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Anselmo Cardoso de Paiva a, Rodolfo Acatauassú Nunes c, Marcelo Gattass d 

a Federal University of Maranhão Av. dos Portugueses, SN, Campus do Bacanga, Bacanga, 65085-580 São Luís, MA, Brazil 
b Federal Institute of Maranhão BR-226, SN, Campus Grajaú, Vila Nova 65940-00, Grajaú, MA, Brazil 
c Rio de Janeiro State University, Boulevard 28 de Setembro, 77, Vila Isabel 20551-030, Rio de Janeiro, RJ, Brazil 
d Pontifical Catholic University of Rio de Janeiro, R. São Vicente, 225, Gávea, 22453-900, Rio de Janeiro, RJ, Brazil   
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A B S T R A C T   

The COVID-19 pandemic, which originated in December 2019 in the city of Wuhan, China, continues to have a 
devastating effect on the health and well-being of the global population. Currently, approximately 8.8 million 
people have already been infected and more than 465,740 people have died worldwide. An important step in 
combating COVID-19 is the screening of infected patients using chest X-ray (CXR) images. However, this task is 
extremely time-consuming and prone to variability among specialists owing to its heterogeneity. Therefore, the 
present study aims to assist specialists in identifying COVID-19 patients from their chest radiographs, using 
automated computational techniques. The proposed method has four main steps: (1) the acquisition of the 
dataset, from two public databases; (2) the standardization of images through preprocessing; (3) the extraction of 
features using a deep features-based approach implemented through the networks VGG19, Inception-v3, and 
ResNet50; (4) the classifying of images into COVID-19 groups, using eXtreme Gradient Boosting (XGBoost) 
optimized by particle swarm optimization (PSO). In the best-case scenario, the proposed method achieved an 
accuracy of 98.71%, a precision of 98.89%, a recall of 99.63%, and an F1-score of 99.25%. In our study, we 
demonstrated that the problem of classifying CXR images of patients under COVID-19 and non-COVID-19 con
ditions can be solved efficiently by combining a deep features-based approach with a robust classifier (XGBoost) 
optimized by an evolutionary algorithm (PSO). The proposed method offers considerable advantages for clini
cians seeking to tackle the current COVID-19 pandemic.   

1. Introduction 

In December, the World Health Organization began reporting prob
lems of an unidentified pneumonia arising in Wuhan, China (Zhang 
et al., 2020). It was quickly deemed a global health emergency (Zhu 
et al., 2020). In January, the disease was identified as a cause of death on 
several continents. Later in January, it was named severe acute respi
ratory syndrome coronavirus 2 (SARS-CoV-2), later simplified to coro
navirus disease (COVID-19). COVID-19 was reported to be the cause of 
various cases of pneumonia (Organization, 2020). 

Compared to other respiratory problems such as severe acute 

respiratory syndrome (SARS) and middle east respiratory syndrome 
(MERS), COVID-19 produces the greatest number of contagions in the 
smallest amount of time (Petrosillo, Viceconte, Ergonul, Ippolito, & 
Petersen, 2020). An individual who exhibits COVID-19 symptoms 
should self-isolate at home for 14 days. This mechanism is very much in 
line with the fact that the transmission of this pathology is very sensitive 
to any contact with the infected person (Boccia, Ricciardi, & Ioannidis, 
2020). 

The main symptoms of COVID-19 include fever, cough, and fatigue; 
other symptoms can include sputum production, headache, hemoptysis, 
diarrhea, dyspnoea, and lymphopenia (Rothan & Byrareddy, 2020). The 
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global community is currently seeking answers and solutions to eradi
cate this pandemic; thus, several case studies have been developed to 
investigate the particular characteristics of the disease. One of the main 
mechanisms considered to assist specialists is the evaluation of chest X- 
ray (CXR) images (El-Din Hemdan, Shouman, & Karar, 2020). 

Because the imaging procedure limits the patient’s exposure to high 
radiation doses, the CXR results exhibit only a slight contrast to distin
guish soft tissues (Kroft et al., 2019). Thus, many computational 
methods have been proposed to assist specialists. Computer-aided 
detection and diagnostics (CAD and CADx, respectively) play impor
tant roles in this task (Diniz et al., 2018; Diniz et al., 2018; Diniz, Diniz, 
Valente, Silva, & Paiva, 2019; Souza et al., 2019; Carvalho et al., 2020; 
Cruz et al., 2020; Diniz, Ferreira, Diniz, Silva, & de Paiva, 2020). Thus, 
the literature contains several CXR-based methods suitable for identi
fying patients with COVID-19. 

Artificial intelligence-based techniques have been successful in 
diagnosing diseases, and the number of COVID-19 cases worldwide has 
increased dramatically; thus, there is a need for automated systems to 
detect and diagnose diseases using established techniques such as deep 
learning and deep features. In the recent work of Narin, Kaya, and 
Pamuk (2020), models based on convolutional neural networks 
(ResNet50, Inception-v3, and Inception-ResNetV2) were applied to 
detect patients infected with COVID-19; a maximum accuracy of 98% 
was obtained. Apostolopoulos and Mpesiana (2020) also used different 
pre-trained deep learning models; they achieved a 98.75% accuracy and 
a 92.85% recall using two classes (COVID-19 vs. normal conditions). 

In El-Din Hemdan et al. (2020) and Zhang, Xie, Li, Shen, and Xia 
(2020) also presented significant results for the CXR-based detection of 
patients with COVID-19. In both studies, several models of convolu
tional neural network (CNN) were used to verify the COVID-19 detection 
performance. In El-Din Hemdan et al. (2020), a 90% accuracy was ob
tained for the normal and COVID-19 classes. In the Zhang et al. (2020), 
achieved a recall of 96% for cases of COVID-19 and 70.65% for normal 
cases. 

Pereira, Bertolini, Teixeira, Silla, and Costa (2020) used CXR images 
to distinguish pneumonia cases caused by COVID-19 from those caused 
by other types of diseases, as well as from healthy lungs. To this end, the 
authors used known texture descriptors to extract features and a pre- 
trained CNN model. They achieved an F1-score of 65% using a multi
class approach and an F1-score of 89% for the identification of COVID- 
19. In a study by Ozturk et al. (2020), a model (DarkCovidNet) for binary 
and multiclass classification was also developed. DarkCovidNet was 
inspired by the object detection system referred to as “You Only Look 
Once.” The model achieved an accuracy of 98.08% for binary class and 
87.02% for multiclass classification. 

Sethy and Behera (2020) classified features obtained from the 
ResNet50 model, using a support vector machine (SVM) classifier; they 
obtained an accuracy of 95.38% and an F1-score of 91.41% in the 
detection of COVID-19. In Rahimzadeh and Attar (2020), a neural 
network was proposed; it used a combination of Xception and 
ResNet50V2 networks to detect COVID-19 cases, achieving an accuracy 
of 99.50%, a precision of 35.27%, and a recall of 80.53% in the detection 
of COVID-19. Whilst all of these approaches have achieved strong re
sults, significant amount of work remains to be done; for instance, a 
broad range of rigorous tests and improvements are required before 
these techniques can be used in clinical practice. 

Therefore, the present work proposes a method capable of classifying 
the CXR images of patients with COVID-19, implementing extraction via 
deep features and using an optimized XGBoost for classification. In this 
way, we hope to assist specialists in the task of diagnosing patients, by 
providing a robust mechanism for CXR analysis.We chose XGBoost as 
the classifier of the Deep Features extracted, because of its performance, 
compared to other existing solutions. According to Chen, He, Benesty, 
Khotilovich, and Tang (2015), XGBoost has performed better in terms of 
speed, scalability, memory consumption, and hardware resources. Be
sides, it has achieved state-of-the-art results in several tasks. 

The key contributions of this work are summarized as follows: (a) 
this study proposes a fully automated method for classifying CXR images 
as showing COVID-19 or non-COVID-19 cases; (b) it develops a method 
capable of extracting deep features from CXR images; (c) it uses XGBoost 
as a classifier for deep features; and (d) it optimizes the XGBoost pa
rameters using an evolutionary algorithm. With this, we provide a 
promising CADx tool, capable of assisting specialists in the task of 
identifying patients with COVID-19. 

This paper is organized as follows. Section 2 describes the materials 
and methods used to classify COVID-19 patients from their CXR. Sec
tions 3 and 4 present the experiments conducted to validate our 
research, our discussion of the corresponding results, and comparative 
analyses of other similar studies. Finally, our conclusions and future 
works are presented in Section 5. 

2. Materials and method 

In this section, the image datasets and the methods used to classify 
patients exhibiting COVID-19 and non-COVID-19 conditions are 
described in four steps, which are considered in detail in the next sub
sections. In the first section, we describe the test images acquired from 
the COVID chest X-ray dataset (Cohen, Morrison, & Dao, 2020) and 
Guangzhou Women and Children’s Medical Center, Guangzhou (Ker
many, Zhang, & Goldbaum, 2018). The second section describes the pre- 
processing applied to these images, through which we standardized 
them as input to our deep feature extractor. In the third section, we 
describe the techniques used to extract the features. Finally, in the fourth 
section, we present the classifier used to perform the experiments. Fig. 1 
illustrates the steps of the proposed method. 

2.1. Datasets 

To develop a robust method, diversified samples are needed; in this 
study, these were acquired under normal clinical standards (i.e., without 
previous standardization) to improve the study. However, due to its 
nature as an ongoing and unprecedented problem, no such extensive 
database is available for patients affected by COVID-19. 

The classification of CXR images for various types of pathology has 
been well-studied in the literature (Chapman, Fizman, Chapman, & 
Haug, 2001; Rajpurkar et al., 2017). Several datasets are available, 
containing many diverse classes of CXR images. For this work, we sought 
a database containing several samples of normal patients. This was for 
two reasons: (1) to facilitate the extraction of features from a diverse 
sample range, for the model to learn patterns from; (2) to develop a 
robust method trained upon a considerable number of normal patients 
(i.e., to simulate clinical practice). Thus, all experiments in this study 
were performed on datasets acquired from two public repositories 
containing CXR images. 

The first dataset, referred to as the COVID chest X-ray dataset, con
sists of 660 chest X-ray/computed tomography images (Cohen et al., 
2020). These include images of patients with acute respiratory distress 
syndrome (ARDS), COVID-19, MERS, pneumonia, and SARS. This 
collection of images was published by Dr. Joseph Cohene, Dr. Adrian 
Rosebrock, and Dr. Lan Dao. 

Several images in this dataset are classified as multiple types of pa
thology. This is thought to occur as a result of suspicious diagnoses and/ 
or because the image contains pre-existing characteristics of other pa
thologies, such as SARS, MERS, ARDS, or others. The present work only 
considered images that exclusively presented COVID-19 as the pathol
ogy. Furthermore, the dataset contained images with different views 
(only left lung, only right lung, etc.). Here, only frontal images of the two 
lungs were considered. 

The second set of data was collected at Guangzhou Women and 
Children’s Medical Center, Guangzhou (Kermany et al., 2018). The 
dataset contains 5,856 CXR images, of which 4273 images are from 
patients exhibiting pneumonia (bacterial or viral) and 1583 are from 
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patients with healthy lungs; these data were divided into training and 
testing datasets. For this work, we used only the training dataset, which 
contained more samples; hereafter, this is referred to as the “Guangzhou 
dataset.”. 

In our study, the experiments were performed with the goal of 
classifying patients into COVID-19 and non-COVID-19 classes. For this, 
206 COVID-19-condition (Cohen et al., 2020) and 1341 normal- 
condition images (Kermany et al., 2018) were selected. Fig. 2 (a) 
shows examples of the CXR images of patients exhibiting normal con
ditions, and Fig. 2 (b) shows those of patients diagnosed with COVID-19. 

2.2. Preprocessing 

The images acquired from the two databases were not standardized, 
neither in the CXR digitalization process or the exam protocols. To 
standardize the CXR images used in this method, a preprocessing step is 
implemented. This step is divided into three sub-steps. First, it is 
observed that the images from the COVID chest X-ray dataset (Fig. 2(a)) 
present color-scale patterns other than grayscale. This prevents us from 
using them, because the classifier risks being biased by these patterns. 
Thus, to circumvent this problem and to keep the method concise, all 
images (from both the COVID chest X-ray and Guangzhou datasets) were 
converted to grayscale (Fig. 3(b)). 

It can be observed that the images are of different widths and 
heights. Thus, we implemented a resizing that left the internal structures 
of the CXR images intact. First, we found the largest axis and created a 
rectangular image whose heights and widths matched the size of this 
axis. Then, the original image was centered on this new square image 
(Fig. 3(c)). 

Finally, all images were resized to 224 × 224 pixels. This size was 
selected as being suitable for further processing within the deep learning 
pipeline (El-Din Hemdan et al., 2020); however, it did not diminish the 
resolution of the collected images. Fig. 3 illustrates the preprocessing 
steps. 

2.3. Deep features extraction 

In this step, we aim to obtain descriptive measurements of the lungs 
featured in the CXR images; these measurements will be used in the 
classification step. Extracting features from an image is an arduous task 
which requires a high level of expertise and therefore considerable time 
and effort. In addition to being a non-trivial task, the features obtained 
are specific to the problem; hence, the solutions may not be sufficiently 
representative of other cases. With the development of deep neural 
network models, it has become possible to extract features in an auto
mated way (LeCun, Bengio, & Hinton, 2015). 

The layers of a CNN act as feature extractors. Lower layers learn basic 
features (e.g., contours and borders), middle layers extract information 
such as color and shape, and deeper layers learn to identify the object in 
the image. Moreover, these networks feature a fully connected layer that 
acts as a classifier (H Mohamed, H El-Behaidy, Khoriba, & Li, 2020). 

The technique used to extract features in this work is referred to as 
“Deep Features.” It consists of removing the fully connected layer from a 
conventional CNN to obtain a feature vector as the network output. 
Thus, the CNN is converted into an automated feature extractor. Fig. 4 
illustrates the approach. 

Three network architectures were selected to conduct our experi
ments: VGG19 (Simonyan & Zisserman, 2014), Resnet50 (He, Zhang, 
Ren, & Sun, 2016), and Inception-v3 (Szegedy, Vanhoucke, Ioffe, Shlens, 
& Wojna, 2016). The pre-trained weights applied to the networks were 
trained on the ImageNet database (Deng et al., 2009). 

2.4. Diagnosis classification using XGBoost 

From the features extracted by Deep Features, we need to classify the 
image as depicting a patient exhibiting COVID-19 or non-COVID-19 
conditions. For this, deep learning techniques are used to classify deep 
features. In this work, the XGBoost classifier was used, owing to its 
strong performance (in terms of speed, scalability, memory consump
tion, and hardware resources (Chen et al., 2015)) compared to other 
existing solutions. 

Fig. 1. Flowchart of the method.  

Fig. 2. Dataset information: (a) CXR images of patients exhibiting normal conditions; (b) CXR images of patients diagnosed with COVID-19.  
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XGBoost consists of the library proposed in (Chen et al., 2015) and is 
based on the gradient increase framework developed by Friedman 
(2001). It can be used for various objective functions, including 
regression and sorting (Song, Chen, Deng, & Li, 2016). XGBoost offers an 
efficient and scalable implementation of the gradient-based decision 
tree algorithm. It has been widely applied and its efficiency has been 
recognized in several machine learning and data mining challenges (e. 
g., the Kaggle website). It has achieved state-of-the-art results for a wide 
range of task problems (Chen et al., 2015). 

XGBoost is extensible, and its parameters can be easily changed 
(Carvalho et al., 2020) and optimized. Its parameters include max depth, 
learning rate, range, colsample by tree, min child weight, and fitness. 
Max depth denotes the maximum depth of the tree. Increasing this 
property increases the complexity of the model; however, the propensity 
for overfitting is also increased. The learning rate determines the size of 
the model’s evolution step in each iteration. Gamma denotes the mini
mum loss reduction required to form an additional partition in a leaf 
node of the tree; increasing this makes the algorithm more conservative. 
Colsample by tree indicates the column subsample rate when building 
each tree. Min child weight denotes the minimum sum of the instance 
weights (Hessian) required in a child node; increasing its value makes 
the algorithm more conservative. The fitness parameter specifies the 
task and the learning objective (Chen, He, & Benesty, 2018). 

As described, XGBoost features several parameters. In computational 
problems, one method of finding the optimal parameters is to observe 
how these parameters change during the validation phase. However, 
this is an arduous and ineffective process. To make our method even 
more automatic and robust, we propose using a particle swarm opti
mization (PSO) to optimize the parameters. 

2.4.1. XGBoost parameter optimization using PSO 
The PSO algorithm is an evolutionary technique inspired by the 

swarming and collaborative behavior of biological populations (Eber
hart & Kennedy, 1995). It seeks an ideal solution by iteratively changing 
particle speeds and positions according to the particle’s and group’s 

flight experiences, guiding them towards the location of Gbest and Pbest 
in the subsequent iterations. Gbest corresponds to the optimum popu
lation fitness value achieved by any particle, whereas Pbest corresponds 
to the optimum particle fitness value achieved so far (Kennedy, 2010). 

Also, PSO can generate a high-quality solution within a shorter 
calculation time and exhibiting more effective stable convergence 
characteristics than other optimization techniques. Moreover, there are 
fewer control parameters to adjust, and it is more efficient in main
taining the diversity of the swarm as all the particles use the information 
related to the most successful particle (Gbest particle) to enhance 
themselves. For this reason, we chose the PSO to optimize the XGBoost 
parameters (Kennedy, 2010; da Silva, Valente, Silva, de Paiva, & Gat
tass, 2018). 

The XGBoost parameters used for optimization are those described in 
Section 2.4: max depth, colsample by tree, min child weight, gamma, 
and learning rate. To represent a PSO particle, a five-position vector is 
created, in which each vector component represents one of the afore
mentioned parameters. Each parameter requires a search space, which is 
simply denoted by the limits of the maximum and minimum values that 
can be assumed. For the max depth, a discrete threshold was defined 
between three and ten. The min child weights were set as integer values 
between one and seven. Finally, for the other parameters, continuous 
thresholds were defined between zero and one. Furthermore, to allow 
the PSO algorithm to evolve, a fitness function was required. 

The fitness of each particle was evaluated using the results obtained 
by the XGBoost model, which operated on the validation subset ac
cording to the selected parameters. Here, we explain the weighting 
method used in fitness. The main purpose of weighting is to maintain a 
balance between recall and precision; for this, we used the F-score 
(Sasaki & Fellow, 2007) to obtain superior models in the classification of 
COVID-19 cases. This fitness is defined as Eq. 1. 

Fitness = F − Score = 2 ∗
Pre ∗ Rec
Pre + Rec

(1)  

where Pre = TP
TP+FP and Rec = TP

TP+FN. True positive (TP) indicates the 

Fig. 3. Preprocessing: (a) input image; (b) color space in grayscale; (c) proportionally resized and centered.  

Fig. 4. CNN Architecture.  
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correctly detected cases. False positive (FP) denotes the negative cases 
mistakenly detected as positive. True negative (TN) refers to the truly 
detected negative cases. False negative (FN) denotes the positive cases 
mistakenly detected as negative. 

After defining a particle, its thresholds, and its fitness function, the 
following steps were performed (Le, Nguyen, Zhou, Dou, & Moayedi, 
2019):  

• Step 1: A population of ten random particles was created. Then, the 
fitness function of each particle was computed.  

• Step 2: Each particle traveled circularly through the search space at 
an initial speed, as established in the previous step. For each itera
tion, the optimal local particle was sought. The best overall result 
represents the current best particle. The speeds were also updated 
during this step.  

• Step 3: After the speed was calculated and updated, the particles flew 
in the search space at this new speed.  

• Step 4: The best location and best overall result were updated to the 
best position, according to the fitness function.  

• Step 5: The search stop condition was checked. If the fitness function 
of the particle was optimal, the search was interrupted. Otherwise, 
we returned to Step 2. 

At the end of this optimization, we obtained the best XGBoost pa
rameters of the model validation step. Finally, a test database was 
applied, and validation metrics were extracted to calculate the method’s 
robustness. 

3. Results 

This section describes the experimental setup, the experimental 
procedures performed to validate the proposed method, the validation 
metrics adopted, and the database preparation procedure. 

3.1. Experimental setup 

The proposed method was implemented using the Python library. We 
primarily used the Keras deep learning library (Chollet et al., 2015) with 
TensorFlow-GPU (Abadi et al., 2015) as the back-end. The computer 
used in these experiments consisted of an Intel Core i7-7700 K 4.20 GHz 
CPU, 16 GB of RAM, and Nvidia GeForce GTX 1080-Ti graphics card, 
running on a Windows 10 operating system. 

3.2. Evaluation metrics 

To validate the method, we applied popular metrics from the field of 
medical imaging; these consisted of accuracy (Acc), precision (Pre), 
recall (Rec), and F1-Score (F1) (Duda, 1973). The metrics were calcu
lated based on the confusion matrix. 

As explained in Section 2, two public datasets were used to imple
ment the proposed method and measure its efficiency through experi
ments. Of the images contained in these datasets, 206 were from the 
COVID-19 chest X-ray dataset and contained cases classified as 
COVID-19; 1341 images were of normal patients, taken from the 
Guangzhou Dataset. 

To validate our method, we applied the k-fold cross-validation 
technique, setting k = 5. In this approach, the method is trained and 
tested five times, by dividing the database in an 80:20 ratio to ensure the 
proportion for both classes. At the end of each training procedure, the 
validation metrics were extracted. As a result, we obtained the average 
of each metric along with its standard deviation; this enabled us to make 
more appropriate analyses of the method. It also made it possible to 
avoid the overfitting problem, because the entire database was trained 
at least once in the k-fold validation procedure. 

Table 1 shows the relationships between the individuals used for 
training and testing in each fold, for both the normal and COVID-19 

cases. 

3.3. Experimental results 

For our experimental results, we studied the execution of the entire 
method and the collection of validation metrics. However, when pro
posing a new and robust method, it is necessary to compare it against 
other methods already established in the literature. Thus, we conducted 
several experiments to demonstrate the robustness of our method 
compared to other techniques. All metrics are shown in terms of the 
average of the five folds as well as the standard deviation. 

3.3.1. Confusion matrix 
To assess the robustness of the method, we first present the sum

mation confusion matrix of the fivefold test results. From this matrix, the 
accuracy, precision, recall, and F1-score metrics were calculated. The 
results of the confusion matrix are presented in Table 2. 

3.3.2. Deep features with XGBoost (with and without PSO) 
First, we demonstrate the execution of our entire method and the 

collection of metrics. However, it should be noted that we propose a step 
of parameter optimization. To prove the necessity of this step, we show 
the results both with and without the use of PSO. For the case without 
PSO, only the default parameters were used. Table 3 describes the 
training time for a fold as well as the default parameters and those found 
after optimization for the three deep feature extractors. 

Notably, after the training and model creation procedures, the clas
sification for an individual patient can be performed immediately. After 
optimization, the training and metric testing for the method with and 
without PSO were performed. The results are displayed in Table 4. 

We can see that Deep Features was effective in capturing the content 
of the images. Promising results were seen for both models (i.e., with 
and without PSO). When considering accuracy and F1-score, we observe 
a similar average correctness between classes; furthermore, we can see a 
correspondence between precision and recall, with both metrics in the 
two types of networks (with and without PSO) exceeding 97% and 98%, 
respectively. Despite only a slight gain in metrics, the use of PSO is 
necessary. This is because the parameter selection step is costly and 
depends on the expertise of the method developer. By using an opti
mized search method, we have further automated the method and made 
it independent of the parameter selection. 

3.3.3. XGBoost + PSO vs Other Optimization Methods 
To verify the effectiveness of the PSO in optimizing the parameters of 

the XGBoost, we did experiments using two other optimizers:  

1. Genetic Algorithm (GA) (Mirjalili, 2019): A genetic algorithm is a 
search heuristic that is inspired by Charles Darwin’s theory of natural 
evolution. This algorithm reflects the process of natural selection 
where the fittest individuals are selected for reproduction to produce 
offspring of the next generation. Usually, its parameters are the 

Table 1 
Relationship between individuals used for training and testing in each fold.  

Dataset Proportion Normal COVID-19 Total Sample 

Train 80% 1071 165 1236 
Test 20% 270 41 311 
Total 100% 1341 206 1547  

Table 2 
Summation fivefold confusion matrix.   

True Positive True Negative 

Predicted Positive 1335 15 
Predicted Negative 5 200  
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number of iterations, mutation rate, crossover rate, size of the indi
vidual, and number of population. For the experiments, default pa
rameters were used.  

2. Bee Colony Optimization (BCO) (Teodorovic, Lucic, Markovic, & 
Dell’Orco, 2006): An optimization algorithm based on the intelligent 
foraging behavior of honey bee swarm. three groups of bees: 
employed bees, onlookers, and scouts. It is assumed that there is only 
one artificial employed bee for each food source. In other words, the 
number of employed bees in the colony is equal to the number of 
food sources around the hive. Employed bees go to their food source 
and come back to hive and dance in this area. The employed bee 
whose food source has been abandoned becomes a scout and starts to 
search for finding a new food source. Onlookers watch the dances of 
employed bees and choose food sources depending on dances. Usu
ally, its parameters are the number of iterations, colony rate, scouts, 
and size of the individual. For the experiments, default value pa
rameters were used. 

To optimize the XGBoost, the GA and BCO algorithms were also 
executed in the parameters of Max depth, Colsample by tree, Max child 
weight, Gamma, and Learning Rate. The result of these parameters for 
the two algorithms executed in the three networks is expressed in 
Table 5 together with the parameters found by the PSO. 

With all XGBoost parameters optimized for the three networks using 
GA, BCO, and PSO, the next step is to apply the models on the test 
datasets and calculate the metrics to verify their effectiveness and 
highlight why the PSO is better than the other algorithms optimization. 
Table 6 presents a comparison of the validation metrics and the pro
cessing time of these combinations. 

We can see that all three optimizers were able to achieve promising 
results, superior to using XGBoost without optimization. However, as 
presented in Section 2 and in the Time column of the Table 6, PSO was 
the fastest optimize. Also, in the metric of F1-Score, which expresses the 

harmony between the metrics of Precision and Recall, PSO was the only 
one capable of reaching 99% in two types of architecture (VGG19 and 
ResNet50). The same occurs in the F1-Score variance in these two ar
chitectures, mainly in VGG19, where there was only 0.20% standard 
deviation. Thus, we highlight how robust PSO was to optimize effec
tively, quickly, and achieve promising validation metrics in the XGBoost 
classifier. 

3.3.4. Traditional texture features vs. deep features with XGBoost 
A second test that highlights the innovations proposed by deep 

feature extraction, is the use of texture features; this method is well- 
established in the literature. Thus, we performed the whole method 
again but exchanged the Deep Features extraction step for traditional 
texture feature extraction (Hu moments, Haralick, and local binary 
pattern (LBP) (Gonzalez & Woods, 2008)). The comparison of these 
approaches against the optimized XGBoost is presented in Table 7. 

It can be seen that the use of Deep Features offers superior results to 
the existing feature-extraction techniques. Furthermore, it is known that 
extracting features manually is a non-trivial task. The type of features (e. 
g., texture, shape, geometry, or border) chosen depends on the elements 
of the image and its specific characteristics. By proposing the use of Deep 
Features, our method can extract features automatically, without 
needing to explicitly perform feature extraction and selection steps. 
Furthermore, metrics based on Deep Features and optimized XGBoost 
are more consistent in each fold, showing smaller standard deviation. 

3.3.5. Deep features with other classifiers 
Another experiment to validate the use of optimized XGBoost is to 

compare it against traditional classifiers presented in the literature. To 
assess the robustness of optimized XGBoost, we use a regression-based 
classifier (logistic regression (Kleinbaum, Dietz, Gail, Klein, & Klein, 
2002)) and another decision tree-based classifier (random forest (Brei
man, 2001)). The results of this experiment are presented in Table 8. 

Table 3 
XGBoost parameters: default and with PSO.  

Parameters Deep Features Time (sec) Max depth Colsample by tree Min child weight Gamma Learning rate 

Default —- 434 6 1 1 0 0.3 
XGBoost + PSO VGG19 732 8 0.381 7 0.352 0.408 

Inception-v3 811 5 0.769 7 0.917 0.519 
ResNet50 698 9 0.178 5 0.179 0.488  

Table 4 
Classification of COVID-19 Chest X-ray images: XGBoost with PSO and without.  

Optmization Deep Features Time(sec) Acc(%) Pre(%) Rec(%) F1(%) 

Only XGBoost VGG19 340 97.74 ± 1.21  97.81 ± 1.14  99.7 ± 0.31  98.75 ± 0.60  
Inception-v3 530 97.16 ± 0.95  98.43 ± 0.40  98.29 ± 0.85  98.36 ± 0.55  
ResNet50 432 97.67 ± 0.42  97.88 ± 0.68  99.48 ± 0.33  98.67 ± 0.24  

XGBoost + PSO VGG19 732 98.71 ± 0.32  98.89 ± 0.53  99.63 ± 0.65  99.25 ± 0.20  
Inception-v3 811 97.48 ± 1.08  98.29 ± 1.35  98.81 ± 0.79  98.54 ± 0.64  
ResNet50 698 98.51 ± 0.84  98.80 ± 0.95  99.48 ± 0.34  99.14 ± 0.51   

Table 5 
XGBoost parameters optimized with GA, BCO, and PSO.  

Parameters Deep Features Max depth Colsample by tree Min child weight Gamma Learning rate 

XGBoost + GA VGG19 3 1 8 0.402 0.950 
Inception-v3 7 1 2 0.679 0.318 
ResNet50 2 0.126 1 0.198 0.089 

XGBoost + BCO VGG19 8 0.807 3 0.207 1 
Inception-v3 3 0.644 3 0.138 0.215 
ResNet50 8 0.169 2 0.285 0.485 

XGBoost + PSO VGG19 8 0.381 7 0.352 0.408 
Inception-v3 5 0.769 7 0.917 0.519 
ResNet50 9 0.178 5 0.179 0.488  
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Analyzing Table 8, it can be seen that deep features play a funda
mental role in extracting features. Even when using other classifiers, the 
results are still effective and present a low standard deviation; we 
highlight the use of logistic regression with ResNet50, which attains an 
average accuracy of 98.26%. However, when using the proposed 
method with XGBoost + PSO, the results are still superior to those ob
tained using other classifiers; this is seen in all metrics, though pre
dominantly in the accuracy of all three deep feature architectures. 

3.3.6. Deep learning methods vs. XGBoost + PSO 
Finally, it is known that CNNs play an important role in several 

imaging domains, and medical imaging is no exception. Thus, to vali
date our method (when using only Deep Features), we compare it 
against a method that uses end-to-end deep learning. However, given its 

computational cost, deep learning can be performed only once. We 
selected 70% of the dataset for training, 10% for validation, and 20% for 
testing. Furthermore, we used the standard architectures of VGG19, 
Inception-v3, and ResNet50. All networks were executed with 50 
epochs. The results are described in Table 9. 

The effectiveness of deep learning methods is known, and their 
effectiveness holds for the classification of patients into COVID-19 and 
non-COVID-19 groups. The method achieves good results for the task. 
However, deep learning network training is computationally expensive. 
Moreover, because it takes a long time, the search for parameters (to 
create a robust model) becomes even more complex. Conversely, 
XGBoost is a tree-based classifier that offers high performance in terms 
of speed, scalability, memory consumption, and hardware resources 
Chen et al., 2015. Nevertheless, the results of our method proved to be 

Table 6 
Comparison of XGBoost optimized with GA, BCO, and PSO.  

Optimization Extraction Time(sec) Acc(%) Pre(%) Rec(%) F1(%) 

XGBoost + GA VGG19 930 98.06 ± 0.60  99.25 ± 0.70  98.51 ± 0.63  98.88 ± 0.45  
Inception-v3 1461 97.29 ± 0.51  98.22 ± 0.64  98.66 ± 0.51  98.44 ± 0.19  
ResNet50 1076 97.80 ± 0.52  98.09 ± 0.59  99.41 ± 0.29  98.74 ± 0.29  

XGBoost + ACO VGG19 840 98.13 ± 0.32  98.45 ± 0.44  99.41 ± 0.44  98.92 ± 0.18  
Inception-v3 937 97.35 ± 0.56  98.30 ± 0.36  98.66 ± 0.50  98.48 ± 0.31  
ResNet50 726 97.80 ± 0.71  98.23 ± 0.49  99.26 ± 0.53  98.74 ± 0.32  

XGBoost + PSO VGG19 732 98.71 ± 0.32  98.89 ± 0.53  99.63 ± 0.65  99.25 ± 0.20  
Inception-v3 811 97.48 ± 1.08  98.29 ± 1.35  98.81 ± 0.79  98.54 ± 0.64  
ResNet50 698 98.51 ± 0.84  98.80 ± 0.95  99.48 ± 0.34  99.14 ± 0.51   

Table 7 
Classification of COVID-19 chest X-ray images: traditional texture features vs. Deep Features.  

Extraction Features Time(sec) Acc(%) Pre(%) Rec(%) F1(%) 

Traditional Texture Hu moments (Gonzalez & Woods, 2008) 332 89.01 ± 1.84  89.00 ± 1.80  99.63 ± 0.60  94.00 ± 1.07  
Haralick (Gonzalez & Woods, 2008) 357 95.22 ± 1.94  96.41 ± 1.50  98.11 ± 1.49  97.24 ± 1.16  
LBP (Gonzalez & Woods, 2008) 491 94.45 ± 1.95  95.32 ± 2.04  98.46 ± 1.11  96.85 ± 1.10  

XGBoost + PSO VGG19 732 98.71 ± 0.32  98.89 ± 0.53  99.63 ± 0.65  99.25 ± 0.20  
Inception-v3 811 97.48 ± 1.08  98.29 ± 1.35  98.81 ± 0.79  98.54 ± 0.64  
ResNet50 698 98.51 ± 0.84  98.80 ± 0.95  99.48 ± 0.34  99.14 ± 0.51   

Table 8 
Classification of COVID-19 chest X-ray images: other classifiers vs. XGBoost.  

Classifiers Deep Features Time(sec) Acc(%) Pre(%) Rec(%) F1(%)  

Random Forest VGG19 371 97.74 ± 1.21  97.81 ± 1.14  99.70 ± 0.31  98.75 ± 0.60   
Inception-v3 556 97.16 ± 0.95  98.43 ± 0.40  98.29 ± 0.85  98.36 ± 0.55   
ResNet50 461 97.67 ± 0.42  97.88 ± 0.68  99.48 ± 0.33  98.67 ± 0.24   

Logistic Regression VGG19 332 96.83 ± 0.96  98.13 ± 0.71  98.20 ± 0.69  98.17 ± 0.57   
Inception-v3 499 97.48 ± 1.00  98.65 ± 0.65  98.43 ± 0.85  98.54 ± 0.60   
ResNet50 416 98.26 ± 0.74  98.66 ± 0.90  99.33 ± 0.31  98.99 ± 0.44   

XGBoost + PSO VGG19 732 98.71 ± 0.32  98.89 ± 0.53  99.63 ± 0.65  99.25 ± 0.20   
Inception-v3 811 97.48 ± 1.08  98.29 ± 1.35  98.81 ± 0.79  98.54 ± 0.64   
ResNet50 698 98.51 ± 0.84  98.80 ± 0.95  99.48 ± 0.34  99.14 ± 0.51    

Table 9 
Classification of COVID-19 chest X-ray images: deep learning vs. XGBoost + PSO.  

Methods Deep Features Time(sec) Acc(%) Pre(%) Rec(%) F1(%)  

Deep Learning VGG19 3300 89.94 89.87 99.59 94.5  
Inception-v3 7250 91.23 91.10 99.59 95.17  
ResNet50 4150 94.47 94.00 99.96 96.91  

XGBoost + PSO VGG19 732 98.71 ± 0.32  98.89 ± 0.53  99.63 ± 0.65  99.25 ± 0.20   
Inception-v3 811 97.48 ± 1.08  98.29 ± 1.35  98.81 ± 0.79  98.54 ± 0.64   
ResNet50 698 98.51 ± 0.84  98.80 ± 0.95  99.48 ± 0.34  99.14 ± 0.51    

D.A. Dias Júnior et al.                                                                                                                                                                                                                         



Expert Systems With Applications 183 (2021) 115452

8

superior in all metrics compared with deep learning methods. 
Thus, based on the experiments presented, we conclude that the 

proposed method shows great promise. Combined with clinical practice 
and specialist expertise, this robust, fast method consumes minimal 
computational resources and can constitute a fundamental tool for 
combating the COVID-19 pandemic. It should be noted that in devel
oping countries, where resources are scarce, this method could offer 
considerable advantages, given its efficiency characteristics and 
accuracy. 

4. Discussion 

In this section, the results obtained with the method are discussed. 
Furthermore, a qualitative assessment is made for two case studies: a 
correct classification and an incorrect classification. For this, we chose 
the deep feature extraction model that exhibited the optimum accuracy 
(i.e., VGG19). Still, we present results applying the model achieved by 
the method in patients with different types of pneumonia (bacterial and 
viral) to show the efficiency of the model built. Then, the studies found 
in the literature are considered and compared. Finally, the advantages 
and limitations of the proposed method are discussed. 

4.1. Case study 

Initially, we assessed the significance of the COVID-19 and normal 
image regions, by projecting the weights of the output layer onto the 
maps of convolutional features (Zhou, Khosla, Lapedriza, Oliva, & 
Torralba, 2016). For this, we used the activation maps for the images of 
patients under normal conditions and those affected by COVID-19, as 
shown in Fig. 5 (a) and (b), respectively. In the activation map, the closer 
a feature is to the red region, the more important its extraction is for the 
method decision. Features closer to the blue regions are less important. 
From this, we can see that, despite the different databases, the main 
features are consistently extracted from the pulmonary region; this in
dicates that our method is not biased by the choice of database. 

Therefore, we presented a set of case studies in the next subsections 
to analyze and discuss the most common situations after applying the 
proposed method. 

4.1.1. Case study - Patients affected by COVID-19 
To qualitatively evaluate the method, we considered three case 

studies of patients affected by COVID-19. In the first case, the model 

misclassified the patient, and in the other two, the model’s diagnosis was 
correct. 

The first case study is a patient diagnosed by the specialist as having 
COVID-19. However, the model using deep features (from VGG19) and 
XGBoost + PSO classified it as normal. This example is illustrated in 
Fig. 6. 

Despite this classification, by analyzing the image we can see that the 
regions of the lungs are very clean, with no evidence of impairment. It is 
worth remembering that our diagnosis is based only upon the image, 
whereas the diagnosis of the specialist takes into account other factors 
(e.g., the clinical and laboratory conditions) of the patient. However, as 
we evaluated only the image, this was considered an error case. 

COVID-19 in its early stages does not cause severe pulmonary 
involvement, which makes it almost imperceptible to the human eye in 
diagnosis. This case is shown in Fig. 7, which presents the CXR image of 

Fig. 5. Activation map for images of patients (a) under normal conditions and (b) affected by COVID-19..  

Fig. 6. Patient affected by COVID-19, wrongly classified by the method.  
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a patient affected by COVID-19, though it presents strong characteristics 
of a patient under normal conditions. Even so, our method was able to 
correctly classify the patient as suffering from COVID-19. This demon
strates that our method can accurately detect even the most complex 
cases. 

The third study is that of a patient with COVID-19; in this case, the 
model using deep features (from VGG19) and XGBoost + PSO gave the 
correct diagnosis. We can see in Fig. 8 that this patient exhibits large 
changes in their lungs, which indicates a certain degree of impairment; 
this caused the model to classify them as a patient with COVID-19. 

4.1.2. Case study – Patients under normal conditions 
To qualitatively evaluate the method, another two case studies of 

patients with normal CXR images are presented. In one case, the model 
misclassified the patient; in the other, the model’s diagnosis was correct. 

The first patient was healthy but classified as having COVID-19. The 
image is presented in Fig. 9; as we can see, although the image was 
classified as normal by the specialist, it presents pulmonary regions with 
high density; this confused the classifier, which considered the patient as 
suffering from COVID-19. 

The last case study presents a normal patient who was correctly 
classified by the method (Fig. 10). Once again, the method proved to be 
promising in assessing CXR images. This demonstrates the generaliz
ability of the method, which achieved over 98% in all metrics. 

4.2. Proposed method vs. other pneumonia 

To validate our method can differentiate the CXR of patients with 
COVID-19 from other existing cases of pneumonia, we used CXR images 
of other pneumonia from the Guangzhou dataset. The purpose of the 
experiment is to show that the proposed model does not confuse other 
pneumonia with COVID-19. For this, we chose the deep feature extrac
tion model that exhibited the optimum accuracy (i.e., VGG19). 

The Guangzhou dataset has examples of two types of pneumonia, 
bacterial and viral. Thus, of the total of 3,875 images, 1,345 corre
sponded to CXR of patients with viral pneumonia and 2,530 of bacterial. 
In the next subsections, we present the results achieved using the pro
posed method. 

4.2.1. Proposed method vs. bacterial pneumonia 
First, we will validate our method on CXR images of patients with 

Fig. 7. Patient affected by COVID-19 but seemingly normal, classified correctly 
by the method. 

Fig. 8. Patient affected by COVID-19, classified correctly by the method.  

Fig. 9. Normal patient, classified incorrectly by the method.  

Fig. 10. Normal patient, classified correctly by the method.  
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bacterial pneumonia. Given the total image set, these were submitted to 
the model and the classification result was collected. Table 10 shows the 
results achieved. 

As we can see in the table, the model classified 87% as non-COVID-19 
patients. It shows that the model can satisfactorily differentiate patients 
with bacterial pneumonia from COVID-19. Despite the model making 
some patients wrong, it is worth mentioning that the diagnosis decision 
is accompanied by a series of laboratory and clinical exams, and that this 
model only has the role of supporting the specialist. Furthermore, pat
terns of pulmonary involvement of pneumonia are similar to those of 
COVID-19, which causes a conflict in the correct classification. Fig. 11 
presents activation maps for the images of patients under bacterial 
pneumonia conditions. 

Figure shows both cases, those classified correctly for non-COVID-19 
and those wrong classified for COVID-19, the activation map took into 
account the classification of the pulmonary regions. However, there is a 
high degree of patient impairment, and even so, the model is able to 
correct 87% of cases for non-COVID-19. 

4.2.2. Proposed method vs. viral pneumonia 
Analogous to the experiment done with bacterial pneumonia, in this, 

we will validate our method in CXR images of patients with viral 
pneumonia. Table 11 shows the results achieved. 

We can see that the model proved to be effective in the task of 
differentiating patterns of viral pneumonia from that caused by COVID- 
19. Similar to bacterial, there is an error in the classification of some 
exams. It is worth mentioning that this tool is not intended to diagnose 
patients, but rather to serve as a screening and assistance tool for spe
cialists. Also analogous to the previous experiment, we remember that 
there is great pulmonary involvement caused by other pneumonia, 
which generates conflict to the classifier. Fig. 12 presents activation 
maps for the images of patients under viral pneumonia conditions. 

Once again, it is observed that the regions activated for classification 
of the model are regions with great pulmonary impairment. Even so, the 
model was efficient in 88% of the cases, in correctly correcting the class 
of non-COVID-19. 

4.3. Comparison with related works 

Though it is a recent problem, the pandemic caused by COVID-19 has 
prompted several researchers to develop a methods to help doctors and 
frontline professionals; many of these methods have been developed to 
analyze CXR images. A comparison of these works against the proposed 
method is presented in Table 12. 

We can see that almost all use deep learning architectures in their 
approach. Deep learning techniques hold great promise, primarily 
because there is no explicit need for the extraction, selection, and clas
sification of characteristics. However, training with this type of 
approach is costly, and many training sections are required to find the 
best parameters. 

In Narin et al. (2020), the experiments used CXR image datasets 
containing 50 normal patients and 50 patients with COVID-19, both 
taken from public repositories. The experimental results show an accu
racy of 98%. In El-Din Hemdan et al. (2020), a 90% accuracy was ach
ieved by considering 50 CXR images, 25 of which were confirmed cases 
of COVID-19. In Zhang et al. (2020), 100 CXR images from patients with 
COVID-19 and 1341 from normal patients were used to validate the 
experiments; their method achieved a 96% accuracy. In our study, we 

used a larger dataset to validate our method; it contained 206 images of 
COVID-19 patients, and 1341 images of normal patients; in the best case, 
we achieved results exceeding 98% in accuracy, surpassing the studies 
described above. 

Apostolopoulos and Mpesiana (2020) evaluated several deep archi
tectures and transfer learning techniques. Using a VGG19 to detect 
COVID-19, they obtained results of 98.75% and 92.85% in accuracy and 
recall, respectively; their research used a dataset consisting of 224 im
ages of patients with COVID-19 and 1204 images of patients with 
pneumonia or healthy lungs. Pereira et al. (2020) composed a database 
referred to as RYDLS-20; it contains 1144 CXR images of pneumonia 
caused by different pathologies, as well as images of healthy lungs. In 
their experiments, they achieved an 89% F1-score. Ozturk et al. (2020) 
proposed a CNN model based on DarkNet to detect COVID-19 cases. The 
model achieved an accuracy of 98.08% for a dataset composed of 125 
COVID-19 CXR images, 500 pneumonia images, and 500 normal images. 
Our method can still outperform these. 

CNNs automatically extract features from input data and perform 
classifications based on these extracted features, using a classifier such 
as softmax. The softmax classifier is a common option for CNNs; how
ever, it is not mandatory and can be replaced by any classifier. One of 
these experiments was carried out in Sethy and Behera (2020), where 
the ResNet50 model was used in conjunction with an SVM classifier to 
detect patients with COVID-19. The model achieved an accuracy of 
95.38% and an F1-score of 91.41%. In our experiments, we obtained 
superior results to all of these. 

Finally, the method proposed in Rahimzadeh and Attar (2020) ach
ieved an impressive 99.50% accuracy. However, only a 35.27% preci
sion and 80.53% recall were achieved for detection of the COVID-19 
class. This was because their method was more focused on selecting 
classes of normal patients/pneumonia, which is not our focus here. In 
our experiments, we obtained balanced results for the two classes 
(COVID-19 and normal), presenting results exceeding 98% for the 
metrics of accuracy, precision, recall, and F1-score. 

Thus, in contrast to the methods described in the literature, our work 
proposes a method that exclusively uses deep features, which are 
extracted from the convolution and subsampling layers of deep learning 
networks. For the classification step, we propose the use of XGBoost, 
which does not require a large number of resources and has shown 
promising results in several studies regarding data classification. A 
technique based on the evolutionary algorithm (PSO) was proposed to 
identify the best parameters for XGBoost. Thus, we demonstrate the 
promise of our method, by presenting results comparable to those found 
in the literature; our method can be used as a tool to combat the 
pandemic caused by COVID-19. 

4.4. Advances and limitations of the proposed method 

Because it proposes a new and fully automated method for classi
fying patients into COVID-19 and normal groups, our method offers a 
series of merits and advances, of which we highlight the main ones as 
follows:  

1. It offers an automated method, developed using two different, public 
databases (Section 2). The diversity of the databases simulates the 
clinical routine, and their publicity makes the method amenable to 
comparison.  

2. Because the CXR image databases differ and are not standardized in 
either the data-acquisition or examination processes, the images 
present numerous patterns. Thus, our proposed method implements 
a crucial stage of image preprocessing; despite its simplicity, this is 
necessary for the successful execution of the entire method.  

3. Using Deep Features, the method automatically extracts and selects 
characteristics. It is known that the process of choosing representa
tive characteristics is not trivial when using the deep features 

Table 10 
Proposed Method vs. Bacterial Pneumonia.   

Quantity Percentage(%) 

Wrongly classified as COVID-19 328 13 
Correctly classified as non-COVID-19 2,202 87 
Total 2,530 100  
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approach; hence, these characteristics are extracted and selected 
implicitly.  

4. To the best of our knowledge, this is the first method to use Deep 
Features combined with an XGBoost classifier to diagnose patients 
into COVID-19 and healthy groups.  

5. The addition of the robust tree-based classifier XGBoost makes the 
method more effective, because this classifier offers considerable 
generalizability; moreover, it does not require large quantities of 
hardware resources, which is one of the biggest problems facing deep 
learning-based methods. 

6. Automated methods have been studied by many researchers; how
ever, these methods always encounter a parameterization barrier. 

This is no different for the XGBoost classifier, which features a range 
of parameters. Thus, we proposed a PSO to automatically optimize 
these parameters and bypass the parameter selection step.  

7. All of these steps increase the method’s utility. The present study 
obtained results superior to those found in the literature and pro
poses an innovative new method for the classification of patients 
with COVID-19.  

8. The proposed method, using deep features (from VGG19) and 
XGBoost + PSO, achieved a maximum average accuracy of 98.71%, 
an average precision of 98.89%, an average recall of 99.63%, and an 
average F1-score of 99.25%. These results indicate the method’s 
potential. 

However, as with any computational method, it has some limitations. 
We highlight these as follows:  

1. Our method did not propose a new deep architecture. We used the 
existing architectures and demonstrated their effectiveness for 
capturing deep features. It is believed that developing a new archi
tecture will further improve results. 

Fig. 11. Activation map for images of patients (a) correctly classified as non-COVID-19 and (b) wrongly classified as COVID-19..  

Table 11 
Proposed Method vs. Viral Pneumonia.   

Quantity Percentage(%) 

Wrongly classified as COVID-19 168 12 
Correctly classified as non-COVID-19 1,177 88 

Total 1,345 100  

Fig. 12. Activation map for images of patients (a) correctly classified as non-COVID-19 and (b) wrongly classified as COVID-19..  
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2. The present method indicates whether a CXR image is considered to 
exhibit COVID-19 symptoms or not. Adding a segmentation stage to 
identify the regions affected by COVID-19 could further help front- 
line professionals. 

Consequently, we believe that the method can play a major role in 
classifying COVID-19 patients from CXR images. It is known that the 
most-used mechanism for medical imaging in developing countries is 
the X-ray. Proposing an automated system capable of generating good 
outcomes is of crucial significance in helping health practitioners tackle 
this pandemic. 

5. Conclusion 

The pandemic caused by COVID-19 has global impacts. Various 
methods designed to assist frontline professionals have been developed. 
The present work proposed a fully automated method, using Deep 
Features to extract feature information from CXR images; furthermore, it 
proposed PSO-optimized XGBoost, to classify these images as depicting 
COVID-19 or healthy lungs. 

Despite COVID-19 being a new problem, several works have already 
been developed along these lines, and the use of public databases is 
necessary for comparing the proposed methods. Thus, this study used 
two public databases, one containing COVID-19 patients and the other 
containing normal patients. Because we used different and non- 
standardized databases, a preprocessing step was used to standardize 
the examination results. 

Then, a deep features extraction step was used to extract the features 
of the images automatically. Finally, we proposed to use the XGBoost 
classifier, which offers a high performance in terms of speed, scalability, 
memory consumption, and hardware resources. To further increase the 
promise of the method, an optimization step (using PSO) was performed 
for the parameters of this classifier. 

The present work, using deep features of VGG19 and XGBoost + PSO, 
achieved an average accuracy of 98.71%, an average precision of 
98.89%, an average recall of 99.63%, and an average F1-score of 
99.25%. Our results, compared with those reported the literature, are 
prominent. Thus, we believe that we have proposed a promising, inno
vative, and capable method to be used by professionals for classifying 
the CXR images of patients affected by COVID-19. 

As a future research direction, we highlight the use of other archi
tectures or the development of new, function-specific ones. Our method 
did not propose a new architecture for extracting deep features. It used 
existing ones and showed that they are effective for capturing features 
when used in conjunction with XGBoost. It is believed that developing 
new architectures will further improve the results. 

Moreover, the present method indicates whether a CXR image is 
considered to show COVID-19 symptoms. Adding a segmentation step to 
identify the regions affected by COVID-19 can further assist front-line 
professionals. Another idea is to extend the method, using it to classify 
other pathologies with pulmonary involvement. We believe that these 
changes can add value to the proposed method. 
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Carvalho, E. D., Antônio Filho, O., Silva, R. R., Araújo, F. H., Diniz, J. O., Silva, A. C., 

Paiva, A. C., & Gattass, M. (2020). Breast cancer diagnosis from histopathological 
images using textural features and cbir. Artificial Intelligence in Medicine, 105, Article 
101845. 

Chapman, W. W., Fizman, M., Chapman, B. E., & Haug, P. J. (2001). A comparison of 
classification algorithms to automatically identify chest x-ray reports that support 
pneumonia. Journal of biomedical informatics, 34, 4–14. 

Chen, T., He, T., Benesty, M., 2018. Xgboost documentation. 
Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: extreme 

gradient boosting. R package version, (4-2), 1–4. 
Chollet, F., et al., 2015. Keras. URL:https://keras.io. 
Cohen, J.P., Morrison, P., Dao, L., 2020. Covid-19 image data collection. arXiv 

2003.11597 URL:https://github.com/ieee8023/covid-chestxray-dataset. 
da Cruz, L. B., Araújo, J. D. L., Ferreira, J. L., Diniz, J. O. B., Silva, A. C., de 

Almeida, J. D. S., de Paiva, A. C., & Gattass, M. (2020). Kidney segmentation from 
computed tomography images using deep neural network. Computers in Biology and 
Medicine, 103906. https://doi.org/10.1016/j.compbiomed.2020.103906 

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large- 
scale hierarchical image database. In 2009 IEEE conference on computer vision and 
pattern recognition Ieee (pp. 248–255). 

Diniz, J. O. B., Diniz, P. H. B., Valente, T. L. A., Silva, A. C., & Paiva, A. C. (2019). Spinal 
cord detection in planning ct for radiotherapy through adaptive template matching, 
imslic and convolutional neural networks. Computer Methods and Programs in 
Biomedicine, 170, 53–67. 

Diniz, J. O. B., Diniz, P. H. B., Valente, T. L. A., Silva, A. C., de Paiva, A. C., & Gattass, M. 
(2018). Detection of mass regions in mammograms by bilateral analysis adapted to 
breast density using similarity indexes and convolutional neural networks. Computer 
Methods and Programs in Biomedicine, 156, 191–207. 

Diniz, J. O. B., Ferreira, J. L., Diniz, P. H. B., Silva, A. C., & de Paiva, A. C. (2020). 
Esophagus segmentation from planning ct images using an atlas-based deep learning 
approach. Computer Methods and Programs in Biomedicine, 197, Article 105685. 

Diniz, P. H. B., Valente, T. L. A., Diniz, J. O. B., Silva, A. C., Gattass, M., Ventura, N., 
Muniz, B. C., & Gasparetto, E. L. (2018). Detection of white matter lesion regions in 
mri using slic0 and convolutional neural network. Computer Methods and Programs in 
Biomedicine, 167, 49–63. 

Duda, R. (1973). Pattern classification and scene analysis. Wiley-Interscience. 
Publication, 512. 

Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization, in. In Proceedings of the 
IEEE international conference on neural networks Citeseer (pp. 1942–1948). 

El-Din Hemdan, E., Shouman, M.A., Karar, M.E., 2020. Covidx-net: A framework of deep 
learning classifiers to diagnose covid-19 in x-ray images. arXiv, arXiv–2003. 

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. 
The Annals of Statistics, 29, 1189–1232. 

Gonzalez, R., & Woods, R. (2008). Digital image processing. Pearson: Prentice Hall.  

Table 12 
Comparison with related works.  

Work Deep Architecture Acc 
(%) 

Prec 
(%) 

Rec 
(%) 

F1 
(%) 

Narin et al. (2020) ResNet50 98 - - - 
Apostolopoulos and 

Mpesiana (2020) 
VGG19 98.75 - 92.85 - 

El-Din Hemdan et al. 
(2020) 

VGG19 and 
DenseNet201 

90 - - - 

Zhang et al. (2020) ResNet 96 - - - 
Pereira et al. (2020) Inception-v3 and 

texture descriptors 
- - - 89 

Ozturk et al. (2020) DarkCovidNet 98.08c - - - 
Sethy and Behera 

(2020) 
ResNet50 and SVM 95.38 - - 91.41 

Rahimzadeh and 
Attar (2020) 

Xception and 
ResNet50V2 

99.50 35.27 80.53 - 

Proposed Method VGG19 98.71  98.89  99.63  99.25  
Inception-v3 97.48  98.29  98.81  98.54  
ResNet50 98.51  98.80  99.48  99.14   

D.A. Dias Júnior et al.                                                                                                                                                                                                                         

http://refhub.elsevier.com/S0957-4174(21)00865-4/h0010
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0010
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0010
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0020
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0025
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0025
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0025
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0025
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0030
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0030
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0030
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0040
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0040
https://doi.org/10.1016/j.compbiomed.2020.103906
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0060
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0060
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0060
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0065
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0065
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0065
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0065
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0070
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0070
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0070
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0070
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0075
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0075
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0075
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0080
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0080
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0080
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0080
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0085
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0085
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0090
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0090
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0100
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0100
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0105


Expert Systems With Applications 183 (2021) 115452

13

H Mohamed, E., H El-Behaidy, W., Khoriba, G., Li, J., 2020. Improved white blood cells 
classification based on pre-trained deep learning models. Journal of 
Communications Software and Systems 16, 37–45. 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition, 
in. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 
770–778). 

Kennedy, J. (2010). Particle swarm optimization. Encyclopedia of machine learning, 
760–766. 

Kermany, D., Zhang, K., Goldbaum, M., 2018. Labeled optical coherence tomography 
(oct) and chest x-ray images for classification. Mendeley data 2. 

Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., & Klein, M. (2002). Logistic regression. 
Springer.  

Kroft, L. J., van der Velden, L., Girón, I. H., Roelofs, J. J., de Roos, A., & Geleijns, J. 
(2019). Added value of ultra–low-dose computed tomography, dose equivalent to 
chest x-ray radiography, for diagnosing chest pathology. Journal of Thoracic Imaging, 
34, 179. 

Le, L. T., Nguyen, H., Zhou, J., Dou, J., Moayedi, H., et al. (2019). Estimating the heating 
load of buildings for smart city planning using a novel artificial intelligence 
technique pso-xgboost. Applied Sciences, 9, 2714. 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https:// 
doi.org/10.1038/nature14539 

Mirjalili, S. (2019). Genetic algorithm. Evolutionary algorithms and neural networks. 
Springer, 43–55. 

Narin, A., Kaya, C., Pamuk, Z., 2020. Automatic detection of coronavirus disease (covid- 
19) using x-ray images and deep convolutional neural networks. arXiv preprint 
arXiv:2003.10849. 

Organization, W. H., et al. (2020). Coronavirus disease (COVID-19) technical guidance: The 
Unity Studies: Early Investigations Protocols. Technical Report. World Health 
Organization. 

Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). 
Automated detection of covid-19 cases using deep neural networks with x-ray 
images. Computers in Biology and Medicine, 121, Article 103792. https://doi.org/ 
10.1016/j.compbiomed.2020.103792 

Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. (2020). Covid-19 
identification in chest x-ray images on flat and hierarchical classification scenarios. 
Computer Methods and Programs in Biomedicine, 194, Article 105532. https://doi.org/ 
10.1016/j.cmpb.2020.105532 

Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., & Petersen, E. (2020). Covid-19, 
sars and mers: are they closely related? Clinical Microbiology and Infection. 

Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for 
detecting covid-19 and pneumonia from chest x-ray images based on the 

concatenation of xception and resnet50v2. Informatics in Medicine Unlocked, 19, 
Article 100360. https://doi.org/10.1016/j.imu.2020.100360 

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., 
Langlotz, C., Shpanskaya, K., et al., 2017. Chexnet: Radiologist-level pneumonia 
detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225. 

Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of 
coronavirus disease (covid-19) outbreak. Journal of autoimmunity, 102433. 

Sasaki, Y., & Fellow, R. (2007). The truth of the f-measure. manchester: Mib-school of 
computer science. University of Manchester.  

Sethy, P. K., & Behera, S. K. (2020). Detection of coronavirus disease (covid-19) based on 
deep features. Preprints, 2020030300, 2020. 

da Silva, G. L. F., Valente, T. L. A., Silva, A. C., de Paiva, A. C., & Gattass, M. (2018). 
Convolutional neural network-based pso for lung nodule false positive reduction on 
ct images. Computer Methods and Programs in Biomedicine, 162, 109–118. 

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale 
image recognition. arXiv preprint arXiv:1409.1556. 

Song, R., Chen, S., Deng, B., & Li, L. (2016). extreme gradient boosting for identifying 
individual users across different digital devices. In B. Cui, N. Zhang, J. Xu, X. Lian, & 
D. Liu (Eds.), Web-Age Information Management (pp. 43–54). Cham: Springer 
International Publishing.  

Souza, J. C., Diniz, J. O. B., Ferreira, J. L., da Silva, G. L. F., Silva, A. C., & de Paiva, A. C. 
(2019). An automatic method for lung segmentation and reconstruction in chest x- 
ray using deep neural networks. Computer Methods and Programs in Biomedicine, 177, 
285–296. 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the 
inception architecture for computer vision. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 2818–2826). 

Teodorovic, D., Lucic, P., Markovic, G., & Dell’Orco, M. (2006). Bee colony optimization: 
principles and applications. In 2006 8th Seminar on Neural Network Applications in 
Electrical Engineering (pp. 151–156). 

Zhang, H. W., Yu, J., Xu, H. J., Lei, Y., Pu, Z. H., Dai, W. C., Lin, F., Wang, Y. L., Wu, X. L., 
Liu, L. H., et al. (2020). Corona virus international public health emergencies: 
implications for radiology management. Academic radiology. 

Zhang, J., Xie, Y., Li, Y., Shen, C., Xia, Y., 2020. Covid-19 screening on chest x-ray images 
using deep learning based anomaly detection. arXiv preprint arXiv:2003.12338. 

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep 
features for discriminative localization. In 2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR) (pp. 2921–2929). 

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., 
Lu, R., et al. (2020). China novel coronavirus investigating and research team. a 
novel coronavirus from patients with pneumonia in china, 2019. The New England 
Journal of Medicine, 382, 727–733. 

D.A. Dias Júnior et al.                                                                                                                                                                                                                         

http://refhub.elsevier.com/S0957-4174(21)00865-4/h0115
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0115
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0115
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0120
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0120
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0130
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0130
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0135
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0135
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0135
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0135
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0140
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0140
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0140
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0150
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0150
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0160
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0160
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0160
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1016/j.cmpb.2020.105532
https://doi.org/10.1016/j.cmpb.2020.105532
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0175
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0175
https://doi.org/10.1016/j.imu.2020.100360
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0190
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0190
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0195
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0195
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0200
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0200
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0205
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0205
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0205
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0215
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0215
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0215
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0215
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0220
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0220
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0220
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0220
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0225
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0225
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0225
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0230
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0230
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0230
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0235
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0235
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0235
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0245
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0245
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0245
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0250
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0250
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0250
http://refhub.elsevier.com/S0957-4174(21)00865-4/h0250

	Automatic method for classifying COVID-19 patients based on chest X-ray images, using deep features and PSO-optimized XGBoost
	1 Introduction
	2 Materials and method
	2.1 Datasets
	2.2 Preprocessing
	2.3 Deep features extraction
	2.4 Diagnosis classification using XGBoost
	2.4.1 XGBoost parameter optimization using PSO


	3 Results
	3.1 Experimental setup
	3.2 Evaluation metrics
	3.3 Experimental results
	3.3.1 Confusion matrix
	3.3.2 Deep features with XGBoost (with and without PSO)
	3.3.3 XGBoost ​+ ​PSO vs Other Optimization Methods
	3.3.4 Traditional texture features vs. deep features with XGBoost
	3.3.5 Deep features with other classifiers
	3.3.6 Deep learning methods vs. XGBoost ​+ ​PSO


	4 Discussion
	4.1 Case study
	4.1.1 Case study - Patients affected by COVID-19
	4.1.2 Case study – Patients under normal conditions

	4.2 Proposed method vs. other pneumonia
	4.2.1 Proposed method vs. bacterial pneumonia
	4.2.2 Proposed method vs. viral pneumonia

	4.3 Comparison with related works
	4.4 Advances and limitations of the proposed method

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


