6 different 

classes137–139. These include the keratins (types I and II); desmin, vimentin and glial 

fibrillar acidic protein (type III); neurofilament proteins, internexin and synemin (type IV); 

the nuclear lamins (type V); and other, tissue-specific filament proteins (e.g., phakinin, 

filensin, and nexin (type VI)). When purified, some form homopolymers (vimentin, desmin, 

GFAP: type III) or stoichiometric heteropolymers (keratins: types I and II)138,140–142.
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Despite the classification into one of the six subgroups, all intermediate filaments have a 

similar secondary structure143 (Figure 5). Two α-helical rod monomers twist around each 

other to form a very stable coiled-coil dimer. Two dimers then associate in an anti-parallel 

orientation to form a tetramer. Eight tetramers then coil around each other to form a unit-

length filament (ULF) that is equivalent on both ends due to the anti-parallel nature of the 

dimer building blocks. This apolarity is distinct from both actin filaments and microtubules, 

which both have distinct positive and negative ends. ULFs can then anneal longitudinally to 

form long intermediate filaments. While the overall secondary structure is conserved, the N- 

and C-termini of intermediate filaments vary widely, likely contributing to the variance in 

function across the subtypes.

In addition to their self-assembly, intermediate filament bundles are also made and stabilized 

with accessory proteins. Not only do these accessory proteins help bundle intermediate 

filaments, they can also facilitate the interaction of intermediate filaments with other 

components of the cytoskeleton. For example, plectin is integral to bundling intermediate 

filaments144–147 but it also links intermediate filaments to actin filaments and microtubules, 

creating a large, interconnected cytoskeleton148,149. Intermediate filaments also direct the 

assembly of microtubules150–152 thereby modulating many cellular functions, including 

motility, trafficking of cargo, migration, and mechano-transduction153–157. The scaffolding 

functions of intermediate filaments can have profound effects on cellular behavior, including 

changes in cellular gene expression158–165. These properties of intermediate filaments also 

underscore the inherent challenges of trying to ascribe mechano-transduction roles 

exclusively to a subset of the cytoskeleton, as these components are all interconnected and 

interdependent.

Though the literature examining the role of intermediate filaments in bone mechano-

transduction has been relatively sparse, intermediate filaments have properties that likely 

place them in a position to sense and transduce mechanical signals. Due to their coiled-coil 

structure, intermediate filaments can convert from an α-helical structure to a β-sheet 

structure, allowing for a deformation of up to 300% without breaking166,167. Where type I-

IV and VI intermediate filaments are cytoplasmic, type V lamins are nuclear proteins that 

help to support to structure of the nucleus. Similar to cytoplasmic intermediate filaments, 

lamins are important for the mechanical properties of the nucleus. Lamins A and B modulate 

the viscoelasticity and “shock absorber” properties of the nucleus, allowing for transduction 

of stretching and compressive forces, respectively168,169. Given that intermediate filaments 

are poised to act as mechano-sensors in both the cytoplasm and the nucleus, combined with 

their attachment to other cytoskeletal elements, intermediate filaments are likely able to 

resist cell deformation and transduce mechanical signals throughout the entire cytoskeleton, 

activating many downstream signaling cascades to influence bone cell function.

While little direct evidence demonstrates specific roles for intermediate filaments in 

osteocyte mechano-transduction, several studies demonstrate a role of intermediate filaments 

in bone development. Osteoblasts express the cytoplasmic intermediate filament proteins: 

vimentin, keratins, and synemin47,170–174. Global deletion of synemin results in osteopenia 

in male mice, with decreased trabecular bone, reduced cross-sectional thickness, and 

decreased osteoblast number despite an increased osteogenic capacity170. Unlike most 
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intermediate filaments, synemin does not homopolymerize175 or form 1:1 heteropolymers 

with other subunits. Rather, it co-assembles into desmin or vimentin filaments176–178 and 

associates with keratin filaments177 as well as with other proteins179. Furthermore, synemin 

is not only an intermediate filament, it is also an A-kinase anchoring protein (AKAP) with 

the ability to regulate phosphorylation of other proteins in its vicinity180,181. AKAPs 

organize distinct signaling compartments by tethering Protein Kinase A (PKA) to specific 

sub-cellular domains. Thus, AKAPs can permit diverse biologic responses to similar cues 

that converge on cyclic-AMP-PKA-dependent pathways. Understanding how AKAPs 

spatially control signaling domains in cells has provided unique insights into how diverse 

biological outputs can occur in response to similar stimuli182–185. This is important in bone, 

where cyclic-AMP-activating hormones like prostaglandins, PTH, and PTHrP are not only 

potent bone anabolic agents when administered therapeutically, but also play an important 

role in calcium homeostasis and skeletal development. While the absence of synemin in 

skeletal and cardiac muscle results in subtle phenotypes186,187, the skeletal phenotype is 

comparatively quite severe170.

Other intermediate filaments, such as keratin and lamin A/C, are also implicated in bone 

development. Acidic keratins and basic keratins comprise type I and II intermediate 

filaments, respectively, and they heterodimerize to form keratin filaments. Deletion of 

keratin 14 decreases osteoblast mineralization, likely due to decrease osteoblastogenesis188. 

Oppositely, deletion of keratin 8 improves bone mass in a mouse model of cystic fibrosis, 

indicating a repressor role of keratin 8 in bone development171. Keratins regulate the 

activation of mTOR and Akt, important regulators of osteoblast energetics and actin 

dynamics, possibly indicating crosstalk between keratins and actin to control bone 

development and cell function136.

In addition to cytoplasmic keratins, nuclear lamin A/C also affects bone development and is 

implicated in bone diseases. Lamins are segregated into Type A lamins, which contains two 

lamins (Lamins A and C) produced due to splice variation of the Lmna gene, and Type B 

lamins produced from the genes Lmnb1 and Lmnb2. Lamin A/C can direct cell 

differentiation, with high levels of Lamin A associated with enhanced osteogenic 

differentiation189, expression decreases with age190, and mutations in the gene encoding 

Lamin A/C, Lmna, is a common genetic cause of Hutchinson Gilford Progeria Syndrome 

(HGPS), a disease that is grouped into “early aging” diseases. Knocking out Lamin A/C 

systemically, mutating residue L530P, or overexpressing the common HGPS mutations 

C1824T in osteoblasts all cause a progeroid phenotype with decreased body weight and 

decreased bone mineral density due to decreased osteoblast differentiation and activity 

because of decreased β-catenin activation and translocation to the nucleus191–196. Similarly, 

Zmpste24 is a metalloprotease that processes pro-lamin into the functional version of lamin 

A/C197,198. Knocking out Zmpste24 results in a similar phenotype as the HPGS moues 

models, resulting in decreased body weight and bone mass, resulting in the development of 

spontaneous rib fractures191,197. Reflecting the deficits in β-catenin activation found in vitro 
and in vivo, activating Wnt/β-catenin signaling in osteoblasts by targeting the osteocyte-

derived Wnt antagonist sclerostin with neutralizing antibodies rescues the decreased 

trabecular parameters in Zmpste24 knockout animals191.
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Evidence from in vitro and in vivo studies supports a role of intermediate filaments; 

however, the contribution of these intermediate filaments to the bone mechano-response has 

yet to be fully explored. It is expected that, due to the deficits in β-catenin signaling and 

osteoblastogenesis, intermediate filaments are necessary for the mechano-response and 

mutations or knockouts of these proteins will lead to decreased bone formation in response 

to mechanical load. However, these studies will have to be completed to fully examine this 

hypothesis.

vi. Spectrin and Septins: Other Cytoskeletal Elements

Despite not being categorized into a specific type of cytoskeletal element, spectrin and 

septins interact with other components of the cytoskeleton to help stabilize the cytoskeleton. 

Spectrin colocalizes along actin microfilaments in the osteocyte cell process94. GWAS 

studies have associated single nucleotide polymorphisms (SNPs) in the SPTBN1, the gene 

that encodes for spectrin B1, with increased risk of fracture147–150. Spectrin contributes to 

the cellular distribution of endothelial NOS (eNOS) and nitric oxide production, which 

contributes to fluid shear stress-induced regulation of sclerostin abundance in 

osteocytes25,26. Disrupting spectrin also increases ATP in osteocytes, which contributes to 

mechanically-induced calcium oscillations20,199. Septins, another filamentous component of 

the cytoskeleton, are necessary for osteoclastic bone formation200. However, they have not 

yet been implicated in osteocyte mechano-transduction. Interestingly, septins localize to the 

base of the primary cilia, placing them near a mechano-sensitive structure201. While not yet 

explored, both spectrins and septins aid in vesicle transport along microtubules202,203, which 

may have large implications in osteocyte mechano-transduction given the necessity of 

microtubules and lysosomal degradation in the regulation of sclerostin protein abundance 

following fluid shear stress and mechanical load19,25.

vii. The Cytoskeleton Links to the Nucleoskeleton

One way that the cytoskeleton influences cell behavior is through direct transmission of 

mechanical forces to the nucleus. Through connections with the cytoskeleton, nuclear 

dynamics change in response to mechanical cues, allowing for changes in gene expression 

and cell function204. The Linker of Nucleus and Cytoskeleton (LINC) complex on the 

nuclear envelope interacts with microtubules, actin, and intermediate filaments, which 

transduce mechanical signals to the nucleus205. For example, disrupting the LINC complex 

impairs intracellular force transduction, resulting in dysregulated β-catenin translocation 

into the nucleus206, which ultimately affects osteogenic differentiation. Indicating a 

reciprocal regulation between nuclear and cytoskeletal dynamics, disrupting the LINC 

complex affects cytoskeletal architecture and disrupting the actin cytoskeleton changes the 

morphology of the nucleus, partially due to disconnected LINC complexes207,208. 

Additionally, the stiffness of the extracellular matrix and the polymerization state of the 

actin cytoskeleton can influence the lineage allocation of mesenchymal stem cells111,209. 

Interestingly, disrupting the actin cytoskeleton causes translocation of G-actin monomers 

into the nucleus, where they can form actin filaments, increasing osteogenic differentiation 

and bone formation207,210,211. From this, it is clear that the cytoskeleton and the nucleus 

interact in a complex way, with one affecting the other, which will have large effects on 

cellular function and regulation. It is important to take nuclear dynamics into account when 
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disrupting any aspect of the cytoskeleton, since the LINC complex can interact with all 

cytoskeletal components.

III. Conclusions

In all, it is clear that the cytoskeleton is central to bone cell mechano-transduction and that 

the role of the cytoskeleton in this process is not clear cut. All three cytoskeletal elements – 

actin, microtubules, and intermediate filaments – affect mechano-transduction individually; 

however, given the high level of interconnectedness between the three elements and other 

cellular structures, it raises multiple questions about these mechano-sensitive elements: do 

these cytoskeletal elements act independently or, due to the interconnectedness, are all 

studies indirectly querying the same sensor (i.e., the integrated cytoskeleton), with 

disruption of one element causing a collapse of the entire mechano-sensitive cytoskeleton? 

Alternatively, do these individual cytoskeletal elements act in series, with certain 

cytoskeletal elements detecting different magnitudes or types of strain to activate different 

downstream pathways with distinct biological effectors? While much is known about the 

cytoskeleton in mechano-signaling, future work should focus on continuing to tease apart 

these nuanced, yet critically important, molecular mechanisms.

Additionally, not only is there tremendous interconnectedness within the cytoskeleton itself, 

the cytoskeleton also creates discrete cellular structures. Structures such as the primary cilia 

and focal adhesions, distinct subpopulations of post-translationally modified components, 

attachments to other cellular signaling components such as calcium channels and NOX2, 

and the control the cytoskeleton has on lysosome localization, all affect osteocyte mechano-

transduction (Figure 1B). Understanding this interconnected network is fundamental to 

grasping the complexities of how cells experience and respond to their environment. 

Regardless, many sources of evidence now point to the cytoskeleton as a mechano-sensor in 

bone. As we expand the molecular details of how, where, and when the cytoskeleton 

responds to mechanical cues, we will expand the arsenal of druggable targets to impact 

disease of skeletal fragility.
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Highlights

• The cytoskeleton is composed of microtubules, actin, and intermediate 

filaments

• The cytoskeleton forms a network that interacts with signaling proteins

• The cytoskeletal network converts mechanical forces into biochemical signals

• In bone cells, these mechano-transduction cascades regulate skeletal 

physiology
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Figure 1: The cytoskeleton comprises an interconnected mechano-sensor that transduces 
mechanical signals into biological changes affecting bone cell function.
A. Immunofluorescent staining of α-tubulin and actin microfilaments shows their 

localization throughout the cell body and cell processes of Ocy454 cells. B. The three 

cytoskeletal elements – actin, microtubules, and intermediate filaments – form a highly 

interconnected network, as well as specialized structures, that sense and transduce 

mechanical signals in response to external forces, including fluid shear stress, substrate 

stiffness, and cell deformation. For example, a subset of post-translationally modified 

microtubules, the microtubule-based primary cilia, actin microfilaments, and actin-based 

structures such as lamellipodia, filipodia, stress fibers, and focal adhesions, have been 

implicated as bone mechano-sensors. Actin dynamics are regulated by Rac1, Cdc42, and 

RhoA, respectively. In addition, the cytoskeleton is linked to other mechano-sensors and 

transducers such as NOX2, calcium channels, integrins, and focal adhesions, which 

transduce changes in the extracellular matrix (ECM) to the intracellular cytoskeleton. C. 
Mechanical cues are sensed through multiple cytoskeletal mechano-sensors, which, in turn, 

activate many mechano-transducers including reactive oxygen species production, nitric 

oxide production, and calcium influx. These signaling molecules activate signal transduction 

cascades through CaMKII, MAPK, and FAK. Ultimately, these signaling pathways affect 

bone cell function through changes in sclerostin protein and gene expression, PGE2 release, 

and RANKL abundance.
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Figure 2: Microtubules are a dynamic structure that become post-translationally modified and 
are found in osteocytic cell bodies and cell processes.
A. GTP-bound microtubule α/β-tubulin dimers are incorporated into growing filaments. 

Intrinsic GTP-ase activity of the tubulin dimers cleaves GTP to GDP, promoting disassembly 

of microtubule filaments, while GTP exchange factors facilitate the transition from GDP- to 

GTP-bound dimers to promote reassembly of microtubules. VASH1/2 in complex with 

SVBP removes the terminal tyrosine on α-tubulin in stable microtubules, producing 

detyrosinated microtubules. This detyrosination can be reversed by TTL, which acts on 

released α/β-tubulin dimers to ligate the terminal tyrosine onto the α-tubulin tail. B. 
Immunofluorescent staining of acetylated tubulin and actin microfilaments shows their 

localization to both the cell body, primary cilia (white arrow) and the dendrite-like osteocyte 

cell processes (yellow arrow) of Ocy454 cells. C. Immunofluorescent staining of 

detyrosinated tubulin and actin microfilaments shows their localization to the cell body, 

primary cilia (white arrow) and the dendrite-like osteocyte cell processes (yellow arrow) of 

Ocy454 cells.
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Figure 3: Mechano-sensing in Ocy454 cells through detyrosinated microtubules contributes to 
the regulated degradation of sclerostin protein and reveals a tunable mechano-sensor by 
contributing to changes in cytoskeletal stiffness.
A. Fluid shear stress is sensed through a pool of detyrosinated microtubules, which activate 

NOX2 to produce reactive oxygen species. This reactive oxygen species sensitizes TRPV4 

calcium-permeable channels on the cell membrane to allow for calcium influx. Calcium 

influx activates CaMKII, which activates the rapid degradation of sclerostin protein by the 

lysosome19,25. B. The level of microtubule detyrosination affects the overall stiffness of the 

cytoskeleton. Based off in vitro studies in Ocy454 cells, there is a “Goldilocks” level of 

detyrosination and, in turn, cytoskeletal stiffness, that permits osteocyte mechano-

responsiveness, allowing for fluid shear stress to degrade sclerostin protein to reduce its 

abundance. If detyrosination and cytoskeletal stiffness are above or below this Goldilocks 

zone, osteocytes are no longer mechano-responsive and sclerostin abundance is unchanged 

with fluid shear stress19.
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Figure 4: Actin microfilaments are dynamic and assemble into different structures in osteocytes.
A. Globular actin monomers bound to ATP are assembled into actin microfilaments (F-actin) 

on the plus end. Intrinsic ATP-ase activity of actin microfilaments facilitates the cleavage of 

ATP to ADP, which favors disassembly on the minus end. ADP-bound G-actin exchanges 

ADP for ATP, again promoting polymerization. B. Fluorescent staining (phalloidin) of 

Ocy454 cells shows different actin-based structures. Lamellipodia contain branched actin 

filaments and show ruffled membrane edges. Stress fibers contain bundles of actin filaments 

that feed into filipodia. Filipodia facilitate the formation of focal adhesions, attaching the 

cellular cytoskeleton to the extracellular matrix.

Gould et al. Page 29

Bone. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Most Intermediate filaments assemble into a similar secondary structure.
The basic unit of an intermediate filament is an α-helical monomer. Two monomers coil 

together to formed a coiled-coil dimer. Two coiled-coil dimers assemble in an anti-parallel 

fashion to form a tetramer that is apolar and is symmetrical on both ends. Eight tetramers 

then coil together to form a unit-length filament (ULF). ULFs can then anneal longitudinally 

to form long intermediate filaments.
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