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Abstract

Adults experiencing homelessness are more likely to have an alcohol use disorder compared to 

adults in the general population. Although shelter-based treatments are common, completion rates 

tend to be poor, suggesting a need for more effective approaches that are tailored to this 

understudied and underserved population. One barrier to developing more effective treatments is 

the limited knowledge of the triggers of alcohol use among homeless adults. This paper describes 

the use of ecological momentary assessment (EMA) to identify predictors of “imminent drinking” 

(i.e., drinking within the next 4 h), among a sample of adults experiencing homelessness and 

receiving health services at a homeless shelter. A total of 78 mostly male (84.6%) adults 

experiencing homelessness (mean age = 46.6) who reported hazardous drinking completed up to 

five EMAs per day over 4 weeks (a total of 4557 completed EMAs). The study used machine 

learning techniques to create a drinking risk algorithm that predicted 82% of imminent drinking 

episodes within 4 h of the first drink of the day, and correctly identified 76% of nondrinking 

episodes. The algorithm included the following 7 predictors of imminent drinking: urge to drink, 
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having alcohol easily available, feeling confident that alcohol would improve mood, feeling 

depressed, lower commitment to being alcohol free, not interacting with someone drinking 

alcohol, and being indoors. The research team used the results to develop intervention content 

(e.g., brief tailored messages) that will be delivered when imminent drinking is detected in an 

upcoming intervention phase. Specifically, we created three theoretically grounded message tracks 

focused on urge/craving, social/availability, and negative affect/mood, which are further tailored to 

a participant’s current drinking goal (i.e., stay sober, drink less, no goal) to support positive 

change. To our knowledge, this is the first study to develop tailored intervention messages based 

on likelihood of imminent drinking, current drinking triggers, and drinking goals among adults 

experiencing homelessness.

Keywords

Homeless; Substance use; Ecological momentary assessment; Intervention development; Machine 
learning

1. Introduction

Adults experiencing homelessness are at greater risk for a host of problems, including 

disease, violence, and death, compared with housed individuals (Henny, Kidder, Stall, & 

Wolitski, 2007; Lima et al., 2020; Morton et al., 2018). Alcohol use is a significant 

contributor to this increased morbidity and mortality (T.P. Baggett et al., 2013; T.P. Baggett 

& Jenkins, 2013; Ku, Scott, Kertesz, & Pitts, 2010; Morrison, 2009). In fact, adults 

experiencing homelessness are eight times more likely than adults in the general population 

to have an alcohol use disorder (AUD) (Hasin, Stinson, Ogburn, & Grant, 2007; Morrison, 

2009). There is good evidence that substance use treatment can reduce drinking among 

adults experiencing homelessness (Bradford, Gaynes, Kim, Kaufman, & Weinberger, 2005), 

but compliance tends to be poor (Schonfeld et al., 2000; Scott-Lennox, Rose, Bohlig, & 

Lennox, 2000). For instance, in an analysis of fourteen treatment programs for adults 

experiencing homelessness funded by the NIAAA, not a single program retained more than 

one-third of clients, despite extensive efforts to do so (Orwin, Garrison-Mogren, Jacobs, & 

Sonnefeld, 1999). The most common reasons for discontinuation included lack of 

motivation, delays in starting treatment, a desire to reconnect with family or friends, 

dissatisfaction with the program structure or environment, and difficulties arranging 

transportation. Alternative treatments that are more responsive to the needs of adults 

experiencing homelessness are sorely needed. This need is even more urgent in light of the 

COVID-19 pandemic, which disproportionately affects both people experiencing 

homelessness and those with an AUD (Tsai & Wilson, 2020). An intervention delivered via 

smartphones (smartphone ownership is common among adults experiencing homelessness), 

may be one way to improve the delivery of alcohol treatment services while, at the same 

time, facilitating physical distancing to help reduce the spread of the virus (Jarvis et al., 

2020; Wasserman, van der Gaag, & Wise, 2020; Zhang, Li, Zhang, Wang, & Molina, 2020).

One barrier to developing effective treatments is our limited knowledge of the precursors or 

triggers of alcohol use at a given time. Like other populations, alcohol use has most often 
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been studied using retrospective “follow-back” methods that may not adequately capture the 

complicated drinking patterns of adults experiencing homelessness (Shiffman et al., 1997; 

A.A. Stone et al., 1998). Traditional assessment methods may also produce inaccurate 

estimates of alcohol use due to recall biases and errors in memory, particularly in 

populations that have cognitive limitations (S. Shiffman et al., 1997; A.A. Stone et al., 

1998). Ecological momentary assessment (EMA), where phone-based prompts are answered 

several times a day in a participant’s natural environment, can better capture the temporal 

and contextual factors surrounding drinking (Kirchner & Shiffman, 2013; Morgenstern, 

Kuerbis, & Muench, 2014; S. Shiffman et al., 1997; A.A. Stone, Shiffman, Schwartz, 

Broderick, & Hufford, 2002).

Studies utilizing EMA, most often among young adults, have identified several predictors of 

drinking, including negative mood (Arpin, Mohr, & Brannan, 2015; Dvorak & Simons, 

2014), recent cigarette consumption (Jackson, Colby, & Sher, 2010), and social environment 

(O’Grady, Cullum, Tennen, & Armeli, 2011). Many of these factors involve a complex 

interplay of individual and environmental characteristics, both physical and social (Mohr et 

al., 2001). For instance, a poor mood might increase the risk of drinking when a person is 

alone, whereas a positive mood might increase the risk of drinking when a person is around 

others. Due to the dynamic nature of these alcohol risk contexts, strategies such as just-in-

time adaptive interventions (JITAIs) are ideally suited to providing tailored “real-time” 

intervention messages to nudge individuals away from alcohol misuse in the moments they 

are most needed (Nahum-Shani et al., 2016). For instance, a treatment message might be 

tailored to a person’s current mood, urge, commitment to change, whether others are 

drinking around them, or whether they have already consumed alcohol that day. Treatment 

messages can also be tailored based on time of day, a person’s location or proximity to high-

risk locations (e.g., alcohol establishments), or any combination of these things.

Developing an efficacious JITAI requires accurate detection of situational, affective, and 

motivational risk factors that precipitate drinking. Previous research has identified some of 

these “real-time” risk factors (Stanesby, Labhart, Dietze, Wright, & Kuntsche, 2019); 

however, studies tend to be limited to a small set of variables that are selected based on 

existing knowledge. An alternative approach is to apply computational tools to empirically 

select the most parsimonious risk factors from a large set of potential predictors. This 

method may also be used to identify targets for intervention messages. For instance, if a 

person’s current mood places them at risk for drinking, an intervention might deliver a 

treatment message that is tailored to mood. This data-driven approach can uncover risk 

factors that may have been otherwise over-looked. Previous studies have used applied 

machine learning algorithms to identify predictors of smoking and other health behaviors. 

One study used a smartphone app to prompt five EMAs per day in a group of homeless 

individuals who were attempting to quit smoking. Trajectories of negative affect, stress, 

restlessness, and coping expectancies predicted smoking abstinence (M.S. Businelle et al., 

2014). Another study collected EMA data from smokers seeking treatment at a safety-net 

hospital tobacco cessation clinic (Bandiera, Atem, Ma, Businelle, & Kendzor, 2016; 

Kendzor et al., 2015; Watkins et al., 2014). Using six EMA variables (i.e., urge, stress, 

cigarette availability, alcohol use, motivation to quit, proximity to others smoking), 

researchers created a risk estimator that predicted 80% of all smoking lapses within the next 
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4 h (false positive rate = 17%) (M.S. Businelle et al., 2016b). The research team 

subsequently used this risk estimator to create a JITAI that delivered tailored messages based 

on a person’s momentary risk for smoking lapse and reported symptoms (i.e., stress, urge to 

smoke, motivation to quit, and cigarette availability) (M.S. Businelle et al., 2016a; Hébert et 

al., 2018; Hébert et al., 2020).

The current study extends this approach to create a JITAI for at-risk drinkers experiencing 

homelessness. This paper describes the process of identifying risk factors that predicted 

imminent drinking, development of the risk prediction algorithm, and development of 

treatment tracks and messages based on key variables.

2. Methods

The study design and protocol have been reported elsewhere (M.S. Businelle et al., 2020). In 

short, the study uses a three-phase design to develop and test a JITAI to reduce drinking 

among adults experiencing homelessness. Phase 1 was a 4-week observational study that 

included in-person self-report surveys, daily smartphone-based EMAs, biochemical alcohol 

detection at 30-min intervals, and passive geospatial data collection at 5-min intervals. 

During Phase 2, we developed a risk algorithm and tailored treatment messages based on 

Phase 1 data.1 The Phase 3 app will estimate each participant’s risk of imminent alcohol use 

during each EMA and will deliver a tailored treatment message to nudge the participant 

away from alcohol use. Phase 3 will test the feasibility, acceptability, and preliminary 

efficacy of the intervention app in a new sample of adults experiencing homelessness. In 

Phase 3, we will obtain participant feedback about the usefulness of the app messaging. This 

paper describes the results from Phases 1 and 2 (i.e., identification of predictors of imminent 

drinking, and development of the risk algorithm, treatment messages, and message tailoring 

tracks).

2.1. Participants and measures

The study recruited participants from a homeless shelter in a major metropolitan area in the 

United States. Participants were eligible if they: 1) reported a score of 8 or above on the 

AUDIT (Saunders, Aasland, Babor, Delafuente, & Grant, 1993), indicating harmful or 

hazardous drinking; 2) reported consuming at least 1 standard drink of alcohol in the past 

week; 3) were receiving health services at the shelter; 4) were willing and able to complete 

the baseline and follow-up visits; 5) scored ≥4 on the REALM-SF (Arozullah et al., 2007) 

indicating >6th-grade English literacy level (i.e., a 7th-grade reading level was necessary to 

complete assessments); and 6) scored ≥24 on the Mini-Mental State Exam (Tombaugh & 

McIntyre, 1992), indicating no substantial cognitive impairment.

Of the 142 people screened for eligibility, 95 were eligible and completed the baseline 

assessment, and 78 completed the equipment set-up visit (Fig. 1). The most common reasons 

for screening exclusion were not drinking in the past week (47% of those excluded) and not 

receiving an 8 or above on the AUDIT (27% of those excluded). There were no significant 

1The research team developed the app using the Insight™ application platform, which combines a content management system 
(CMS), where researchers create EMA/JITAI content and schedules, and smartphone application shell.
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differences between those who completed the baseline assessment and those who completed 

the set-up visit on age, gender, race, the AUDIT score, or the number of drinking/heavy 

drinking days in the past month.

Table 1 describes participants who completed the set-up visit. Participants were mostly male 

(84.6%), Black (65.4%), and drinking at harmful levels (AUDIT = 20.7).

The study administered in-person assessments at baseline and 4 weeks later. Approximately 

5 days after the baseline assessment, participants attended a set-up visit where they received 

a smartphone and a SCRAM alcohol monitor (for details, see M.S. Businelle et al., 2020), 

along with instructions on how to complete the phone-based EMAs. The study provided a 

phone for participants (Samsung Galaxy S3 or S7), preloaded with the Insight™ app; 

participants were able to use the phone for voice, text, and internet for the duration of the 

study.

Over the next 4 weeks, participants completed three types of EMAs: daily diary, random 

sampling, and event sampling. Daily Diary EMAs were prompted once a day 30 min after 

the participant’s self-reported waking time. Random Sampling EMAs were prompted up to 

four times each day, during the participant’s normal waking hours. Participants were asked 

to self-initiate Event sampling EMAs if and when they consumed their first drink in a day. 

Each EMA contained a series of mood questions drawn from the Circumplex Model of 

Affect (Russell, 1980) (i. e., I feel irritable, happy, content, angry, sad, worried, miserable, 

restless, stressed, hostile, calm, bored, and depressed). In addition, EMAs asked participants 

about their current location (e.g., shelter, work, outside, bar) and social setting (e.g., alone, 

with others, with others who are drinking), urges to drink, alcohol/money availability, 

drinking start/stop time, recent drinking, expectancies, and motivation and self-efficacy to 

avoid alcohol. Additionally, the Daily Diary EMAs contained questions about the previous 

day and current experiences, including sleeping arrangements for the previous night, social 

support and types of social interactions, stressors, other substance use, and treatment 

attendance. Participants received $25 for completing the baseline assessment, up to $25 per 

week for completing EMAs (based on percent completed), $25 for completing the 4-week 

assessment, and $25 for returning the phone and SCRAM in good condition at the end of the 

study.

2.2. Analytic strategy

The study included a total of forty-one variables collected via EMA as potential predictors 

of imminent drinking (i.e., the first drink of a day occurring within 4 h following completion 

of a specific EMA). The study measured all forty-one items in each random as well as daily 

diary EMA. The study assessed alcohol consumption and time of the first drink of the day 

during each prompted and self-initiated EMA.

The research team used a two-stage applied machine learning approach for variable selection 

and model building to predict first drink of the day. This approach has demonstrated 

effective performance in prior research (Bauer et al., 2019; R. Suchting, Gowin, Green, 

Walss-Bass, & Lane, 2018; Suchting, Hébert, Ma, Kendzor, & Businelle, 2019; Walss-Bass, 

Suchting, Olvera, & Williamson, 2018). We used successive passes through two algorithms 
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(component-wise gradient boosting and backward elimination) to reduce a set of random 

and daily EMA predictors of imminent drinking. Component-wise gradient boosting (CGB) 

is a machine learning algorithm that builds a penalized generalized linear model from zero 

predictors upward by iteratively fitting an outcome to a set of variables (Hofner, Mayr, 

Robinzonov, & Schmid, 2014). The algorithm is flexible with respect to sample size, and 

may even be applied in high-dimensional data (i.e., p >> n). In the first iteration, the 

algorithm identifies one predictor that best fits that outcome. Each subsequent iteration then 

identifies an additional predictor that best fits the residual of the previous iteration. The 

algorithm repeats until it reaches a stopping criterion, chosen via k-fold cross-validation 

(i.e., averaging across ten training/test splits of the data), which indicates that the outcome 

prediction no longer improves. Notably, CGB allows for the inclusion of random effects to 

account for multilevel data (here, a random intercept for repeated observations). This feature 

is relatively unique among machine learning algorithms, and allows cross-validation to occur 

across individuals, rather than training and testing the algorithm for each individual 

separately. The study applied CGB via the package mboost (Hothorn, Buehlmann, Kneib, 

Schmid, & Hofner, 2020) in the R statistical computing environment (R Core Team, 2020).

The second algorithm, backward elimination (BE), then reduces the set of selected 

predictors downward by optimizing the Akaike Information Criterion (AIC) (Hastie, 

Tibshirani, & Friedman, 2013). Each iteration of this algorithm identifies a predictor that, 

when removed, provides the lowest AIC. The algorithm terminates when removing any of 

the predictors will not further reduce the AIC. We applied BE during model fitting for a 

mixed-effects model via the R package lme4 (Bates, Maechler, Bolker, & Walker, 2015). 

Given that EMAs are nested within individuals, we accounted for data clustering by a 

random effect in the mixed-effects model.

3. Results

The study prompted a total of 5845 EMAs (1268 daily dairies and 4577 random sampling), 

of which 4557 (78%) were completed (938 daily dairies and 3619 random sampling). In 

addition, participants self-initiated 425 event sampling assessments before or after drinking 

events. At the individual level, 71 participants responded to at least one EMA prompt on at 

least 14 days, and 43 responded to at least one EMA prompt on all 28 days. On average, 

participants provided 17.7 days of EMA data. We used a total of 2807 EMAs collected 

within four hours proceeding a drinking episode (n = 205) for model development.

3.1. Risk algorithm

The CGB algorithm reduced the set of predictors from thirty-six to eight, and the BE 

algorithm removed one additional predictor to provide a final model of seven predictors. The 

final 7-item drinking risk prediction model yielded an area under the receiver operating 

characteristic curve (AUC) of 0.869. The sensitivity and specificity of the final model were 

82% and 76%, respectively. Table 2 shows the odds ratios and 95% bootstrapped CIs for the 

variables selected by the final model. Three predictors yielded bootstrapped 95% CIs that 

did not include the null value for an odds ratio (OR = 1.0): (1) a strong desire to drink at that 

moment, (2) having alcohol available, and (3) being outside (compared to being indoors). 
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Desire and availability were related to 37% and 26% higher odds of imminent drinking, 

respectively, while being outside demonstrated 47% lower odds. Although the other four 

predictors did not demonstrate statistical significance with respect to the bootstrapped CIs, 

their selection by the machine learning algorithm suggests that these predictors provide 

unique predictive utility, and from an inferential standpoint, may be worthy of future 

investigation.

The study used regression coefficients of the fixed effects for each predictor in the model to 

calculate the probability of imminent drinking across the full dataset, irrespective of the 

random effects, so as to generalize to new EMA data for Phase 3. The study adjusted 

probability threshold tau (τ) to provide the maximum specificity at which sensitivity was at 

least 0.80. The threshold τ = 0.16 satisfied this condition, yielding sensitivity and specificity 

values of 0.80 and 0.41, respectively, for Phase 1 EMA data. Given the relatively low cost of 

false positives, correctly predicting 4 in 5 positive cases was considered appropriate for the 

development of intervention messages while needing data from only seven EMA items. Four 

of the seven questions in the risk algorithm enabled us to create three theoretically grounded 

message tracks (built on theory and clinical expertise, rather than additional statistical tests) 

that focus on urge/craving, social/availability, and negative affect/mood.

3.2. Message tracks

Fig. 2 shows the messaging logic for the Phase 3 app, while Fig. 3 provides a visual 

illustration of two of the app sections. The overall logic was informed by motivational and 

goal setting theories (Prochaska, DiClemente, & Norcross, 1992; Ryan & Deci, 2000), and 

the best predictors of imminent drinking. The message tone emphasizes autonomy, 

competence, and relatedness. Messages are written at a 6th-grade reading level. The Phase 3 

app has 929 total messages, 839 of which are unique (although the variations are slight in 

many cases).

3.3. Message content

Level 1 (low risk) messages are presented at the end of EMAs when participants 1) report no 

drinking today, 2) report they are not likely to drink today, and 3) are at low risk for 

imminent drinking based on the drinking risk prediction algorithm. Level 1 messages focus 

on general wellness, for instance, spending time with supportive people, setting and 

achieving goals, healthy nutrition, exercise, planning for high-risk situations, and scheduling 

recreation activities. Level 1 messages are tailored to the time of day: Early-day messages 

focus on setting goals, mid-day messages focus on completing activities, and late-day 

messages focus on reflecting on the day’s activities and setting goals for tomorrow. 

Examples of Level 1 messages include:

• Good morning! Set a goal to spend time with positive people today. You become 

like the people you spend time with! [Level 1; Morning]

• Spend at least a few minutes today with a good friend. Tell them about 

something that’s going well for you. [Level 1; Mid-day]
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• The steps you take each day are helping you to meet your long-term goals. It 

doesn’t matter how quickly you move, as long as you keep going! Have a great 

evening! [Level 1; Evening]

Level 2 (high risk) messages are presented at the end of EMAs when participants 1) report 

drinking today, or 2) report they are at least somewhat likely to drink later today, or 3) are at 

risk of imminent drinking based on the risk prediction algorithm. Level 2 messages 

(immediate risk) are organized into seven categories based on the person’s goal for today 

(stay sober, drink less, no goal), and leading risk indicator (urge, social/availability, mood). 

Level 2 messages are tailored in real-time based on EMA responses.

• When participants indicate that they do not have a drinking goal, they receive a 

motivation-themed message about the health, interpersonal, intrapersonal, and 

safety benefits of sobriety or drinking reductions and/or encouraging them to 

consider hypothetical planning should they become interested in making 

changes.

• When participants indicate that they have a goal to stay sober or reduce drinking 
today, and the highest-rated predictor variable is urge, they receive a message 

that is focused on distraction, keeping busy, mindfulness, and other strategies to 

address the craving. Level 2 “urge” messages are further tailored based on 

whether the participant’s goal is to stay sober or drink less today.

• When participants indicate that they have a goal to stay sober or reduce drinking 
today, and the highest-rated predictor variable is easy access to alcohol, they 

receive a message focused on moving to a different location, finding other people 

who are not drinking, improving coping, and increasing the quality of immediate 

supports. Level 2 “social/availability” messages are further tailored based on 

whether the participant’s goal is to stay sober or drink less today.

• When participants indicate that they have a goal to stay sober or reduce drinking 
today, and the highest-rated predictor variable is negative affect/mood, they 

receive a message focused on improving mindset and energy, relaxation, coping 

with affect/mood without drinking, setting goals, and engaging in healthy 

behaviors. Level 2 “mood” messages are further tailored based on whether the 

participant’s goal is to stay sober or drink less today.

Examples of Level 2 messages include:

• Make sure you’re avoiding “dead time” today. Keep yourself busy with things 

you enjoy and take your time to do things well. If you’re busy and engaged in 

your work, you’re more likely to stay sober. [Level 2; mood, stay sober]

• If someone offers you alcohol, respond with a polite but firm refusal. Say, “No 

thanks. I’m cutting back.” [Level 2; social/availability, drink less]

Level 3 (getting back on track) messages are presented to participants when they report that 

they have a goal to stay sober or drink less and they just drank or drank in the past 4 h. Level 

3 messages are tailored based on the participant’s current drinking goal (i.e., drink less, stay 

sober). Participants who choose a stay sober goal receive messages focused on reframing the 
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drinking episode as a learning experience and offering strategies to handle situations 

differently in the future. Participants who choose a drink less goal receive messages that 

encourage refusal skills, cutting down or pacing drinks. Examples of Level 3 messages 

include:

• Drinking doesn’t have to be all or none! Make a decision right now to change 

what you are doing for the rest of the day. If things around you are tempting you 

to drink, move to a different area.

• Use this slip as an opportunity for growth. Each time you start again, you are 

learning something that can be useful in the future!

Level 4 (motivation) messages are presented to participants when they report that they have 

no current drinking goal. In these cases, participants receive messages that encourage them 

to consider the benefits of sobriety and/or reductions in alcohol use. Examples of Level 4 

messages include:

• Think about whether drinking is helping you to achieve your goals for the next 

few weeks. If drinking is not moving you closer to your goals, you might 

consider making a change.

• When was your last sober day? Some people do an experiment by going one day 

without drinking. This can help them decide if they want to reduce or quit 

drinking for good.

Finally, a variety of “tips” are available at any time. On-demand tips contain information 

about the benefits of sobriety, and ways to manage mood, urges, pressure to drink, diet, 

exercise, sleep, and personal safety.

4. Discussion

This study used a two-stage machine learning approach to develop a prediction algorithm 

from EMA data among a sample of adults experiencing homelessness. The study incportated 

this algorithm into a novel JITAI specifically developed for this understudied and 

underserved population. The algorithm included the following seven predictors of imminent 

drinking: urge to drink, having alcohol easily available, feeling confident that alcohol would 

improve mood, feeling depressed, lower commitment to being alcohol free, not interacting 

with someone drinking alcohol, and being indoors. We created three theoretically grounded 

message tracks focused on urge and craving, availability of alcohol and social context, and 

negative affect. We further tailored messages based on a person’s current drinking goal for 

the day (i.e., stay sober, drink less, no goal). If shown to be effective in the Phase 3 trial, this 

app could be used as an adjunct to treatment services delivered in a shelter, as well as during 

transitional housing programs, a critical time where level of services are decreasing at the 

same time as triggers for mental health and substance use problems may be increasing.

The creation of messages involved a number of decisions about readability, tone, and 

content. First, we created messages that could be easily read by someone with a 6th-grade 

reading level. In a previous study at this facility, 12% of people screened had less than a 7th-

grade reading level (<1% of guests at this facility are non-English speakers). Second, we 
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drew from motivational theory in our message tone to emphasize personal autonomy, 

competence, and relatedness. Third, within tracks, we tailored messages to a person’s 

current drinking goal, for instance, whether their goal was to stay sober or to drink less that 

day. Sometimes these goal tracks were identical (e.g., tips to avoid being around other 

people who are drinking), while other times the goal tracks involved only slight wording 

changes (e.g., “…in your goal to stay sober” vs. “…in your goal to drink less”). However, 

sometimes the goal tracks were quite different. For instance, the language of “recovery” and 

“sobriety” may be more familiar to people with an abstinence goal, while suggestions to 

pace drinks or delay the first drink of the day may be more familiar to people who want to 

drink moderately. Notably, a person’s drinking goal is taken into account at each EMA. 

Thus, someone can receive an abstinence-oriented message in the morning, and a 

moderation message later in the day if their goals have changed. Notably, we created a 

sufficient number of unique messages so that participants are unlikely to see the same 

message twice even if they have the same risk level (e.g., high risk), same risk factor (e.g., 

social/availability), and same goal (e.g., stay sober) for several days. Finally, sometimes 

participants will indicate that they have no drinking goal. During these moments, we believe 

it is best to deliver messages that highlight potential reasons for reducing or quitting 

drinking.

This study is unique in the way that it combined a data-driven approach with motivational 

and goal-setting theory to produce message tracks. Notably, the selected predictors across 

three tracks that the machine learning approach suggested were theoretically coherent. Urge, 

easy alcohol availability, and negative affect are well-established predictors of drinking 

(Miller, Westerberg, Harris, & Tonigan, 1996), and intention is a similarly strong predictor 

(Cooke, Dahdah, Norman, & French, 2016). Our findings are also consistent with the small 

number of studies that have explored these relationships in a more “fine-grained” way using 

EMA. For instance, Santa Maria et al. (2018) found that urge was a significant predictor of 

subsequent drug and alcohol use in a sample of homeless youth. Similarly, Jones, Tiplady, 

Houben, Neder-koorn, and Field (2018) found that planned consumption and craving 

predicted later-day alcohol consumption in a sample of heavy drinkers in the community 

who were motivated to reduce their drinking. While most studies have examined predictors 

independently, there is undoubtedly a complex interplay between craving, mood, and 

availability. Mayhugh, Rejeski, Petrie, Laurienti, and Gauvin (2018) used EMA to examine 

drinking among moderate-heavy drinkers recruited from the community. Over the course of 

the day, increased exposure to alcohol cues led to increased urges to drink. After starting to 

drink, as would be expected, urges were reduced. However, when participants were given an 

imposed 3-day period of abstinence, cravings did not increase during this time. Instead, 

participants used strategies to mitigate the discomfort associated with their craving, such as 

avoiding alcohol cues. This suggests a complex interplay between cognition and behavior.

Because EMA studies can be burdensome due to repeated, sometimes lengthy phone 

assessments (S. Shiffman, 2009), our results can help to improve future alcohol interventions 

by limiting the frequency and length of EMAs needed to successfully predict imminent 

drinking. All things being equal, a shorter assessment (or better yet, data collected passively) 

will be more attractive for intervention development. A few studies have used machine 

learning to estimate risk for alcohol use based on passively collected sensor data. For 
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example, Bae, Chung, Ferreira, Dey, and Suffoletto (2018) found that phone usage features 

such as changes in phone activity, screen duration, call duration, and typing were associated 

with high-risk drinking among a sample of young adults. Other studies have utilized inertial 

sensors to detect gait and posture associated with alcohol consumption (Aiello & Agu, 

2016). However, to date, most of these studies have either focused on young adult samples 

or focused on sensor patterns associated with alcohol use itself, rather than thoughts, 

feelings, and behaviors that precede alcohol use. Future research could incorporate both 

EMA methods and passive data to reduce participant burden further while improving the 

accuracy of predictive models.

All but one of the predictors of imminent drinking were in the expected direction. However, 

we did find one unexpected finding that “Is anyone you are interacting with drinking 

alcohol?” was negatively associated with drinking. This is especially puzzling because 

alcohol availability was, as expected, positively associated with drinking. Although we 

combined social pressure and alcohol availability into a single message track, being around 

other people who are drinking may be contextually different than being in places where 

alcohol is available; it takes an active choice to be around people who are drinking, whereas 

one may be in places where alcohol is close by (e.g., a liquor store) without making an 

active choice to be there. Also, the word “interacting” may be ambiguous or have a unique 

meaning for people experiencing homelessness (e.g., being in close proximity vs. having a 

personal connection). In any case, future research should explore this finding to determine 

the interplay between availability and social dynamics that increase risk for drinking. 

Additional qualitative work may help us to determine whether additional predictors or 

message tracks are necessary for this population.

5. Limitations

This study had a number of limitations. First, our sample was largely male (84.6%) and 

Black (65.4%), which limits the generalizability of our findings. However, both groups tend 

to be overrepresented among homeless adults; the Department of Housing and Urban 

Development estimates that 60% of homeless adults are male and 40% are Black (U.S. 

Department of Housing and Urban Development, 2020). Second, the study relied on self-

reported measures. Although EMA tends to be a more accurate measure of drinking than 

retrospective point-in-time measures, the former still suffers from reporting bias and 

noncompliance (S. Shiffman, 2009). We attempted to maximize compliance by paying 

participants based on the percent of EMA prompts they completed, giving the option to 

“snooze” assessments up to three times for 5 min each, and ensuring confidentiality of 

responses. (Note: participants were not paid for completing self-initiated “About to Drink” 

or “Just Drank” event sampling EMAs.) In a separately reported study, we looked at the 

relationship between self-reported EMA and transdermal alcohol collected via a SCRAM 

device worn on the ankle (Mun et al., 2021). In general, we found that EMA was highly 

correlated with SCRAM-detected alcohol use. Participants used alcohol on 49% of days 

measured by SCRAM and 38% measured by EMA, where 73% of days were concordant. 

Furthermore, SCRAM’s peak transdermal alcohol concentration estimate was highly 

correlated with EMA’s alcohol use quantity measure (r = 0.46 and 0.78, respectively, at the 

day and person level for day x person data). This suggests not only that EMA reports were 
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trustworthy, but that missed assessments did not strongly affect our results. Third, 

development of the risk algorithm itself has inherent limitations. To the extent that the 

current sample is idiosyncratic, the parameter estimates that the machine learning algorithms 

determined (and thus the variables selected) may not generalize to future samples. Relatedly, 

the number of EMAs that we used to develop the algorithm was relatively small; 7.3% of 

completed EMAs had imminent drinking (205 out of 2807). Statistical significance should 

be considered preliminary in the current research, as selection algorithms may be 

problematic with respect to inference after variable selection (Chatterjee & Mukhopadhyay, 

2008). Given that the research team developed the threshold for classifying imminent 

drinking to maximize the level of specificity when sensitivity was no lower than 0.80, the 

risk algorithm may yield false positives that result in some unwarranted or overbearing 

messages. Although superfluous prompts may produce some participant fatigue, ideally, 

such prompts would still have some positive influence on preventing imminent drinking and 

be offset by correctly predicting 4 in 5 true positives. Finally, we did not examine potential 

moderators such as gender, drinking severity, or length of time homeless, primarily because 

we focused on discovering modifiable daily and intra-day precursors of imminent drinking. 

Having said that, the complex relationships that exist across different explanatory levels may 

have yielded other valuable insights despite a significant increase in the complexity of the 

models. A follow-up study examining potential moderators of the relationships between the 

final set of predictors and imminent drinking would be a logical step in future research.

6. Conclusion

The current study used machine learning to identify predictors of imminent drinking and 

create an alcohol use prediction algorithm. A seven-variable model predicted 80% of all 

drinking episodes within four hours of prompted EMAs. The research team has integrated 

this algorithm into a novel JITAI for adults experiencing homelessness with at-risk drinking. 

The resulting app contains hundreds of unique treatment messages to address the three 

strongest predictors of imminent drinking (i.e., urge to drink, easy availability of alcohol or 

social pressure to drink, negative affect). JITAI messages are tailored to each participant’s 

current drinking goal (i.e., reduce drinking, stay sober, no drinking goal) and currently 

relevant drinking triggers. Our next step will be to test the feasibility of this JITAI in a new 

sample of adults experiencing homelessness. Future research will continue to refine the 

algorithm and message tracks to larger, more generalizable samples of homeless and 

domiciled adults.
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Fig. 1. 
Flowchart of participants.
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Fig. 2. 
Messaging Logic for the Phase 3 app.
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Fig. 3. 
Example screens for the Phase 3 app.
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Table 1

Baseline characteristics of participants who completed the equipment set-up visit (N = 78).

Variable Mean/SD

Age 46.6 (9.2)

Male (%) 84.6

Non-Hispanic (%) 92.3

Black (%) 65.4

White (%) 28.2

AUDIT Score (mean) 20.7 (7.3)

Lifetime Homeless in Months (median /IQR) 36 (73.6)

Current Homeless in Months (median /IQR) 18 (42.0)

Drinking Days (past 30) 15.7 (8.7)

Drinks per Day (past 30) 2.7 (2.0)

Heavy Drinking Days (past 30)
a 6.7 (8.0)

IQR = Interquartile Range.

a
4+ drinks per day for women / 5+ drinks per day for men. Two participants (2.6%) self-reported to be “Multi-racial,” one (1.3%) identified as 

“American Indian/Alaska Native,” and two (2.6%) identified as “Other.”
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Table 2

Odds ratios and 95% bootstrapped confidence intervals for the final model.

Variable Odds ratio Bootstrap 95% CI

Intercept 0.057 0.031 0.090

I really want a drink right now. 1.368 1.120 1.729

Alcohol is available to me. 1.257 1.079 1.442

I am confident that drinking alcohol would improve my mood. 1.201 0.951 1.484

I feel depressed. 1.167 0.955 1.438

I am committed to being alcohol free. 0.845 0.682 1.049

Interacting with at least one person that is drinking alcohol.
(1 = Yes; 0 = No) 0.496 0.184 1.109

Location: Outside
(1 = Yes; 0 = No) 0.527 0.345 0.739

Note: Direction of influence for dichotomous predictors is described in paren-theses. All other items were evaluated on a Likert-type scale from 1 
(strongly disagree) to 5 (strongly agree).
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