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Abstract

Genetic variation in response to the environment, that is, genotype-by-environment
interaction (GxE), is fundamental in the biology of complex traits and diseases.
However, existing methods are computationally demanding and infeasible to handle
biobank-scale data. Here, we introduce GxEsum, a method for estimating the
phenotypic variance explained by genome-wide GxE based on GWAS summary
statistics. Through comprehensive simulations and analysis of UK Biobank with 288,
837 individuals, we show that GxEsum can handle a large-scale biobank dataset with
controlled type I error rates and unbiased GxE estimates, and its computational
efficiency can be hundreds of times higher than existing GxE methods.

Keywords: GxE interaction, Whole-genome approach, Biobank-scale data, Reaction
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Background
The success of the human genome project has led to a paradigm shift in the complex

trait analysis that focuses on the genome-wide association studies (GWAS) [1]. GWAS

have been incredibly successful at identifying genome-wide significant single nucleotide

polymorphisms (SNPs) that are associated with causal variants underlying complex

traits [2, 3]. Moreover, whole-genome approaches, using all common SNPs across the

genome, have been useful to dissect the genetic architecture of complex traits, e.g.,

SNP-based heritability and genetic correlation [4]. However, the analytical modeling

used in GWAS and whole-genome approaches usually assumes that there is no

genotype-by-environment interaction (GxE), which can be often violated against the

true genetic architecture of complex traits. Indeed, interaction is fundamental in biol-

ogy, and there has been increasing interest in estimating GxE, using genome-wide

SNPs [5–7].
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Current state-of-the-art whole-genome methods for estimating GxE include

genotype-covariate interaction genomic restricted maximum likelihood (GREML) and

random regression GREML [8]. Recently, a multivariate reaction norm model (RNM)

has been introduced [9], which can disentangle GxE from genotype-environmental cor-

relation, providing more reliable GxE estimations. These methods typically employ the

GREML approach that requires individual-level genotypes and is computationally in-

tensive. Especially when using biobank-scale data, the approach becomes computation-

ally intractable.

To reduce the computational limitation of GREML, linkage disequilibrium score re-

gression (LDSC) was introduced to estimate SNP-based heritability and genetic correl-

ation [10]. LDSC is computationally efficient and requires no individual-level

genotypes. Instead, it uses GWAS summary statistics, regressing the association test

statistics of SNPs on their LD score. However, existing LDSC methods are limited to

additive models only [11–14].

In this study, we propose a novel approach to estimate the phenotypic variance

explained by genome-wide GxE based on GWAS summary statistics (GxEsum) for

a large-scale biobank dataset, correctly accounting for genotype-environment cor-

relation and scale effects. In simulated and real data analyses, we show that the

computational efficiency of the proposed approach is substantially higher than

RNM, an existing GREML-based method, while the estimates are reasonably accur-

ate and precise. Because of this computational advantage, GxEsum may be an effi-

cient tool to estimate GxE that can be applied to large-scale data across multiple

complex traits.

Results
Method overview

We propose a method to estimate the phenotypic variance explained by the whole-

genome GxE, based on GWAS summary statistics, referred to as GxEsum. GxEsum can

be a computationally efficient RNM using an extension of the LDSC approach. While

the existing LDSC approach is designed to use estimated additive SNP effects in GWAS

summary statistics (Additional file 1: Note S1), GxEsum requires summary statistics of

SNP-by-environment interaction effects. For SNP effects modulated by an environment,

the expected chi-square statistic (χ2j ) is:

E χ2j jℓ j
h i

¼ Nσ2g1
M

�ℓ jþ1þ 2 σ2
g1
þ σ2τ1

� �
where N is the number of individuals, M is the number of SNPs, σ2

g1
is the vari-

ance due to GxE, σ2τ1 is the variance due to residual heterogeneity or scale effects

caused by residual-by-environment interaction (RxE), and ℓj is the LD score at the

variant j that can be estimated from a reference panel (please see the “Methods”

section for a full derivation of this equation). The χ2j test statistics correspond to

the regression coefficient for the interaction between the jth SNP and the environ-

mental covariate (E). The outcome trait is pre-adjusted for confounders and the

main effects of E, and then a regression model with the main and interaction ef-

fects is run by SNP-by-SNP. If chi-square statistics from GWAS are regressed on
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LD scores, non-genetic interaction effects (σ2τ1 ) are captured by the intercept, from

which GxE (σ2g1 ) can be disentangled. Consequently, GxE effects estimated by GxE-

sum are equivalent to that adjusted for RxE when using RNM [9].

To validate the proposed model, i.e., GxEsum, we used various simulations based on

real genotype data (see Additional file 1: Note S2 for a full description of the simulation

models). In simulations with and without GxE, we assessed the type l error rates and

the accuracy of estimated GxE. We deliberately generated confounding effects such as

genotype-environment (G-E) correlation, RxE, and residual-environment (R-E) correl-

ation, to see if the type l error rate and the accuracy of GxEsum were affected by these

confounding factors.

In the real data analysis, we used the UK Biobank data with 288,837 unrelated indi-

viduals after stringent quality control. Subsets of the data with various sample sizes

were analyzed to compare the precision (i.e., power) and the computational efficiency

of GxEsum and GREML-based GxE model (i.e., RNM).

Finally, we show how the genetic effects of a complex trait (e.g., BMI, hypertension,

or type 2 diabetes) are modulated by environment (e.g., neuroticism score, alcohol in-

take frequency, physical activity, or age) by using the proposed method.

Simulations

For a continuous trait, under the null (no GxE), whether or not there were confounding

effects (RxE and G-E and R-E correlations), the type I error rate of GxEsum was not

significantly inflated (Table 1). Note that the use of 500 replicates for each simulation

scenario can detect a type I error of greater than 0.07 or less than 0.03 as significantly

different from 0.05, using the binomial distribution theory [15, 16]. Even with larger

confounding effects (Additional file 1: Table S1), there was no inflation for the type I

error rate of GxEsum.

In the simulation with non-zero interactions, estimated GxE (g1) was not re-

markably different from the true values whether there were significant G-E and R-

E correlations or not (see Additional file 1: Figure S1). It was noted that the RxE

component was correctly captured by the intercept and not confounded with GxE

Table 1 Type I error rates of GxEsum to detect GxE at a significance threshold of p-value < 0.05

Scenarios Type l error rate

Var(GxE) = 0, var(RxE) = 0 0.066

Var(GxE) = 0, var(RxE) = 0, G-E correlation = 0.1 0.064

Var(GxE) = 0, var(RxE) = 0, R-E correlation = 0.1 0.044

Var(GxE) = 0, var(RxE) = 0, G-E correlation = 0.1, R-E correlation = 0.1 0.056

Var(GxE) = 0, var(RxE) = 0.1 0.044

Var(GxE) = 0, var(RxE) = 0.1, G-E correlation = 0.1 0.034

Var(GxE) = 0, var(RxE) = 0.1, R-E correlation = 0.1 0.028

Var(GxE) = 0, var(RxE) = 0.1, G-E correlation = 0.1, R-E correlation = 0.1 0.054

Average 0.049

We simulated phenotypic data based on a real genotypic dataset (ARIC GWAS) including 7263 participants with 583,085
SNPs, using various scenarios. The phenotypes were standardized such that the phenotypic mean was 0 and the
phenotypic variance was 1. Type I error rate (i.e., false-positive) was estimated from 500 replicates for each scenario
GxE genotype-by-environment interaction, RxE residual-by-environment interaction, G-E correlation genotype-
environment correlation, R-E correlation residual-environment correlation
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estimates even when using non-normal environmental variables (Additional file 1:

Note S3 and Tables S2 and S3). In the absence of RxE, estimated GxE was also

unbiased (Additional file 1: Figure S2). The estimated GxE seemed robust to differ-

ent values of G-E and R-E correlations ranging from 0.05 to 0.2, respectively (Add-

itional file 1: Figures S3 and S4).

On the other hand, the estimated main genetic variance (g0) was slightly biased espe-

cially when using a large G-E or R-E correlation (Additional file 1: Figure S4). This is

probably because of the fact that the main genetic effects are over-adjusted for the en-

vironment due to the large correlations (between the trait and environment) in the

model.

We also validated that there was no inflation for the type I error rate when ap-

plying GxEsum to binary (disease) traits (Table 2 and Additional file 1: Table S4),

showing that GxEsum appears to be robust to false positives in the scenarios of

various confounders. In addition, we estimated the variance component of GxE on

the observed scale and transformed it to that on the liability scale, using Robertson

transformation [17]. As shown in Additional file 1: Figure S5, the transformed esti-

mates were close to the true simulated values on the liability scale, although the

precision of estimates (represented as 95% CI) was shown to be decreased when

the population prevalence approached an extreme (e.g., k = 0.025). GxE estimates

were biased when simulating a large effect size of GxE (e.g., 10% of phenotypic

variance explained by GxE) in the case of k = 0.025 (Additional file 1: Figure S6)

although they were mostly unbiased in the case of k = 0.1 (Additional file 1: Figure

S7). The level of biasedness appeared to be increased when there were RxE effects

(Additional file 1: Figure S6). Finally, caution should be given in interpreting GxE

estimates when there are large confounding effects such as substantial G-E and R-

E correlations (Additional file 1: Figure S8). The inflated GxE estimates were prob-

ably due to the fact that the phenotypes were over-adjusted for the environment in

the model because of the correlation between the main trait and environment (G-E

and R-E correlations). This resulted in a reduced phenotypic variance (Additional

file 1: Figure S9), hence inflated GxE estimates.

Table 2 Type I error rates of GxEsum when using binary disease traits with various population
prevalence

Scenarios Population prevalence (k) Type I error rate

Var(GxE) = 0, Var(RxE) = 0 0.025 0.052

0.05 0.042

0.1 0.076

0.5 0.054

Var(GxE) = 0, Var(RxE) = 0.1 (on the liability scale) 0.025 0.044

0.05 0.036

0.1 0.050

0.5 0.052

Average 0.050

We simulated quantitative phenotypic data based on a real genotypic dataset (ARIC GWAS) including 7263 individuals
with 583,085 SNPs. The phenotypes were standardised such that the mean was 0 and variance was 1, for which we
applied the liability threshold model to generate affected or unaffected disease status for each individual, using various
values for the population prevalence (k = 0.025, 0.05, 0.1 or 0.5). Type I error rate at a significance threshold of p-value <
0.05 was estimated from 500 replicates for each scenario and population prevalence
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Nevertheless, those confounders including RxE interaction and G-E/R-E correla-

tions would not produce false positives whether using continuous quantitative or

binary responses as shown above (also see Additional file 1: Tables S1 – S4). We

additionally tested if the type I error rate of GxEsum was controlled when there is

a collider bias, which is a concern especially when using a self-report study (e.g.,

UK Biobank data) [18, 19]. In simulations with collider bias, although estimated

SNP heritability was substantially (and unrealistically) underestimated (Additional

file 1: Figures S10 and S11), the type I error rate of GxEsum was well controlled

whether using continuous or binary responses (Additional file 1: Tables S5 and

S6).

The estimated variance of the main genetic effects was mostly unbiased when

using binary disease traits without G-E/R-E correlations (Additional file 1: Figure

S12). When there were significant G-E and/or R-E correlations, the estimated

variance of the main genetic effects appeared to be underestimated especially

when there was RxE interaction (Additional file 1: Figure S13), which confirmed

the fact that the main genetic effects are over-adjusted for the environment due

to the correlations between the trait and environment (Additional file 1: Figure

S9).

Precision and computational efficiency

GxEsum uses the Wald test to get a p-value for the null hypothesis, i.e., the absence of

GxE interaction, using an estimated GxE variance and its standard error. Therefore, the

power of the method is closely related to the precision.

The precision was assessed by comparing the standard error (SE) of GxEsum

and RNM estimates. The SE of GxEsum was obtained from the LDSC software

(using a jackknife method). The SE of RNM for the GxE component can be ob-

tained from the information matrix [20] or from a well-established theory [21]

(see Additional file 1: Table S7). Figure 1 shows that the SE of GxEsum was 1.65

times higher than that of RNM when using the same sample size of 50,000. How-

ever, when the sample size increased for GxEsum up to 288,837, for which RNM

estimation is infeasible, the ratio reduced to 0.2. GxEsum can use a larger sample

size (e.g., > 1,000,000), for which the ratio is expected to be further decreased, al-

though the largest sample size tested in this study was 288,837 (Additional file 1:

Figure S14).

While the precision of GxEsum is competitive with that of RNM, the computa-

tional efficiency is dramatically different between the two methods (Fig. 2 and

Additional file 1: Table S8). For example, when using a sample size of 50,000, the

computing time for RNM was taken more than a thousand times than GxEsum.

Even for GxEsum with a sample size of 288,837, its computational efficiency was

still substantially higher than RNM with a sample size of 50,000 (Additional file 1:

Figure S14 and Table S7). This justifies that GxEsum is a computationally efficient

tool that can be applied to biobank-scale data for multiple complex traits and dis-

eases. It is noted that we assumed that preliminary analyses for each method were

already done (e.g., GRM for RNM, and LD scores and GWAS for GxEsum) (Add-

itional file 1: Table S8).
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Real data analyses

We applied GxEsum to estimate the genetic effects of body mass index (BMI)

that were modulated by an environment such as age, alcohol intake frequency,

neuroticism scores, or physical activity. The significant GxE was observed from

the analyses using neuroticism scores. On the other hand, we did not find any

significant GxE when using age, alcohol intake frequency, and physical activity

after Bonferroni correction (Bonferroni p-value = 0.05/10 = 0.005 since there

were 10 significance tests in this study) (Table 3). The GxEsum approach applied

to a binary disease was conducted using hypertension or type 2 diabetes as the

main trait, and BMI, waist-hip ratio (WHR), body fat percentage (BFP), or sys-

tolic/diastolic blood pressures (BP) as an environmental variable. Table 3 shows

that the genetic effects of hypertension and type 2 diabetes were significantly

modulated by BMI, but not by other environmental variables. For a comparison,

LDSC estimates (i.e., from the null model without GxE) are also shown in Add-

itional file 1: Table S9.

Because not all variables were without missing, we imputed missing phenotypes

using the mean value for each variable in the analyses, in order to maximize the

Fig. 1 The ratio of standard error (SE) from GxEsum to that from RNM using UK Biobank data. The SEs of
GxE variance estimated from GxEsum with various sample sizes ranging from 50,000 to 288,837 were
obtained, and they were compared to the SE of GxE variance estimated from RNM with a sample size of
50,000. The dashed horizontal line represents the ratio as 1
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sample size. In this real data analysis, there was no remarkable difference in the re-

sults whether using phenotypic imputation or not although some variables im-

proved their significance, e.g., NEU (Additional file 1: Tables S10 -S12). It is noted

that our main phenotypes had a small proportion of missing values, i.e., 0.3%,

7.9%, and 0.2% for BMI, hypertension, and type 2 diabetes, respectively. If the

missing rate is substantially high, we recommend excluding the missing values

from the analysis, or a better phenotypic imputation method [27] should be used.

Table 3 Estimates obtained from GxEsum analysis using real data

Main trait Environmental
variable

Main additive genetic
variance (σ2

g0
)

GxE interaction
variance (σ2

g1
)

p-value for
GxE

BMI Age 0.216 (0.007) 0.004 (0.002) 1.86E−02

NEU 0.216 (0.007) 0.007 (0.002) 1.61E−05

PA 0.218 (0.007) 0.003 (0.001) 2.57E−02

ALC 0.216 (0.007) 0.003 (0.002) 5.98E−02

Hypertension BMI 0.152 (0.008) 0.006 (0.002) 2.09E−03

WHR 0.154 (0.008) 0.005 (0.002) 3.21E−02

BFP 0.151 (0.008) 0.008 (0.003) 2.66E−02

Type 2
diabetes

BMI 0.141 (0.014) 0.085 (0.022) 1.58E−04

Diastolic BP 0.198 (0.014) − 0.004 (0.006) 5.38E−01

Systolic BP 0.204 (0.014) − 0.006 (0.006) 3.17E−01

We used a quantitative trait (BMI) and binary disease traits (hypertension and type 2 diabetes) because BMI is known to
be modulated by age/lifestyle such as NEU, ALC, and PA [8, 22, 23], and hypertension and type 2 diabetes are known to
be associated with obese traits such as BMI, WHR, and BP [24, 25]. The p-value is from a Wald test for the estimated GxE
variance not being different from zero. The estimates on the observed scale for the binary traits were transformed to
those on the liability scale using Robertson transformation [17, 26]. All estimates were from the GxEsum model
NEU neuroticism score, PA physical activity, ALC alcohol intake frequency, WHR waist-hip ratio, BFP body fat percentage,
BP blood pressure

Fig. 2 Computing time with various sample sizes used in GxEsum and RNM analyses. As the sample size
increases, the computing time of RNM (red) increases exponentially, while that of GxEsum (blue) is almost
invariant (less than a minute)
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Discussion
In this study, we propose GxEsum, a novel whole-genome GxE method, of which the

computational efficiency is a thousand times higher than the existing methods. The es-

timation of GxE using GWAS summary statistics has great flexibility in the application

of the method to multiple complex traits and diseases. The proposed method and the-

ory have been explicitly verified using comprehensive simulations that were carried out

for both quantitative trait and binary disease. Moreover, we showed that the type I

error rate of the proposed method was not inflated by moderate to severe collider bias

[18] that caused a substantial underestimation of heritability shown in our simulation

(Additional file 1: Figures S10 and S11).

In the real data analysis, we show that the genetic effects of BMI were significantly

modulated by NEU, which agrees with previous studies [9]. It is noted that the signifi-

cance of GxE was improved because we used a larger sample size, compared with the

previous studies. Our result agrees with Robinson et al. [8] who found no significant

GxE evidence for age when analyzing BMI using the UK Biobank in which the partici-

pants aged 40–69 at the recruitment. However, a dataset with a wider range of ages is

desirable, which would increase the power to detect GxE on age. For example, a signifi-

cant GxE was found in a BMI-age analysis using a dataset including samples aged 18–

80 at the recruitment [8].

For hypertension and type 2 diabetes, their causal relationship with BMI has been re-

ported by a number of studies using Mendelian randomization [24, 28, 29]. However, it

was not clear if the causal relationship was due to GxE or something else, e.g., un-

known non-genetic effects of the disease modulated by BMI status. Here, we show that

the causal relationship between hypertension and BMI, and that between type 2 dia-

betes and BMI reported in the previous studies [24, 28, 29] may be partly due to

genome-wide GxE interaction effects. The GxE interaction variance for type 2 diabetes

is substantially larger than that for hypertension when using BMI as environmental ex-

posure. This observation agrees with Hyppönen et al. [24] reporting that BMI genetic

risk score is more strongly associated with type 2 diabetes than hypertension. In con-

trast, there is no significant evidence of genome-wide GxE for hypertension-WHR,

hypertension-BFP, type 2 diabetes-DBP, or type 2 diabetes-SBP causal relationship that

was observed in Mendelian randomization studies [29–31]. This is not totally unex-

pected because type 2 diabetes or hypertension was reported to be more significantly

associated with BMI than other variables [24, 28, 29].

The estimated intercept from GxEsum should be interpreted with caution. We show

that estimated intercepts were unbiased from the theoretically predicted values when

using the simulation of quantitative traits, as a proof of concept, i.e., the phenotypic

variance explained by RxE effects (h2τ1 ) can be obtained as h2τ1 = (intercept − 1 − 2h2g1 )/2

from Eq. (4), or more generally, h2τ1 = (intercept −1 − (kurtosis − 1)h2g1 )/(kurtosis − 1) from

Eq. (5). However, in real data analyses, there may be additional confounding effects

such as scale effects, residual heteroscedasticity, or/and sample heterogeneity that are

often attributed to unknown factors. Moreover, when using binary traits, substantial

scale effects can be generated (statistical RxE effects) because only the affected and un-

affected status are observed and individual differences within the affected or unaffected

group are ignored. These additional confounding effects and statistical scale effects are
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captured and estimated as an intercept in GxEsum [10], resulting in unreliable RxE es-

timates. It is noted that RxE estimation is not the main interest of GxEsum and can be

more reliably estimated in RNM that is designed to model both GxE and RxE.

The existing GxE methods require individual-level genotype data which often has a

restriction to share, and their computational burden is typically high. Moreover, it is

not clear how they perform when the representativeness of the samples is limited, e.g.,

selection bias due to a collider in the UK Biobank samples. On the contrary, the pro-

posed approach, GxEsum, is computationally efficient and can detect GxE interaction

correctly for both quantitative and binary disease traits even when there is moderate to

server collider bias. If GWAS summary statistics of the estimated main additive and

interaction effects can be made publicly available, a meta-analysis across multiple co-

horts can be possible for an ever-large GxE study (like the context of LDSC SNP herit-

ability meta-analysis). There are some issues that the measure of the environmental

variable may not be standardized across study cohorts, and the environmental variable

maybe even unavailable in some cohorts. However, these issues can be remedied when

the information of exposome that is the standardized measure of all exposures for indi-

viduals, complemented to the genome, is available.

There is a GxE method that can use GWAS summary statistics, i.e., VarExp, which is

recently published. While VarExp benefits computationally from using GWAS sum-

mary statistics, it needs to invert the correlation matrix between SNPs, which prevents

from using a large number of SNPs [32]. Furthermore, the theoretical frameworks of

GxEsum and VarExp are fundamentally different in that the latter does not account for

confounding effects such as scale effects, residual heterogeneity, or RxE that can be

captured by the estimated intercept of GxEsum. Finally, the performance of VarExp has

been verified with a limited magnitude of interaction effects up to 1.5% and 0.25% of

the phenotypic variance for quantitative and binary traits, respectively [32].

Like RNM, GxEsum can fit environmental exposures such that the genetic effects of

a trait can be modeled as a nonlinear function of a continuous environmental gradient.

The potential modifier of the genetic effects is not limited to environmental exposures

but can be extended to novel variables from multi-omics data such as gene expression,

protein expression, and methylation data [33, 34]. Polygenic risk scores [35, 36] can

also be considered as an environmental variable in the model. This novel approach may

allow dissecting a latent biological architecture of a complex trait in a future application

of GxEsum.

In the analysis of binary disease traits, estimates on the liability scale, transformed

from those on the observed scale using Robertson transformation, should be inter-

preted with caution. Biased estimates on the liability scale are likely due to the violation

of the normality assumption that is essentially required for the Robertson transform-

ation, i.e., large interaction effects can cause a non-normal phenotypic distribution. It is

also known that if the transformation involves substantial non-additive effects, it can

give biased estimates on the liability scale [17, 26, 37]. However, when non-additive ef-

fects are small, the transformation can give reasonably accurate estimates on the liabil-

ity scale, which is also evidenced by our simulations with small interaction effects. As

shown in the real data analysis, the magnitude of genome-wide GxE is not large (< 10%

of the phenotypic variance), showing that the bias of transformation due to the assump-

tion violation may not be substantial in general. Nevertheless, it is required to develop

Shin and Lee Genome Biology          (2021) 22:183 Page 9 of 17



a better transformation method for large interaction effects in a further study, e.g.,

when using multiple environmental variables simultaneously, the interaction effects are

aggregated and can be substantially large.

There are a number of limitations to our study. First, like RNM, GxEsum does not

determine the causal direction between variables, which can be provided from previous

studies or other epidemiologic methods, e.g., Mendelian randomization, as prior infor-

mation. Second, we only modeled the first order of random regression coefficients with

a single environmental variable, and there may be significant additional effects when

modeling a higher-order interaction or multiple environmental variables. It is possible

to extend the GxEsum model to fit additional quadratic and polynomial terms or mul-

tiple environmental variables simultaneously. However, assessing the performance of

these advanced models is a formidable task, requiring further study. Third, the estima-

tion for the main genetic effects can be biased when there are large G-E and/or R-E

correlations. Because of such correlations, the main genetic effects are over-adjusted

when the phenotypes of the main trait are adjusted for the environmental variable in

the model. Therefore, a careful interpretation of the estimated main genetic effects is

required when using GxEsum. Fourth, we did not investigate the performance of GxE-

sum for ascertained case-control studies in which cases are over-sampled. A further

study is required to extend the method to non-random case-control samples so that it

can be applied to consortium data with multiple case-control studies. Lastly, when

using the same sample size, the precision of GxEsum is not better than GREML-based

GxE methods, implying that the former is only useful when using a large sample size

that the latter cannot handle.

Conclusions
Despite these caveats, GxEsum can be a useful tool to estimate whole-genome GxE as

it can achieve a higher precision (i.e., power) from a larger sample size, compared to

existing GxE methods. Especially when the scale of available resources increases, GxE-

sum may be a unique method that can be applied to large-scale data across multiple

complex traits and diseases in the context of GxE.

Methods
GxEsum

Following Ni et al. [9], RNM can be written as:

y¼bþgþτ¼bþg0þg1�Eþτ0þτ1�E

where y is the N vector of phenotypic observations; b is a vector of fixed effects; g is

the N individual genetic effects, which can be decomposed into the first and second

order of genetic random regression coefficients, g0 and g1; τ is the residual effects,

decomposed into the first and second order of residual random regression coefficients,

τ0 and τ1; and E is the N vector of environmental variable. Note that E can be also any

covariate variable (e.g., smoking, alcohol intake frequency).

Assuming that the phenotypes (y) are pre-adjusted for the main genetic effects (g0),

environmental or covariate variable (E), and other fixed effects (b), the model can be

rewritten as:
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y¼g1�Eþτ0þτ1�E¼Xβ1�Eþτ0þτ1�E

where X is an N x M standardized genotype matrix for M SNPs, and β1 is an M vector

of SNP interaction effects modulated by the environment (i.e., GxE SNP effects). It is

noted that τ0 is the residual effects that are consistent across the environment whereas

τ1 captures the heterogeneous residual effects across the environment (i.e., RxE).

Following Bulik-Sullivan et al. [10], assuming E½g1� ¼ E½β1� ¼ 0 , the expected chi-

square statistics of variant j for the GxE is:

E χ2j
h i

¼ N ∙Varðdβ1 jÞ ð1Þ

Using the law of total variance, Var½dβ1 j� can be obtained as:

Varðdβ1 jÞ ¼ E Var cβ1 jjEX� �h i
þ Var E cβ1 jjEX� �h i

¼ E Var cβ1 jjEX� �h i
where EX is an N x M matrix with each column having the Hadamard product be-

tween E and Xj (standardized genotypes at the jth SNP), and the conditional expect-

ation of cβ1 j is Eðcβ1 jjEXÞ ¼ 0.

Noting that the least-square estimate of cβ1 j can be obtained as cβ1 j ¼ ðEX jÞ0y=N , Varðcβ1 jjEXÞ can be rearranged as:

VAR cβ1 jjEX� �
¼ Var EX j

� �0
y=N jEX

h i
¼ 1

N2 Var EX j
� �0

yjEX
h i

¼ 1

N2 EX j
� �0

Var yjEXð Þ EX j
� �

¼ 1

N2 EX j
� �0

Var EXð Þβ1þτ0þEτ1jEX½ � EX j
� �

¼ 1

N2 EX j
� �0

Var EXð Þβ1jEX½ � EX j
� �

þ 1

N2 EX j
� �0

EX j
� �

Var τ0ð Þþ 1

N2 EX j
� �0

Eð Þ Eð Þ0 EX j
� �

Var τ1ð Þ

¼ 1

N2 EX j
� �0

EXð Þ EXð Þ0 EX j
� �

Var β1jEXð Þ

þ 1

N2 NVar τ0ð Þþ EX j
� �0

Eð Þ Eð Þ0 EX j
� �

Var τ1ð Þ
h i

¼ 1

N2

h2g1
M

EX j
� �0

EXð Þ EXð Þ0 EX j
� �

þ 1

N2 N 1−h2g1−h
2
τ1

� �
þh2τ1 EX j

� �0
Eð Þ Eð Þ0 EX j

� �h i
where h2g1 and h2τ1 are the proportion of phenotypic variance explained by GxE and

RxE, respectively.

Therefore, E½χ2j � in Eq. (1) can be written as:
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E χ2j
h i

¼ N ∙Var cβ1 jjEX� �
¼ 1

N

h2g1
M

EX j
� �0

EXð Þ EXð Þ0 EX j
� �þ N 1−h2g1−h

2
τ1

� �
þ h2τ1 EX j

� �0
Eð Þ Eð Þ0 EX j

� �" #
ð2Þ

According to Bulik-Sullivan et al. [10], the products of the standardized genotypes at

variant j and other variants can be expressed as a function of LD scores, i.e.:

1

N2 Xj
� �0

Xð Þ Xð Þ0 Xj
� � ¼ 1

N2 N2 þ N� 1−~r2j
� �

þ ~r2j�N2
h i

� M−1ð Þ
� �

¼1þ 1−~r2j
N

þ ~r2j

" #
� M−1ð Þ

¼ ℓ jþ
M−1ð Þ 1−~r2j

� �
N

24 35
≈ ℓ j þM−ℓ j

N

where ~r2j is defined as the expected sample correlation between genotypes at the jth

variant and the other (M-1) variants, and ℓj = 1+ ~r2j ðM−1Þ is the LD scores of the jth

SNP.

According to the central moment theory of standard normal distribution of three in-

dependent random variables (X1, X2 and E), each with an N vector, useful equations

are:

E X1ð Þ0 X1ð Þ� � ¼ N

E X1ð Þ0 X2ð Þ X2ð Þ0 X1ð Þ� � ¼ N

E X1ð Þ0 X1ð Þ X1ð Þ0 X1ð Þ� � ¼ N2

E EX1ð Þ0 Eð Þ Eð Þ0 EX1ð Þ� � ¼ E EX1ð Þ0 EX2ð Þ EX2ð Þ0 EX1ð Þ� � ¼ 3N

and

E EX1ð Þ0 EX1ð Þ EX1ð Þ0 EX1ð Þ� � ¼ N2:

Therefore, assuming that E and Xj have a negligible correlation for a polygenic trait

(i.e., a tiny proportion of the phenotypic variance of E can be explained by a single

SNP, Xj), the term (EXj)
′(EX)(EX)′(EXj) can be expressed as a function of LD scores as:

1

N2 EX j
� �0

EXð Þ EXð Þ0 EX j
� � ¼ 1

N2 N2 þ 3N 1−~r2j
� �

þ~r2j�N2
h i

� M−1ð Þ
� �

¼ 1þ
3 1−~r2j
� �
N

þ ~r2j

24 35� M−1ð Þ

¼ ℓ jþ
3 M−ℓ j
� �
N

Thus, a part in Eq. (2) can be rearranged as:
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1
N

h2g1
M

EX j
� �0

EXð Þ EXð Þ0 EX j
� �þ N 1−h2g1

� �" #

¼ 1
N

N2h2g1
M

ℓ j þ
3 M−ℓ j
� �
N

� 	
þ N 1−h2g1

� �" #

¼ Nh2g1
M

ℓ j þ
3 M−ℓ j
� �
N

� 	
þ 1−h2g1

¼ N−3ð Þh2g1
M

ℓ j þ 1þ 2h2g1

¼ N 1−3=Nð Þh2g1
M

ℓ j þ 1þ 2h2g1

¼ Nh2g1
M

ℓ j þ 1þ 2h2g1 ð3Þ

The term, 1 − 3/N, in Eq. (3) can be approximated as 1 in the analysis using biobank

scale data, which contains over 105 samples.

The remaining part in Eq. (2) can be rearranged as:

1
N

N −h2τ1

� �
þ h2τ1 EX j

� �0
Eð Þ Eð Þ0 EX j

� �h i
¼ 2h2τ1

where E½ðEX1Þ0ðEÞðEÞ0ðEX1Þ�¼3N according to the central moment theory of standard

normal distribution (see above), assuming that E and each column of X have a negli-

gible correlation, which satisfies if E is an environmental variable or a polygenic trait.

Therefore,

E χ2j
h i

¼ N ∙Var cβ1 jjEX� �
¼ Nh2g1

M
ℓ jþ1þ 2h2g1þ2h2τ1 ð4Þ

where 1þ 2h2g1þ2h2τ1 can be obtained as the intercept of the outcome by fitting to the

proposed model (GxEsum). It is noted Eq. (4) is valid when Xj is not strictly normally

distributed, i.e., the centered and standardized genotypes of jth SNP, which is already

shown in Bulik-Sullivan et al. [10]. When the environmental variable (E) is non-

normal, the general form of the fourth central moment term can be expressed as E½ðE
X1Þ0ðEÞðEÞ0ðEX1Þ�¼kurtosis∙N where kurtosis is the kurtosis of E. And only the intercept

part of the Eq. (4) is slightly modified as:

E χ2j
h i

¼ N ∙Var cβ1 jjEX� �
¼ Nh2g1

M
ℓ jþ1þ kurtosis−1ð Þh2g1þ kurtosis−1ð Þh2τ1 ð5Þ

Equations (4) and (5) are verified using simulations (see Additional file 1: Note S3

and Table S2).

To validate the proposed model in general, we used comprehensive phenotypic simu-

lations that were based on real genotype data (see Additional file 1: Note S4).

Real data

UK Biobank data were used, which contains 0.5 million individuals aged between 40

and 69 years. The data consists of health-related information for each participant who
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was recruited in 2006–2010, and their imputed genomic data (~ 92 million SNPs) has

been distributed through European Genome-phenome Archive. A stringent quality

control process for individuals was set as follows: (1) who were reported as non-white

British, (2) who were having mismatched gender between the reported and the inferred

by the genotypic data, (3) who were having missing rate over 0.05, and (4) who were

having putative sex chromosome aneuploidy. In addition, only HapMap3 SNPs were

used which were passed from the stringent quality controls for SNPs. The filter for

SNPs is set as follows: (1) which were having INFO score less than 0.6, (2) which were

having a MAF less than 1%, (3) which were having Hardy-Weinberg Equilibrium

(HWE) P-value less than 1E−4, and (4) one of which from the duplicated SNPs. From

those passing the tough procedures, we additionally excluded one of pair of samples

who were having a genomic relationship higher than 0.05. After quality control, 288,

837 individuals and 1,133,273 SNPs remained. We estimated LD scores using the geno-

typic data of UK Biobank after these quality control processes.

Among the trait phenotypes available in the UK biobank, we arbitrarily selected BMI

(a quantitative trait) and hypertension and type 2 diabetes (binary disease traits) and

tested if the genetic effects of the complex traits were significantly modulated by an en-

vironmental variable, i.e., NEU, ALC, PA, or age (for testing BMI); BMI, WHR, or BFP

(for hypertension); and BMI, diastolic BP, or systolic BP (for type 2 diabetes). The num-

ber of cases for hypertension and type 2 diabetes was 134,499 (population prevalence is

0.51) and 11,694 (population prevalence is 0.04), respectively. The phenotypes of the

main trait were adjusted for potential confounders such as age, gender, year of birth,

assessment center, Townsend Deprivation Index, genetic batch, household income,

educational qualification [38], the first 10 principal components, and the environmental

variable. For any phenotypic missing value for each variable, we used the mean of

the phenotypes of the variable, i.e., phenotypic imputation with the mean. A better

phenotypic imputation method [27] can be used, which is likely to improve the sig-

nificance of GxE. Further details of the variables used in this study are in Add-

itional file 1: Note S4.

In GWAS, we used a linear model for quantitative traits as well as for binary re-

sponses. The use of a linear model applied to binary responses is because it has been

reported that a logistic regression may generate biased estimates in some instances

[39], and our simulations (Additional file 1: Note S2) were based on a probit model

(i.e., a linear transformation of the inverse standard normal distribution) that can be

well approximated by a linear model [40].
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