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Abstract

Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. 

Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy 

have substantially expanded existing knowledge and treatment modalities. However, challenges 

associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery 

approaches targeting altered signaling pathways in SCLC end up in the ‘grave-yard of 

drug discovery’, which mandates exploring novel approaches beyond inhibiting cell signaling 

pathways. Epigenetic modifications have long been documented as the key contributors to the 

tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an 
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exponential increase in our understanding of epigenetic modifications for SCLC. The present 

review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, 

metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of 

SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that 

can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine 

lineage determination, and development of potential SCLC therapies are also discussed. We 

also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy 

and immunotherapy that are currently under investigation in preclinical and clinical studies. 

Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs 

that will help translate the knowledge of epigenetics to improve SCLC outcomes.
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1. Introduction

Small cell lung cancer (SCLC) remains a highly metastatic neuroendocrine lung cancer 

subtype with high lethality [1]. SCLC accounts for 13–15% of total lung cancer cases, with 

more than 30,000 new cases annually in the United States [2]. Depending on the extent of 

spread at diagnosis, SCLC is divided into limited-stage SCLC (~30%) or extensive-stage 

SCLC (~70%). Despite excellent initial response to conventional chemotherapy (platinum/

etoposide), the overall 5-year survival rate of SCLC is bleak (nearly 5–6%) [3–5]. Due to 

high metastasis, late diagnosis, and recalcitrant behavior of this cancer, a limited number of 

therapies are available that improve the outcomes in SCLC [6, 7]. Although smoking is the 

foremost risk factor in most SCLC cases, other risk factors are also associated like exposure 

to radon, asbestos, and other polycyclic aromatic hydrocarbon pollutants [8].

High mutational rate and genomic instability are additional interesting features of SCLC. 

This is possibly due to the frequent loss of function mutations in TP53 and retinoblastoma 

1 (RB1), which are the primary tumor suppressors which maintain or genomic integrity 

[9, 10]. These genetic accumulations lead to different epigenetic alterations that ultimately 

result in the aberrant regulation of key DNA repair/housekeeping genes, oncogenes, and 

tumor suppressor genes [1, 11]. Overall, the probability of occurrence of these pathological 

events is mainly dependent on the phenotypic variability and individual exposome. 

Therefore, the likelihood of occurrence for all cancers is a composite of different risk 

factors, including lifestyle-related, environmental, phenotypic variabilities, and individual 

exposomes [12]. In isolation, the frequency of high-penetrance genetic mutations is low 

and accounts for a small percentage of all cancer cases [13, 14]. Several Genome-wide 

association studies (GWAS) have discovered the existence of common heritable components 

of cancers and suggested the spread of these components across the common germline 

variants [15, 16]. Nevertheless, in a small fraction, these genetic heterogeneity studies 

revealed the role of these variants in conferring risk of progressive increase in lung 

cancer susceptibility. Still, as a whole, it fails to explain the basic phenomenon of 
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SCLC [17]. In short, it is difficult to explain the enigma of SCLC only in terms of 

genetic factors, as ‘fate of every cell is not always written in the genes’ [17]. These 

observations suggest that the remainder of SCLC heritability might eventually be explained 

through extensive association studies and could be effectuated at a broader scale through 

omics-based analyses, such as epigenomics [18]. Epigenetic variabilities, including histone 

modifications, DNA methylation, and expression of non-coding RNAs directly contribute to 

cancer development or progression. Thus epigenomics has a great potential to divulge more 

substantial effects and define immediate risk for SCLC [19–21]. In addition to genetics, 

epigenetic studies guide us to understand the pathogenesis of disease and enhance our 

knowledge of SCLC.

Tumor development in the lungs (including SCLC) is proceeds through a multistage, step by 

step, journey that sequentially accumulates genetic and epigenetics deformities in the lung 

or respiratory epithelium [1, 20, 22–24]. Genetic changes like somatic mutations and change 

in copy numbers are the established mechanisms for oncogenesis or cancer induction, but 

in lung cancer, especially SCLC, epigenetic modifications appear to be more prominent 

than somatic genetic aberrations [10, 13, 25, 26]. SCLC exhibits multiple epigenetic 

abnormalities, and different studies have defined the crucial role of epigenetic disruptions in 

disease progression and characterization [27]. In SCLC, epigenetic abnormalities contribute 

to the acquisition of cancerous phenotype, aggressiveness, and resistance to treatment [28–

31], suggesting their pivotal role, and introduces new possibilities for identifying novel 

therapeutic targets and developing effective epigenetic therapies for SCLC [32]. Thus, the 

detailed understanding of these epigenetic modifiers of SCLC may explain the role of 

different molecules, or mechanisms responsible for the development and progression of 

SCLC. Moreover, the continued expansion of our understanding of various epigenetic events 

involved with different types of lung cancer expands the potential battery of diagnostic and 

prognostic biomarkers available to clinicians. It introduces new avenues for the discovery 

of novel therapeutic targets [32, 33]. This review’s primary objective is to summarize the 

common epigenetic events in SCLC (Figure 1) and potential translational applications of 

these events for the management of this disease.

In addition to the aforesaid importance of epigenetics, it is an emerging paradigm for 

understanding the details of SCLC and opens an active area of clinical investigations. 

In this review, we have highlighted the ‘central role’ of epigenetics in the development 

and progression of SCLC. The clinical/translational aspects and run-down of the potential 

drug targets along with the implications of epigenetic drugs for the perturbation of SCLC 

pathogenesis have also been summarized here.

2. Epigenetic predictors in SCLC

Over the past two decades, the misprogramming of epigenetic regulations has been 

considered as a core component of cancer initiation and progression mechanisms [34–36]. 

Some of the observations, like the genome of stem cells, specifically marked or transiently 

silenced by protein members of the polycomb group, becomes hypermethylated and silenced 

completely during cancer development, this has been a key step for understanding the 

consequences of epigenetic misprogramming [34, 37].
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Epigenetic traits did not confer the usual sequence of nitrogenous bases as the case of 

genetic code but can be inherited mitotically and meiotically (or transgenerationally). 

Instead, epigenetics is a collective dynamic process that regulates gene expression and 

fine-tunes various molecular pathways. It is a process that provides the genomic plasticity, 

affords the cellular identity at specific time points in early development, and during 

adulthood that helps in the functioning and maintenance of tissues and thus can be 

considered as genome ‘editor’[38]. Despite the recent advances in the pathobiology of 

SCLC, the heterogeneity of the disease restricts the generalization of patient outcomes 

[39]. The epigenetic changes in SCLC carcinogenesis mainly include the irregular status of 

DNA methylation (hyper- and hypomethylation) and histone modifications like acetylation/

methylations (Figure 1) [32, 40, 41].

2.1. Altered DNA methylation in SCLC

It is a universal fact that cancer cells have altered DNA methylation patterns compared 

to normal cells, and the same is true for SCLC with some specific and unique DNA 

methylation predictors [32, 41]. In addition to TP53 and RB1, the genome studies identified 

other somatic alterations in SCLC cells, including inactivation of PTEN tumor suppressor, 

amplification of MYC family members (MYC, MYCL1, and MYCN), mutations in 

KMT2A (MLL), KMT2D (MLL2), EP300, CREBBP, histone-modifying proteins encoding 

genes, NOTCH family genes, FHIT and CDKN2A genes [1, 10, 11, 32, 41–43]. Other 

genomic alterations noticed in SCLC specimens include somatic changes in the TP73 gene, 

overexpression of CCND1, mutations in EPHA7, SLIT2, and focal amplification of FGFR1 

[36, 43]. Smoking-associated signatures or epigenetic changes have also been reported in 

SCLC tumors [44]. Specific alterations in the methylation patterns of SCLC related genes/

targets is outlined in Figure 1.

2.1.1. Methylation of tumor suppressor and oncogenes—The carcinogenic 

journey of SCLC starts with the inactivation of two major tumor suppressor genes RB1 and 

TP53, which is a hallmark of SCLC and despite some reported mutations, the main cause of 

inactivation for these tumor suppressor genes is promotor hypermethylation [1, 10]. During 

the course of tumor development, promoter methylation of tumor suppressors along with 

the hypermethylation of other genes are responsible for SCLC aggressiveness [45]. Often 

promoter methylation of tumor suppressor genes is coupled with the deletion or mutation 

events, suggesting different events of inactivation for each allele [46, 47]. The possible 

reason behind this is the haploinsufficiency for the dominant suppressor gene loci, and the 

inactivation of a single allele is insufficient for clonal selection as one normal allele is 

sufficient for the production of the protein. Contrary to this, there are reports which suggest 

that the inactivation of both copies of the allele may not be necessary to adversely impact the 

cell behavior that leads to carcinogenesis. In such cases, the promoter methylation of even a 

single allele leads to clonal selection [18, 48].

Promoter hyper/hypomethylation or, more specifically, C5 methylation of cytosine within 

CpG doublet is the most frequent and stable event in epigenomics that can be altered both 

by inherent and non-inherent reasons [49, 50]. CpG islands are predominantly located within 

the promoter regions, and in most cancer tissues; CpG hypermethylation is noticed with 
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respect to a global hypomethylation background. These conditions are the hallmarks of 

epigenetic modulations and are generally found associated with aberrant gene expression 

profiles witnessed through different cancer types [24].

Some of the tumor suppressor genes hypermethylated in SCLC are also frequently 

hypermethylated in other types of tumors like TP53, but some are SCLC specific, like 

the case of somatic mutations. Promoter methylation is the most studied and crucial 

symbol of epigenetic modification that is frequently observed in the genes involved 

in cell regulatory functions, including proliferation, cell cycle regulation, DNA repair, 

apoptosis, cellular adhesions and motility [51]. For the initiation of carcinogenesis, DNA 

hypo- or hypermethylation follows three different molecular mechanisms, (a) microsatellite 

instability that leads to increase the mutational load in cancer-specific genes through 

the stimulation of retrotransposons or repetitive elements (SINE/LINE, Long interspersed 

element), (b) transcriptional and translational activation of oncogenes, (c) irregularities in 

the expression of imprinted genes or loss of imprinting (LOI) [52–54]. Interestingly, the 

global hypomethylation of DNA is a characteristic of malignant transformation; on the 

other hand, the local or promoter hypermethylation of tumor suppressor (TS) genes leads to 

the development of SCLC [32, 53, 55–59]. This means that hypo- or hypermethylation 

are two different epigenetic modifications, which can be considered inclusive events 

compared globally, or exclusive events for a specific DNA sequence. In the case of 

TS genes, two genes RASSF1A and caveolin-1 (CAV1) were downregulated through 

promoter hypermethylation in over 60% of studied SCLC cell lines and tumor tissues 

[59–64]. RASSF1A regulates apoptosis and cell cycle, whereas CAV1 is known to regulate 

different pathways in SCLC, including Hh signaling, autophagy, MAPK signaling, and 

cell growth through hormone-dependent pathways [63, 65–67]. The consistent inactivation 

of RASSF1A and CAV1 through hypermethylation suggests the role of epigenetics in 

deregulated apoptosis, cell-cycle, and autophagy of SCLC cells.

The most crucial oncogene related to methylation in SCLC is EZH2, a chromatin 

modifier, and the main enzymatic component of polycomb repressive complex (PRC) 

found overexpressed in the majority of SCLC cases, and the critical regulator of extensive 

promoter hypermethylation. Specifically, it is a component of histone methyltransferase 

complex, and its overexpression is coupled with the trimethylation of histone H3 at lysine 

27 that fashions aberrant DNA methylation in the majority of the cancers, including SCLC 

[45, 68, 69]. The expression of EZH2 is regulated by elongation factor E2F, and due to loss 

of function mutations or copy number loss of RB1, E2F is highly activated in SCLC as 

the repressor for E2F is encoded by RB1. EZH2 is situated downstream of the pRB- E2F 

pathway, one of the key regulatory pathways of SCLC progression [57, 70]. EZH2 also plays 

an essential role in cigarette smoke-induced epigenetic changes. Chronic cigarette smoking 

induces steady changes in the methylation patterns of chromatin through EZH2 [25]. It has 

been shown that overexpression of EZH2 downregulates the transforming growth factor-β 
(TGF-β)-SMAD pathway through methylation, which further upregulates Achaete-scute 

complex homologue 1 (ASCL1) and promotes SCLC progression [71].

The aberrant DNA methylation by EZH2 activates DNA methyltransferase 1 (DNMT1), 

induces epithelial-to-mesenchymal transition, decreases the anchorage dependency for 
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growth, and activates different oncogenic signaling cascades with the silencing of TS genes 

by hypermethylation [25, 72–75]. Apart from this, EZH2 mediated epigenetic modifications 

(histone modifications) leads to the upregulation of TWIST1 and suppression of SLFN11 in 

SCLC that confers chemoresistance to cisplatin and etoposide [76]. All these studies suggest 

that EZH2 is an important initiator of SCLC and underscore the importance of EZH2 

or EZH2 mediated epigenetic alterations in the initiation, progression, and development 

of SCLC. EZH2 also regulates histone modifications in SCLC, as further discussed in 

the section of histone modifications. The next important differentially methylated and 

commonly studied oncogene in SCLC is BCL2 [57]. In normal lung epithelial cells, this 

gene is silenced through methylation, but it shows minimal methylation and differential 

expression in different stages of SCLC [57, 77]. It encodes cell survival protein (Bcl-2) and 

thus helps in SCLC cell survival.

2.1.2. Methylation of SCLC or neuroendocrine (NE) fate determinants—There 

are clues that the DNA methylation landscape of SCLC defines the differentiation fate of 

NE cells. The ontological analysis of genes has demonstrated the enrichment of transcription 

factors (TF) that are regulated by methylation and involved in the differentiation of neuronal 

lineage. The tumor-specific methylation sites show the enrichment of motifs that possess 

the binding sites for different NE-fate determining TFs, including NEUROD1, ZNF423, 

REST, and HANDI [78, 79]. Based on the DNA methylation patterns, these studies provide 

two possible mechanisms for the transition of tumor progenitor cells towards SCLC. One 

mechanism suggests the loss of cell fate-determining TF by promoter methylation, and the 

other includes the functional inactivation of respective binding sites of TF through DNA 

methylation [78, 80]. These are the major epigenetic aberrations during the differentiation of 

NE cells that promote the differentiation of tumor progenitor cells’ to SCLC phenotype. 

Another important observation associated with the DNA methylation that leads to the 

development of an aggressive SCLC phenotype of lung cancer is the enrichment of epithelial 

adult stem cell (ASC) transcriptional signatures [81].

The integral part of ASC signatures is DNA methyltransferase, and in SCLC, the expression 

of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) is very high and further 

enriches with the progression of tumors towards neuroendocrine features (Figure 2). These 

findings uncovered an epigenomic profile for SCLC and established an important link 

between DNA methylation status, NE fate, and aggressiveness of the disease (as shown 

in Figure 2) [81, 82]. POU2F3, a master regulator of transcription, is used to define the 

lineage of SCLC and is a marker of the tuft cell-like lineage [79, 83]. The expression of 

POU2F3 is associated with SCLC variants that lack neuroendocrine (NE) markers and are 

chemosensitive. The expression of POU2F3 is epigenetically downregulated by promoter 

hypermethylation suggesting the critical role of DNA methylation for the development and 

characterization of SCLC lineages (Figure 2) [41, 83].

Integrative analyses of the transcriptional and epigenetic landscapes of NE cells in SCLC 

suggested some of the hyper-accessible (LHX1, LHX2, LHX3, and ISL1 as LHX family 

TF motifs) and hypo-accessible (OCT2 and OCT6 as OCT family TF motifs, and EHF and 

ELF5 as ETS family TF motifs) regions of chromatin compared to normal lung epithelial 

cells. The hyper-accessible regions correspond to the SCLC related TFs or proneural 
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TF including NEUROD1, NEUROG2, ASCL1, OLIG2, and NKX family TF (NKX2.1, 

NKX2.2, NKX2.5 and NKX6.1) [84]. Neurogenic differentiation 1 (NeuroD1) and ASCL1 

are the lineage-specific markers of SCLC, and are critical TFs for the initiation and survival 

of SCLC cells (Figure 2) [85–88]. These TFs act negatively to the NOTCH-signaling, 

which plays an indispensable role in the differentiation of NE cells that further control cell 

proliferation, migration, EMT, and chemoresistance [88]. Lysine demethylase 1 (LSD1) is 

highly overexpressed in SCLC cell lines or tumors, and small molecule inhibition studies of 

LSD1 suggested that the DNA hypomethylation status is directly correlated with the efficacy 

of LSD1 inhibitors [89]. These studies identify a DNA hypomethylation signature that can 

be used as a biomarker for the activity of, or the stratification of SCLC patients. Enrichment 

of SMAD2 binding motifs in the differentially methylated sites suggest the involvement 

of TGF beta pathway in the epigenetic regulation of SCLC and as a mechanism of LSD1 

inhibition.

2.1.3. Methylation of DNA repair pathway genes—The DNA repair pathway is 

one of the frequently affected corridors in SCLC. Studies suggest that in most of the 

SCLC cases, the genes of DNA repair pathway are regulated by methylation (promoter 

methylation or gene methylation). Some of the important signatures in this category involve 

O6-methylguanine DNA methyltransferase (MGMT) gene, that encodes for an enzyme 

regulating DNA repair by removing the alkyl groups from guanine (from O6 position) [90, 

91]. Hypermethylation of MGMT promoter was observed in ~90% of SCLC cell lines, 

whereas the MGMT gene was found methylated in nearly 20–30% of SCLC tissues (Figure 

1) [92–94].

Another member in this category is a tumor suppressor gene named fragile histidine 

triad (FHIT) that regulates p53-independent cell-cycle regulation, apoptosis, and confers 

protection against chemically induced lung cancer [32, 41, 67, 95]. The promoter 

methylation and subsequent inactivation or downregulation of FHIT was noticed in a 

majority of SCLC tissue samples or cell lines [1, 41, 96].

2.1.4. Methylation of metastasis or EMT related genes—Cell adhesion and 

metastasis-related genes that maintain the normal architecture of tissues and inhibit SCLC 

progression are the genes impacted significantly by methylation patterns. These include 

cadherin genes, especially cadherin 1 (CDH1 or E-cadherin), cadherin 13 (CDH13 or 

H-cadherin), tissue inhibitor of metalloproteinase 3 (TIMP3), MMPs, and snail [91]. 

Hypermethylation of CDH1 promoter is a very common phenomenon in SCLC [64, 

97]. Different genes or pathways are responsible for this, like snail2 and NFIB, they 

epigenetically downregulate the expression of CDH1 [98, 99]. CDH13 is the other member 

of the cadherin family whose expression is regulated by methylation, and is associated with 

SCLC metastasis [91]. In other lung cancer subtypes, methylation of CDH13 is associated 

with cisplatin resistance [100]. DNA polymerase β (Pol β), a critical enzyme for DNA base 

excision repair and genomic stability/maintenance, modulates the methylation of CDH13. 

It works as a demethylase and decreases the promoter methylation of CDH13 [101]. 

The downregulation of CDH13 results in enhanced migration and angiogenesis in SCLC. 

Recently, the analysis of circulating cell-free DNA from patients with early-stage lung 
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cancer also confirmed extensive hypermethylation of CDH13, marking the potential of these 

epigenetic modifications towards the establishment of early-stage lung cancer diagnosis 

[102].

2.2. Histone modifications in SCLC

Histones are highly basic proteins (rich in arginine and lysine) in the nuclei that act 

as spools to pack the DNA into nucleosomes [103, 104]. Thus, any alteration in the 

wrapping of genetic material ultimately harms the wrapped object (DNA), which suggests 

that if there is any aberration in histones, it eventually alters the expression pattern of the 

related gene [35, 105]. Thus, histone modifications turn out to be a critical component 

of epigenetic regulations. Following synthesis, nucleosomal histones go through massive 

post-translational modifications that involve acetylation, methylation, phosphorylation, 

ubiquitylation, sumoylation, and succinylation (Figure 1) [106–108]. These modifications 

are preserved by restricting the activities of histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) [109].

The N-terminal tails of nucleosomal histones (H2A, H2B, H3 & H4) comprise of a 20–

30 amino acid long unstructured region dominated by lysine residues available easily 

for different types of covalent modifications [110, 111]. The histone modifications and 

aforementioned methylation anomalies play a mutual aid role in modifying the chromatin 

conformation and modulate gene expression. In different types of cancer, including SCLC, 

the CpG hypermethylation of TS genes (TSG) or methylation dynamics is associated with 

a particular type of histone modification like deacetylation of histone H3/H4, trimethylation 

of histone H3 (H3K9/H3K27), and loss of lysine 4 methylation in histone H3 (H3K4) [112–

115].

2.2.1. Histone modification in MLL2 family—The trimethylation and acetylation 

status of H2 and H3 differs significantly in NSCLC and SCLC, helping to identify the 

subpopulations along with the differential prognosis [116]. This marks the importance of 

histone-associated epigenetic changes in lung cancer. In the case of SCLC, the modifications 

or mutations in chromatin remodeling enzymes have been identified, suggesting the 

importance of these chromatin keepers in the development or progression of the disease. 

Similar to the changes in the methylation status of TSG or oncogenes, the corresponding 

change in the methylation status of nearby histone plays a role in SCLC development. 

Supporting this, the demethylation of histone H4 leads to the growth of NE tumors 

and correspondingly increases the proliferation [117]. Nearly 8% of SCLC tumors and 

17% SCLC cell lines harbor several types of mutations (mainly truncating) in histone 

methyltransferase encoding gene named lysine methyltransferase 2D gene (KMT2D), also 

known as MLL2 [11]. KMT2D is an important transcriptional enhancer regulator and 

reported for the methylation (monomethylation and dimethylation) of histone H3 lysine 

4 (Figure 1) [118, 119]. The monomethylation of H3K4 is considered as a chromatin marker 

linked with transcriptional enhancers [120, 121]. In SCLC, mutations in KMT2D reduces 

H3K4 monomethylation locally and dimethylation globally, and thus suggesting that the 

methylation status of H3K4 is directly correlated with SCLC.
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The major nonsense mutations in KMT2D histone methyltransferase are G4779X, S2590X, 

and Q809fs, whereas homozygous point mutations have also been reported in exon 51 

that leads to I5430M substitution [11]. This mutation was mapped within the conserved 

SET domain, critical for the methyltransferase activity of KMT2D. These mutations lead to 

the loss of protein expression and correspondingly decrease the methyltransferase activity. 

Truncating mutations are also noticed in polybromo 1 gene (PBRM1), an important 

chromatin remodeling gene [11]. PBRM1 encodes a bromodomain-containing protein 

BAF180, which is an important element of the PBAF SWI/SNF complex (a chromatin 

remodeling complex) [122]. Although no detailed studies are available for PBRM1 in 

SCLC, this gene is located at 3p21, a frequently deleted or mutated locus in SCLC [61, 

123]. The studies on PBRM1 or SWI/SNF complex in other cancers suggested that the 

components of this complex found mutated in more than 20% of all studied cancers, and 

mutations in PBRM1 altered the chromatin accessibilities to different transcription factors. 

PBRM1 is also responsible for T-cell mediated immune response, chemoresistance and 

regulates MYC, an important oncogene for different cancers [124–126]. Studies suggested 

that loss of PBAF altered chromatin structure in a way making it easily accessible for 

response elements of IFN-γ in interferon-stimulated gene (ISG) promoter regions and thus 

increasing the expression of ISGs. Under physiological conditions, PBAF might cooperate 

with EZH2 (chromatin modifier) and reduces the chromatin accessibility to IFN-γ elements 

[125, 127]. Thus, these chromatin modifications can potentially determine T-cell response 

and immune escape properties of cancer cells, including SCLC.

2.2.2. Histone modifications of CREBBP-EP300 axis—The other important 

regulator of SCLC in the category of the transcriptional enhancer is CREB binding protein 

gene (CREBBP), which encodes an acetyltransferase, and is one of the most frequently 

mutated gene in SCLC [128–131]. The inactivation of CREBBP accelerates SCLC in the 

autochthonous mouse model. Expression analyses revealed that the inactivation of CREBBP 

results in the decreased expression of cell adhesions and tight junctions proteins including 

CDH1 across neuroendocrine cells (typical SCLC cell) [128]. The loss of CEBBP reduces 

the acetylation of histones (Figure 1). These studies supported the implication of deacetylase 

inhibitors (like pracinostat), as the treatment of pracinostat increases the acetylation of 

histones and expression of CDH1. A subset of the Rb1/Trp53/Crebbp deficient SCLC 

mice showed remarkable sensitivity and response to pracinostat [128]. The outcomes 

of genome-wide loss-of-function screens and gene analysis established CREBBP as a 

predictive biomarker for volasertib (an inhibitor of polo-like kinase 1) [132]. Interestingly, 

these studies showed that the effect of PLK1 inhibitors (like volasertib) and deacetylase 

inhibitors (like pracinostat) depend on the mutational status of CREBBP or acetylation 

of histones, and further established the importance of histone acetylation for developing 

SCLC therapies targeting epigenetic alterations. The other partner of CREBBP is the E1A 

binding protein p300 gene (EP300), which is mutated or inactivated in conjunction with 

CREBBP. Ep300 also has an intrinsic HAT activity and acts as a critical regulator of 

different biological functions like cell growth, embryonic development, and homeostasis by 

modulating chromatin remodeling and accessibility to other transcription factors [133, 134].
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The missense mutations in the HAT encoding domains of CREBBP and EP300 signify the 

functioning of these TSG, and mutual selectiveness between CREBBP/EP300 mutations 

affecting HAT domains also suggesting dominant-negative behavior on wild type proteins/

functional paralogues [1]. In SCLC, the significance of mutant CREBBP-EP300 has been 

studied using Rb1/Trp53-mutant GEMMs and precancerous cells of SCLC. The CRISPR-

mediated mutational studies of HAT domains suggested the tumor-suppressive function 

of HAT containing transcriptional enhancers or co-factors [11, 134]. CREBBP-EP300 

acetylates H3K27 to facilitate the transcription of target genes in concert with MLL3/4-UTX 

demethylase complex and antagonize the PRC2-mediated histone methylation that generally 

downregulates the expression of different genes, especially TSG [135–138]. In the context 

of SCLC, the altered CREBBP/EP300 activities modify the global acetylation of H3K27 and 

most likely affects the expression of TSG through methylation. Further identification of the 

genes targeted by CREBBP-EP300 will augment our understanding of SCLC tumorigenesis.

At a lower frequency, gene inactivating mutations are noticed in KAT6B, chromodomain 

helicase DNA binding protein 7 gene (CHD7), histone demethylase UTX gene, and 

chromatin remodeling factors like ARID1A and ARID1B [1, 11, 139]. Interestingly, 

KAT6B also encodes an acetyltransferase that acetylates histone H3 at lysine 23 (substrate 

similar to CREBBP/EP300) and acts as a tumor suppressor in SCLC [139]. KAT6B 

undergoes homozygous deletion in SCLC, and this genomic loss confers sensitivity to 

Irinotecan (a chemotherapeutic drug) [139]. In relation to the previous studies, the KAT6B 

deletion established that MYST family of HATs supported the ATM-mediated DNA-damage 

response and in KAT6B deficient SCLC tumors irinotecan induced damage cannot be 

repaired efficiently, and thus become a contributing factor towards the sensitivity of SCLC 

[139, 140]. The phosphorylation of histone H2AX also decreases upon irinotecan treatment. 

This also suggests developing targeted therapies for SCLC based on histone modifications or 

deletion/inactivation of HATs.

2.2.3. Histone modifications in LSD1–ASCL1 and NOTCH axis—KDM5A is 

the central component of NOTCH-RBP-J repressor complex and dynamically erases the 

methylation of histone H3 lysine 4 and increases the expression of ASCL1 [141]. ASCL1 

holds immense potential in SCLC as it regulates different pathways of SCLC. An interesting 

study recently reported the role of a histone demethylase KDM5A/RBP2 in the regulation 

of NOTCH signaling that sustains the hallmark capability of NE differentiation and SCLC 

progression [29]. The results of this study highlighted that KDM5A promotes proliferation 

and NE differentiation phenotype of SCLC by supporting the expression of NE transcription 

factor ASCL1. The KDM5A endures the levels of ASCL1and NE phenotype by repressing 

NOTCH2 and NOTCH related genes. KDM5A decreases the trimethylation of H3K4 and 

increases the expression of ASCL1 [29]. SCLC cells with high ASCL1 levels have low 

expression of NOTCH receptors and target genes (Figure 2) [1]. Another recent study 

demonstrated the role of ASCL1 in Wnt11 pathways that regulate cell proliferation, NE 

differentiation, and epithelial-to-mesenchymal transition (EMT) in SCLC [142]. ASCL1 

directly regulates the expression of Wnt11 through enhancer region acetylation of lysine 

H3K27. Wnt11 is specifically upregulated in SCLC, and in the presence of ASCL1, it 
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modulates the expression of E-cadherin, snail, and NE markers in a context-dependent 

manner [142].

The indirect inhibition of ASCL1 by inhibiting the LSD1 (lysine-specific demethylase) has 

also been reported recently that establishes a novel LSD1–NOTCH–ASCL1 therapeutic axis 

in SCLC. [131]. In most of the gene expression frameworks, LSD1 demethylates lysine of 

histone H3 (H3K4me1/2); however, SCLC exhibits different histone modifications. LSD1 

inhibition in SCLC activates NOTCH1 expression and decreases ASCL1, and these changes 

are associated with the acetylation status of histone (H3K27Ac) [131, 143]. Iadademstat 

(a covalent inhibitor of LSD1, also known as ORY-1001) treatment was found to increase 

H3K27Ac at NOTCH1 around LSD1 binding site both in SCLC cells and PDX models, 

suggesting that LSD1 modulates the acetylation of H3K27Ac [131]. It means that the 

consequences of LSD1 inhibition are directly associated with epigenetic changes in SCLC, 

resulting in NOTCH activation and ASCL1 downregulation [131, 143]. NOTCH further 

inhibited the differentiation or NE lineage of SCLC through ASCL1 downregulation, which 

is a crucial factor for the survival of SCLC cells [1, 144].

Two independent drug development studies also found that inhibition of LSD1 

using GSK2879552/ORY-1001 and T-3775440 (small molecules inhibitors for LSD1) 

exerted anticancer effects in SCLC cells that were mechanistically dependent on the 

hypomethylation status of histones or other genes including ZEB1, IGFBP2, SNAIL [89, 

145]. These inhibitors also decrease the expression of NE fate associated genes in SCLC 

like ASCL1, whose expression is associated with the methylation and acetylation status 

of histones (Figure 1 & 2). Although the detailed mechanism of LSD1 mediated SCLC 

development and progression remains elusive, however these studies have established the 

role of epigenetic modifications pertaining to LSD1, NOTCH, and ASCL1, and their 

potential as targets for developing unique therapeutic approaches for SCLC.

2.2.4. Histone modifications in the members of polycomb repressive 
complex—Recently, BRD4-ASXL3-BAP1 axis which modulates chromatin enhancers, has 

emerged as another epigenetic determinant specifically associated with SCLC-A subtype 

[146, 147]. BRCA1-associated protein 1 (BAP1) is a major histone deubiquitinase of 

polycomb repressive complex that modifies histone H2A at lysine 119. BAP1 also regulates 

the recruitment of several other epigenetic complexes like lysine methyltransferase KMT2C 

and other members of COMPASS family [148, 149]. Additional sex combs-like protein 3 

(ASXL3) works as a linking channel between BAP1 and bromodomain-containing protein 

4 (BRD4) in SCLC-A subtype where ASCL1 expression is very high. ASXL3 possesses 

a BRD4 binding motif that physically interacts with the extra-terminal domain of BRD4 

and regulates the chromatin occupancy. Genetic deletion of ASXL3 globally decreases the 

acetylation of H3K27 and gene expression of BRD4 target genes in SCLC. BET specific 

pharmacological inhibitors or degraders decrease the cell proliferation of specific SCLC-

subtypes where high expression of ASXL3 is noticed [146].

In another interesting study, Shukla et al., [147] generated induced pluripotent stem cells 

(iPSC) from human small airway/lung epithelium and demonstrated the epigenetic role of 

ASXL3 in pluripotency and stemness of SCLC. ASXL3 is highly overexpressed in lung–
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iPSC, cell lines, and clinical samples of SCLC. Silencing of ASXL3 inhibited clonogenicity, 

proliferation, and teratoma induction by lung-iPSC, and in-vivo tumorigenesis of SCLC 

cells. Epigenetic analysis of lung-iPSC established a decrease in the trimethylation of 

H3K27 (repressive histone mark) without a corresponding increase in the trimethylation 

of H3K4 (histone activation mark) in a number of genes such as MAGE-A1, MAGE-A3, 

and ESO-1. They also demonstrated the hypomethylation of NANOG and OCT4 promoter 

regions with decreased H3K27 and increased H3K4 trimethylation in lung-iPSC [147]. 

These observations suggest that the epigenetic modifier ASXL3 maintains the pluripotency 

of lung-iPSC and also acts as an oncogene in SCLC. In these lung-iPSCs, the expression 

of EZH2 (the main component of PRC2 complex) is also very high, and the physical 

interactions of AXSL proteins with EZH2 and BAP1 is also reported [146, 147, 150]. 

Interestingly, germane to SCLC, ASXL3 is also known to interact with KDM1A/LSD1, 

which also co-localizes with NANOG and OCT4, and together with PRC2, maintains the 

chromatin of lineage-specific undifferentiated stem cells [147, 151].

2.2.5. Histone modifications impacting MYC family—MYC family, including 

MYCL and MYCN, is a family of proto-oncogenes with structural homology, but functional 

diversity stands out as an essential driver for SCLC and constitutes a novel therapeutic 

axis [1, 10, 44]. Apart from the epigenetic abnormalities of HATs, MYC family members’ 

have been implicated in SCLC and the functional role of MYC family members in SCLC 

has been extensively discussed in multiple studies [28, 43, 44, 152, 153]. Different genetic 

and epigenetic alterations have been reported in MYC family members that exacerbate 

SCLC. MYC members are the important helix-loop-helix (HLH) type leucine zipper TFs 

that bind to E-box elements and trigger the expression of target genes in cooperation with 

other HLH protein MAX. MYC genes encode highly conserved domains that help to recruit 

transcriptional machinery for functional regulation [43, 154].

There is an interesting correlation between the differential expressions of MYC family 

members (MYC, MYCN, and MYCL) and subtypes of SCLC; for example, two 

substantially different transcripts of MYCL have been noticed in SCLC; similarly 

inactivation of MYCL or MYCN in mouse SCLC cell lines reduces tumorigenic properties 

while inactivation of MYC does not [43, 152, 155]. Thus, there are mechanistic differences 

among family members of MYC on how they impact SCLC or each member have different 

impact on SCLC progression [43]. MYC regulates the expression of several genes that 

contribute to SCLC development through different genetic and epigenetic regulations like 

the recruitment of basal TFs, RNA polymerases, chromatin remodeling enzymes, and 

histone acetylases [156–159]. MYC is a TF, that binds to specific sites of DNA and 

promotes the acetylation of H3 and H4 histones [158]. MYC is found associated with 

TIP60/KAT5, which is a crucial acetyltransferase. MYC-induced acetylation of H3 and H4 

histones increases the expression of MYC target genes [158]. TIP60 also plays a regulatory 

role in cell proliferation and apoptosis [160] and the association of MYC with TIP60 

further suggest MYC driven epigenetic regulation of these cancer-associated pathways. 

Other epigenetic regulators through which MYC causes epigenetic alterations in SCLC 

are bromodomain and extra-terminal (BET) family proteins [161, 162]. BET proteins are 

the critical epigenetic writers who interacted with different chromatin modifiers, including 
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HATs and HDACs [163]. These proteins bind explicitly to acetylated-lysine residues of 

histones and change the chromatin accessibility and expression pattern of target genes [164].

Genetic and pharmacological inhibition of BET or MYC genes decreases the growth and 

proliferation of SCLC cells [161, 162]. Similarly, a combination of DNA-demethylation 

agents depletes MYC and increases the efficacy of HDAC inhibitors in lung cancer 

[165]. Recent reports suggested the diverse implications of MYCN and MYCL in SCLC 

metabolism and drug resistance [166, 167]. MYC-driven SCLC cells and tumors mainly 

depend on arginine-mediated metabolic pathways like polyamine biosynthesis and mTOR 

[166]. In chemoresistant SCLC cells or tumors, MYCN associated synthetic vulnerabilities 

has been identified, and it was found that pharmacological inhibition of USP7 (a 

deubiquitinase) resensitizes the SCLC PDX to chemotherapy [167]. These studies did not 

provide the direct role of epigenetic regulation/histone modifications in presently reported 

SCLC mechanisms; however, there are reports in other cancer types that prove the role of 

these epigenetic regulations or histone modifications in the regulation of similar pathways 

[168–170]. Thus, these reports also provided a link between MYC related epigenetic 

alterations concerning SCLC metabolism and drug resistance. Further, these studies imply 

the utility of these epigenetic modifiers in relation to MYC for SCLC therapies.

2.2.6. Histone modifications in metastatic determinants of SCLC: NFIB—
Metastasis is a characteristic feature and the leading cause of SCLC related deaths. Different 

mechanisms have been proposed for SCLC metastasis of which amplification of MYC and 

nuclear factor I B (NFIB) are the two significant determinants [171–173]. Both molecules 

serve as TFs and extensively regulate chromatin modifications and are themselves regulated 

by epigenetic changes [174, 175]. Genome-wide analyses of pure SCLC population from 

GEMM suggested the potential role of NFIB in chromatin accessibility and histone 

modifications. The amplification of NFIB causes chromatin relaxation, increases the 

accessibility of intergenic regions, and enriches the TF binding sites (Figure 1) [171, 174, 

176]. These chromatin modifications lead to the global reprogramming of pro-metastatic 

genes and enhance the metastatic potential of SCLC. Approximately 5–15% of invasive 

primary SCLC tumor cells have high NFIB, whereas almost all metastatic SCLC cells 

exhibit NFIB amplification [171]. The importance of NFIB in histone modifications is also 

revealed by its associated partners, like a recent report showed that it forms a complex with 

histone deacetylase 3 (HDAC3) [134, 177]. HDAC3 is a critical deacetylase responsible for 

the development of neural stem and progenitor cells [177].

The NFIB mediated chromatin relaxation/accessibility enriches a unique histone 

modification signature by regulating the trimethylation of histone at two different sites, 

H3K4me3 (active) and H3K27me3 (repressive) [178, 179]. These histone modifications 

play a regulatory role in cell fate decisions, differentiation, and gene expression [178]. 

The second important direct epigenetic target of NFIB is EZH2 that mainly altered 

the trimethylation of H3K27, and regulates the expression of different oncogenes [180]. 

Interestingly, NFIB also plays a role in lineage fate determination and stem cell maintenance 

[174, 181]. It is proposed that NFIB not only acts as a metastatic gate for SCLC, it 

can also serve as a biomarker for SCLC classification due to its involvement in cell 

fate determination (Figure 2). In addition, these studies put forward many questions for 
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future research that will identify other epigenetic partners of NFIB for the identification of 

additional therapeutic targets.

A recent study reported RUNX1 partner transcriptional co-repressor 1 (RUNX1T1) as an 

epigenetic modifier in SCLC [182]. RUNX1T1 encodes a putative zinc finger TF and 

recruits various corepressors to facilitate transcriptional repression [183]. Overexpression 

of RUNX1T1 decreases the expression of CDKN1A (p21) and enhances the transcriptional 

activity of E2F TF (a commonly altered molecule in SCLC). RUNX1T1 interacts with 

the promoter region of CDKN1A and decreases the acetylation of histone 3. HDAC 

inhibitor trichostatin-A restored the expression of CDKN1A while the knockdown of 

RUNX1T1 increased the global acetylation of histone and CDKN1A promoter [182]. Thus, 

these studies have established the role of histone-modifying proteins/enzymes in SCLC 

progression and development, provide opportunities to interrogate these targets further. 

The aforementioned exciting findings related to the expression, functioning, and epigenetic 

modifications concerning MYC, NFIB, USP7, ASXL3, LSD1, PRC2, EZH2, BAP1, BRD4, 

ASCL1, and NOTCH have provided novel insight into SCLC carcinogenesis. The clinical 

phenotypes established by these epigenetic landscapes further underscore the utility of 

epigenetic modulators as novel therapeutic targets for the development of SCLC therapies 

(Figure 1 & 2, Table 1).

3. Epigenetic targets and drugs in SCLC

Target identification and drug development are the two indispensable components of any 

drug-discovery program. The drug targets are generally protein molecules or enzymes 

playing an essential role in catalysis for the completion of important biological reactions. 

The druggable epigenetic regulators are mainly divided into three categories; writers, 

readers, and erasers. The protein molecules that ‘mark’ DNA or histone by incorporating 

chemical modifications or groups are known as ‘writers’ such as methyltransferases, HATs, 

and kinases. ‘Readers’ are the molecules that read these epigenetic modifications and 

alter the molecular mechanism accordingly consist of chromodomain and bromodomain 

proteins, whereas ‘erasers’ as the name suggested, wipe out the incorporated epigenetic 

changes include histone lysine demethylases and HDACs [184]. In the context of 

epigenetics, the process of epigenetic modifications (methylation, acetylation, sumoylation, 

and phosphorylation) is regulated by a number of important molecules such as protein 

methyltransferases, histone deacetylases (HDACs), and protein kinases. These epigenetic 

modifications and epigenetic regulators contribute to therapy resistance and disease 

aggressiveness. Recent reports showed a significant correlation between DNA methylation 

marks and sensitivity to chemo- or radiotherapy in SCLC [32, 45]. Downregulation 

of three prime repair exonuclease 1 (TREX1, a gene that encodes an exonuclease or 

STING antagonist) through promoter hypermethylation is associated with the sensitivity 

to Aurora kinase inhibitors (AZD-1152, SCH-1473759, SNS-314, and TAK-901), CDK 

inhibitor (R-547), Vertex ATR inhibitor (Cpd 45), and the spindle disruptor vinorelbine. 

Multiple epigenetic mechanisms like 3′UTR methylation of CEP350, EPAS1, and MLPH 

were associated with sensitivity to Aurora kinase inhibitors. Methylation of EPAS1, LSD1/

KDM1A was associated with the response of PLK-1, BCL-2, and KSP inhibitors. Promoter 

hypermethylation of SLFN11 decreases the protein expression and contributes to resistance 
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to DNA damaging agents. Similarly, the 5′ UTR of EZH2 and methylation of YAP1 have 

been shown to be associated with the response of Aurora kinase and mTOR inhibitors, 

respectively [32].

Promoter hypermethylation increases hTERT expression and promotes overexpression of 

EZH2 that finally alters methylation of H3K27 and contributes to the development of 

radiotherapy resistance in SCLC [45]. Epigenetic regulations of NE differentiation-related 

genes (ASCL1, NEUROD1, NEUROG2, OLIG2, and NKX homeodomain TFs) and 

RASSF1 also contribute towards the drug sensitivity of SCLC [32, 84, 185]. Overall, 

epigenetic regulators play the diverse roles in modulating therapy response and hold promise 

as targets for drug development for SCLC. For the targeting of SCLC, two main classes 

of drug targets are deacetylates (like HDACs) and acetyl-/methyl transferases (like LSD-1) 

that regulate the development and progression of SCLC. The utility of these epigenetic 

machinery components as drug targets and the targeting properties of their inhibitors is 

discussed in the following sections.

3.1. Inhibitors of LSD-1/KDM1A for SCLC

LSD1 is a flavin-containing protein that functions as a histone demethylase and corepressor 

of transcription [186]. LSD1 is the widely studied member of the LSD family and is 

overexpressed in multiple cancers, including SCLC subtypes. It erases the mono- and 

dimethylation signatures from histone 3 lysine 4 (H3K4), resulting in transcriptional 

repression or H3K9 that leads to activation. Several chemically synthesized and natural 

inhibitors have been reported for LSD1 that have shown efficacy in various cancers and 

are currently under clinical trial [187–189]. Interestingly, the inhibition of LSD1 provides 

a novel epigenetic therapeutic approach for the management of SCLC [89, 131]. Augert et 

al., have shown that the ORY-1001 (a selective LSD1 inhibitor) mediated LSD1 inhibition 

results in the activation of NOTCH pathway and downregulates the expression of ASCL1 

that decreases the tumorigenesis of SCLC [131]. The activation of NOTCH, along with the 

inhibition of ASCL1, holds therapeutic promise in SCLC as NOTCHhigh-ASCL1low also 

suppresses the differentiation of NE lineage. The ORY-1001 inhibitor exhibited efficacy in 

chemoresistance patient-derived xenografts (PDX) models of SCLC.

Mohammad et al., reported another selective, orally bioavailable, and highly potent LSD1 

inhibitor (GSK2879552) that shows anticancer properties in SCLC cell lines and tumor 

models [89]. The efficacy of GSK2879552 was dependent on the methylation status of 

DNA, and a DNA hypomethylation signature that predicts the sensitivity of SCLC to 

the inhibitors of LSD1 was identified [89, 190]. The cohesive analysis of epigenetic 

modifications associated with LSD1 inhibition also suggests changes in the expression 

of NE genes associated with the cell fate determination or SCLC stem cells [89, 190]. 

GSK2879552 completed phase I clinical trial for SCLC (Trial number: NCT02034123) that 

was terminated early, while another phase I clinical trial (Trial number: NCT02913443) was 

completed recently. In the latter, the potential of orally available LSD1 inhibitor (RG6016/ 

RO7051790) for relapsed and extensive stage SCLC was evaluated [191]. As a subset of 

SCLC shows the sensitivity of LSD1 inhibitors, these studies demonstrate the utility of 
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LSD1 mediated epigenetic signatures to stratify the SCLC patients for the selection of 

therapy.

The three-dimensional structure of human LSD1 was solved in 2006 (PDB ID: 2HKO, PDB 

ID: 2IW5) [192, 193], and has served as an important platform for the development of 

specific small molecule inhibitors with wide implications. Structural features of LSD1 show 

that it contains an N-terminal SWIRM domain and amine oxidase domain at C-terminal, 

and it forms a unique complex with REST corepressor 1 (CoREST) (Figure 3). SANT2, 

a C-terminal domain of CoREST, acts as a stimulator for LSD1 demethylase activity 

on nucleosomes or histones. LSD1 alone is sufficient to demethylate histone (histone 

tail), but for the demethylation of a bulky nucleosome, it requires SANT2 of CoREST 

[193]. Structural arrangements suggested that CoREST SANT2 is situated ~100Å away 

from the LSD1 active site (Figure 3). These observations provide a critical rationale for 

designing selective inhibitors for LSD1-mediated epigenetic modifications, for inhibiting the 

demethylation of either histone tails or intact nucleosome. The detailed characterization of 

LSD1 associated epigenetic changes in SCLC will further establish the signatures that can 

be targeted using small molecule inhibitors. Overall, the inhibition studies of LSD1 in SCLC 

suggest its potential for the development of epidrugs or epigenetic therapies for SCLC. 

Some of the reported inhibitors of LSD1 are summarized in Table 2.

3.2. HDAC/HAT inhibitors in SCLC

Acetylation is a post-translational modification that neutralizes the positive charge of lysine 

residues, reducing the electrostatic interactions with negatively charged DNA molecules, 

which finally help in chromatin relaxation and facilitate the gene expression [194, 195]. 

The overexpression of HDACs erases the acetylation marks of chromatin and divert the 

gene expression patterns towards cancerous phenotype. HDAC overexpression is closely 

associated with neuroendocrine tumors, and the other exciting features associated with 

HDACs are occasional somatic mutations, whereas loss of function mutations are often in 

HATs [11, 196–198]. Histone acetylation is an important epigenetic hallmark that modulates 

the expression of different genes responsible for the onset, progression, and aggressiveness 

of SCLC (as discussed in the previous section). The two main components that determine 

the acetylation status of histone is HDACs (erases the acetyl groups) and HATs (writer 

molecule for lysine acetylation in histone tails). The HDAC family consists of four 

subclasses (I, IIa, IIb, and IV and includes eleven HDACs [195, 199]. The binding of HDAC 

inhibitors (HDACi) to the specific HDAC inhibits the deacetylation of lysine (H4K5ac, 

H4K8ac, H3K9ac, H4K16ac, H3K18ac, H3K23ac, and H3K56ac) residues and maintains 

the global acetylation of chromatin. CREBBP and EP300 have widely investigated HATs 

affected by the loss of function mutations and play a significant role in the pathogenesis of 

SCLC [11, 128, 132, 198].

Presently, four HDACi are FDA approved, including vorinostat, belinostat, panobinostat, 

romidepsin, while a fifth one chidamide got regulatory approval in China [195]. The 

observed role of HDACs in the development of NE tumors led the foundation for the 

evaluation of HDACi in SCLC therapies. HDACi have diverse implications in SCLC as 

these inhibitors are reported to show efficacies in different SCLC models and subtypes, like 
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trichostatin A (a pan-HDAC inhibitor) is highly effective in EGFR-mutated SCLC subtypes 

[200]. Trichostatin A treatment has been shown to sensitize the EGFR-mutated SCLC to 

conventional chemotherapy (cisplatin and etoposide) [200].

Jia et al., reported that the loss of CREBBP promotes the development of SCLC and 

enhances the efficacy of HDACi in SCLC [128]. CREBBP works as an acetylase for 

multiple histones, including H3K27. In SCLC, CREBBP loss epigenetically suppresses 

CDH1 expression and exacerbates the aggressiveness of the disease. Jia et al., used 

pracinostat (HDACi currently being in clinical trials for different cancers) and observed 

that it exhibits efficacy in SCLC models (cell lines, mouse models, and PDX) independent 

of CREBBP status, but the responses were higher in CREBBP deleted SCLC cases [128]. 

Loss of CREBBP and EP300 is an established feature for SCLC [1, 11, 128], so the other 

recognizable outcome of this study associated with HDACi, is the novel direction for the 

combination of HDACs and HATs inhibitors for SCLC or utilization of CREBBP loss to 

stratify the SCLC patients for HDACi based epigenetic therapies.

In a completed phase I clinical trial (NCT00926640) in SCLC patients, belinostat in 

combination with cisplatin and etoposide has shown promising results for efficacy and 

exhibited potential to move towards a phase II trial [201]. The combination of vorinostat 

(another FDA approved HDACi) with cisplatin augmented the antitumorigenic effects in 

SCLC [202]. Similarly, another report has shown that the combination of vorinostat and 

BCl2 inhibitor (Navitoclax/ABT-263) sensitizes the navitoclax resistant SCLC cell lines and 

suggested that HDACi could be used as an alternative strategy for resistant SCLC tumors 

[203]. The results of a phase II clinical trial also established the potential of panobinostat 

(or LBH589, FDA-approved pan-HDACi) where it shows that as a monotherapy it induces 

the shrinkage of SCLC tumors [204]. Though this trial was discontinued, but initial results 

suggested the evaluation of panobinostat or other HDACi in combinational regimens with 

standard chemotherapeutic agents [204].

Preclinical studies of HDACi (MGCD0103 and vorinostat) and topoisomerase inhibitors 

combination also showed superior cytotoxicity in SCLC cell lines and make a case for 

the future clinical evaluation of this combination [205]. Hubaux et al., provided the 

potential of valproate (HDACi) in combination with cisplatin and etoposide for augmented 

anticancer activity as a first-line chemotherapy of SCLC [206]. A recent study identified 

HDAC6 as a synthetic lethal drug target with JQ1 (an FDA approved BET inhibitor) 

and showed the efficacy of combination treatment in SCLC-xenograft with ricolinostat 

(or ACY-1215, a HDAC6 inhibitor) and JQ1 in reducing tumor growth. This combination 

(JQ1 and ricolinostat) was demonstrated to induce the innate immunity response in SCLC 

and suggested a novel treatment strategy for SCLC [207]. Other important inhibitors of 

epigenetic targets in SCLC like BET, CREBBP, BCL2, and EZH2 are summarized in Table 

2.

4. Epigenetics and SCLC Immunotherapy

The past decade has witnessed the emergence of immunotherapy as a leading approach 

for cancer treatment and has revolutionized the management of various cancers, including 
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SCLC [208–210]. Early in 2014, FDA approval of immune-checkpoint inhibition through 

ipilimumab (an anti-cytotoxic T lymphocyte antigen 4 or CTLA-4) introduced a unique 

clinical standard in cancer therapy of advanced-stage melanoma [211–213]. This cancer 

immunotherapy landscape further improved with the approval of two more antibodies 

against programmed cell death 1 (PD1) named nivolumab and pembrolizumab [214–221]. 

Since then, the inhibitors targeting PD-1 and CTLA-4 not only proved useful to improve 

the outcomes of melanoma, also found promising in lung cancer, renal cell carcinoma, 

Hodgkin’s lymphoma, and other malignancies [217, 219, 221].

The experts predicted that SCLC might respond favorably to immunotherapy, due to their 

high tumor mutational burden (TMB) to generate neoantigens that could be targeted by 

immunotherapy [222]. The relatively high TMB of SCLC is perceived due to the heavy 

smoking exposures, deficits in DNA repair pathways, and other genomic instabilities of 

SCLC [1, 11, 223]. The studies related to TMB established it as a predictive biomarker 

for immunotherapy response in NSCLC, which shows that combination of nivolumab and 

ipilimumab is more effective and beneficial than chemotherapy in patients where TMB 

is >10 mutations/megabase compared to the patients with TMB <10 mutations/megabase 

[224]. Immunotherapy has immense potential, but due to the restricted expression of 

receptor antigen, most of the patients did not respond or develop resistance [225–228]. 

Various immunotherapeutic approaches evaluated in SCLC failed to meet the desired end-

point. Maintenance pembrolizumab after first-line chemotherapy evaluated in phase II trial 

did not improve progression-free survival (PFS) and overall survival (OS) [229]. Similarly, 

the maintenance ipilimumab and nivolumab (CheckMate 451) failed to meet the criteria 

of OS survival in a phase III trial [230, 231]. Another report announced the failure of 

CheckMate 331 (a phase III study, NCT02481830) to meet its primary endpoint of OS, 

comparing the topotecan and nivolumab in relapsed SCLC [232, 233].

Thus, the above-mentioned upshots mandate the development of innovative combinatorial 

approaches that will improve the efficacies or potentiate the response of immunotherapies 

[234, 235]. Combinations of epigenetic approaches/chemotherapies with immune-

checkpoint inhibition holds promise and are currently being tested in clinical trials 

for different cancers [23, 236–238]. The rationale for the development of epigenetic 

combinations for immunotherapy of cancer is the key role of various epigenetic regulations 

in immune cell functioning, related immune responses and direct correlation of patient 

response with TMB [236, 237, 239, 240]. Satisfying the criteria of SCLC stratification on 

the basis of TMB and the implications of combinatorial immunotherapy has proved a fruitful 

approach compared to unselected cohorts. The results of CheckMate 032, in SCLC patients 

stratified on the basis of ‘low’; ‘medium’; or ‘high’ TMB, and receiving nivolumab with 

ipilimumab or nivolumab alone showed higher overall response rate (ORR) to nivolumab 

or ipilimumab/nivolumab combination in high TMB cohort [241–243]. The results of 

CheckMate 032 accelerated the FDA approval of nivolumab as a third-line treatment [244].

Initially, these studies provided a rationale for the combination of immunotherapy with 

chemotherapy, as the chemotherapy mediated damage releases tumor-specific antigens and 

increases the T-cell activation [245]. IMpower 133, a phase III trial, evaluated atezolizumab 

in combination with first-line chemotherapy and demonstrated a gain in PFS and OS 
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compared to standard chemotherapy [246]. Based on the success of the trial, FDA 

approved atezolizumab in combination with first-line chemotherapy. On the other hand, 

a phase III trial of ipilimumab with first-line chemotherapy has failed to add any benefit 

for using immunotherapy [247]. The recent CASPIAN trial (a phase III clinical trial, 

NCT03043872), evaluated durvalumab alone or with tremelimumab in combination with 

platinum-etoposide showed the improvement in the OS of extensive-stage SCLC patients 

[248]. These outcomes of immunotherapy combinations speculated that the genetic factors 

alone are not responsible for differential outcomes of trials, there could be several factors 

within the tumor microenvironment that play a crucial role in enhancing the efficacy of 

immunotherapies.

Preliminary research in different cancers, including lung cancer showed that epigenetic 

modification plays a prominent role in the modulation of these factors [249, 250]. Several 

studies have tested combinations of epigenetic drugs like histone deacetylases inhibitors, 

hypomethylation agents to induce the changes within the tumor microenvironment and 

increases the applicability and efficacy of checkpoint inhibitors [251, 252]. Recent trials 

of immune-epigenetic therapies combining CC-486 (oral formulation of azacitidine) and 

vorinostat (a histone deacetylase inhibitors/HDACi) have shown enhanced overall response 

rate (ORR) among the patients not responding previously to immunotherapy alone [253, 

254]. Another study performed on NSCLC patients showed that the epigenetic milieu of the 

tumors identifies/stratifies the patients most likely to benefit from the pembrolizumab and 

nivolumab [237]. Specifically, methylation status of FOXP1 served as a predictive biomarker 

for the clinical benefits of anti-PD-1 therapies. The combination of immunotherapy and 

epigenetic drugs in SCLC needs escalation as no significant reports are available pertaining 

to these combinations in SCLC.

A recent study established the role of MHC class-I antigen and PRC2 in immunotherapy 

resistance of SCLC [255]. PRC2 mediated transcriptional silencing of MHC-I antigen 

presentation in SCLC cells decreases the T-cell mediated immune response. MHC-I low 

SCLC cells harbor H3K4 trimethylation (activating) and H3K27 trimethylation (repressive) 

histone modifications and show a conserved mechanism through which SCLC tumors 

achieve high PRC2 activity and execute immune evasion [255, 256]. There are studies 

in different cancers that show that the epigenetic regulators such as MYC family, EZH2, 

NOTCH, PTEN, LSD-1, and BET members plays an important role in determining the 

response of immunotherapies [131, 165, 256–263]. There are some promising combinations 

that hold investigative potential in SCLC. For example, LSD-1, MYC, EZH2 plays an 

inclusive role in immune modulation, drug resistance as well as overall development 

or differentiation of SCLC lineages [32, 76, 165, 167, 257–261]. These observations 

make a strong case for the combined evaluation of established epigenetic therapies 

of these targets with immunotherapies. The future implementation of these epigenetic-

immunotherapies in SCLC will depend on the observed efficacies from clinical trials, 

however the outcomes of trials from other cancers give hope to see the development of 

these novel approaches involving emerging immunotherapeutic modalities combined with 

next-generation epigenetic drugs.
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5. Concluding remarks and future prospective

SCLC remains a recalcitrant tumor with high lethality. There are significant obstacles with 

SCLC translational research. The first one is the scarcity of tumor tissues as surgical 

resections are not very common, unlike NSCLC. Despite the importance of drug resistance, 

the repeated biopsies of the recurrent disease are also rare. Secondly, is the observed 

disappointments of clinical trials though several putative targets are available that yield 

promising preclinical results. Further, there is limited success of immunotherapy due to the 

restricted expression of immune targets. However, the outcomes of genome-wide association 

studies combined with the “genomics”, “transcriptomics”, and “epigenomics” have defined 

the relevance of different epigenetic marks that regulate the biology of SCLC and have 

provided a roadmap for designing therapeutic modalities targeting epigenetic vulnerabilities.

The studies in the last decade prove the importance of epigenetic modifications in 

various aspects of SCLC, including NE differentiation, lineage specificity, drug resistance, 

and metastasis. These studies place SCLC research beyond genomics and establish the 

importance of epigenetics in the etiology of SCLC. The so far collected data of SCLC 

epigenetics has left us with a number of questions and set the stage for epigenetics research 

on multiple fronts. For example; LSD1 inhibition may be implemented as a potential 

therapeutic approach in SCLC patients, but the identification of specific biomarkers for 

the activity will be needed because LSD1 expression in SCLC is lineage-specific. Some 

studies suggest that ASCL1 expression could be an indicator of response to LSD1 inhibitors, 

but it is likely that other regulators of NOTCH pathway could help to predict the response 

of LSD1 inhibition, as its expression is directly correlated with NOTCH signaling. Also, 

the heterogeneity studies of SCLC tumors show that they are composed of NE and non-NE 

populations that are regulated through endogenous NOTCH and other pathways [176, 264]. 

So, it will be interesting to study the impact of epigenetic modification on the ratios of NE 

and non-NE cells induced by LSD1 inhibition. These outcomes will help to carefully design 

the combination therapies (chemotherapies/immunotherapies) because LSD1 expression is 

related to the immune response as well as drug resistance.

While expression of NFIB is associated with metastasis of SCLC [171, 176], and NFIB 

increases chromatin accessibility, the exact mechanism that show NFIB drives metastasis, 

and its interplay with the key epigenetic modifiers or target genes remains elusive. 

Elucidation of the mechanisms and identification of associated epigenetic regulators will 

indeed offer additional epigenetic therapeutic targets. The dynamicity of DNA methylation 

and other epigenetic changes, and their contribution to the chemoresistance of SCLC is 

also an important avenue for future investigations. The other undermined branch of SCLC 

epigenetics is the elucidation of the functional role of different microRNAs, long non-coding 

RNAs, and circular RNAs that can further help to identify novel diagnostic or prognostic 

biomarkers and therapeutic strategies.

Enhanced understanding of ‘what and how’ epigenetic modifications contribute to the SCLC 

will open the epigenetic doors for translating the observations into clinical relevance and 

augment our capabilities to manage SCLC accordingly. Further, the refinement of molecular 

mechanisms associated with epigenetic regulations, including the remarkable progress in the 
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last decade, will surely help the researchers and clinicians to remove the tag of ‘recalcitrant 

disease’ from SCLC.
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Abbreviations

SCLC Small cell lung cancer

TS Tumor suppressor

TF Transcription factor

NE Neuroendocrine

non-NE Non-neuroendocrine

PRC polycomb repressive complex

PRC2 polycomb repressive complex 2

ASC Adult stem cell

hTERT human telomerase reverse transcriptase

ASCL1 Achaete-scute complex homologue 1

MGMT O6-methylguanine DNA methyltransferase

HATs fragile histidine triad (FHIT), histone acetyltransferases

HATi histone acetyltransferase inhibitors

HDACs histone deacetylases

HDACi histone deacetylase inhibitors
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CREBBP CREB binding protein gene

EP300 E1A binding protein p300 gene

CHD7 chromodomain helicase DNA binding protein 7 gene

ISG interferon-stimulated gene

KMT2D lysine methyltransferase 2D gene

PBRM1 polybromo 1 gene

CHD7 chromodomain helicase DNA binding protein 7 gene

KDM5A Lysine (K)-Specific Demethylase 5A

RUNX1T1 RUNX1 partner transcriptional co-repressor 1

TREX1 three prime repair exonuclease 1

BET bromodomain and extra-terminal

BAP1 BRCA1-associated protein 1

ASXL3 additional sex combs-like protein 3

BRD4 bromodomain-containing protein 4

iPSC induced pluripotent stem cells

ORR overall response rate

PFS progression free survival

OS overall survival

PDX patient-derived xenografts

CoREST REST corepressor 1
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Figure 1: 
Epigenetic landscape of SCLC genome is regulated at the DNA & histone level by 

multiple regulators. The prime features of this regulation involve modifications of basic 

chromatin unit ‘nucleosome’ an octamer of histone that works as a spool for DNA 

wrapping. The key post-translational modifications of histones mainly involves acetylation 

and methylation of lysine residues that controls chromatin transformations and regulates 

the expression of target genes (other modifications like sumoylation, phosphorylation, 

and ubiquitination, are not shown here). A number of chromatin modifier proteins are 
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involved performing this task including readers, writers, and erasers (like HDACS, HATs, 

and methyltransferases). SCLC-specific key epigenetic genes that regulate the histone/DNA 

related epigenetic modifications have been reviewed and summarized in the illustration. 

Similar to writer, readers, and erasers, the overexpression of other factors like NFIB 

induces the chromatin relaxation (as shown in the lower side panel) and increases the 

accessibility of transcription factors to the DNA that ultimately induces the expression 

of SCLC related genes. Epigenetic drugs (HDACi: histone deacetylase inhibitors, HATi: 

histone acetyltransferase inhibitors, BETi: bromodomain and extra-terminal domain protein 

inhibitors, and inhibitors of methyltransferases) targets these chromatin modifiers.
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Figure 2: 
Epigenetic modifiers describing different SCLC subtypes. Key SCLC studies described 

in the text help to define the SCLC subtypes specific epigenetically regulated genes (as 

aligned on the circumference of each subtype). The proposed SCLC nomenclature was 

followed by Rudin et al., [41]. ASCL1, achaete-scute homologue 1; NE, neuroendocrine; 

NeuroD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; YAP1, 

yes-associated protein 1.
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Figure 3: 
Three-dimensional structure of LSD1-CoREST complex showing the unique architecture 

of two different binding/active sites for the development of specific inhibitors of LSD1 

with implications in SCLC. The same color scheme was used to represent linear domain 

organization (upper part) and subsequent domains in the three-dimensional cartoon model. 

The structural model was generated using PyMOL, and structure coordinates were taken 

from Protein Data Bank (PDB ID: 2IW5) [193].
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Table 1:

Common epigenetic predictors in SCLC.

Gene Epigenetic Mark Outcomes Reference

EZH2 DNA methylation Histone 
methylation (H3K27)

-Smoke induced epigenetic changes
-Modulates TGF-β-SMAD pathway
-Upregulates ASCL1
-Activates DNMT1
-Upregulates TWIST1
-Suppression of SLFN11
-Apoptosis
-Chemoresistance

[25, 32, 57, 70-76]

DNMT1 DNA methylation -NE fate determination (ASCL1 high) [81, 82]

DNMT3A/B DNA methylation -NE fate determination (NEUROD1 high) [81, 82]

POU2F3 Promoter hypermethylation -NE fate determination (POU2F3 high) [41, 79, 83]

MGMT Promoter hypermethylation -DNA repair pathway [92-94]

FHIT Promoter hypermethylation -p53 independent cell-cycle regulation
-Apoptosis [1, 41, 96]

BCL2 Promoter hypermethylation -Cell survival [57, 77]

RASSFIA Promoter hypermethylation -Dysregulated cell cycle
-Apoptosis [59-61, 64]

CAV1 Promoter hypermethylation
-Autophagy
-Hedgehog and MAPK signaling
-Cell growth

[62, 63, 65-67]

CDH1 Promoter hypermethylation -High metastasis/EMT [64, 91, 97]

CDH13 Promoter hypermethylation -High metastasis/EMT [91]

ASCL1 Histone acetylation (H3K27)
-NE differentiation
-Regulates Wnt11 pathway
-Modulates EMT (CDH1, Snail)

[142]

LSD1
Histone demethylation (H3K4, 

H3K9) Histone acetylation 
(H3K27)

-Modulates NOTCH-ASCL1 axis
-NE differentiation
-Modulates EMT (ZEB1, Snail)
-Chemoresistance
-Cell growth, migration, and invasion

[1, 32, 89, 131, 
143-145]

KDM5A Histone demethylation (H3K4)
-NE differentiation
-Supports ASCL1 expression
-Regulates NOTCH signaling

[29, 141]

NFIB Histone acetylation Histone 
methylation (H3K4, H3K27)

-Chromatin remodeling/relaxation
-Chromatin accessibility
-EMT (downregulate CDH1)
-Metastasis
-Modulates HDAC3, EZH2
-Lineage fate determination
-Stem cell maintenance

[134, 171-174, 
176-181]

KMT2D/MLL2 Histone methylation (H3K4)
-Cell proliferation
-Growth of NE tumors
-Regulates transcriptional enhancers

[118-121]

CREBBP Histone acetylation (H3K27) -Decreases the expression of cell adhesions/tight junction 
genes (like CDH1) in NE cells [1, 128-131]

EP300 Histone acetylation (H3K27) -Cell growth
-Chromatin accessibility [1, 133, 134]

KAT6B Histone acetylation (H3K23) -DNA damage response [139, 140]

MYC (L/N) Histone acetylation (H3 and H4)

-Chromatin remodeling
-Chemoresistance
-Metabolism
-Recruitment of transcription factors

[1, 10, 43, 44, 152, 155, 
161, 162, 166, 167]
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Gene Epigenetic Mark Outcomes Reference

-Recruitment histone acetylases
-Regulates TIP60/KAT5, BET proteins
-Cell proliferation, apoptosis
-Metastasis

BET Histone acetylation
-Chromatin accessibility
-Interacts with HATs and HDACs
-Cell growth and proliferation

[163, 164]

BRD4 -Chromatin accessibility [146, 147]

ASXL3
Histone acetylation (H3K27) 
Histone methylation (H3K4, 

H3K27)

-Chromatin accessibility
-Expression of BRD4 target genes
-Pluripotency and stemness
-Cell proliferation
-Interacts with LSD1

[146, 147, 150, 151]

BAP1 Histone deubiquitination 
(H2AK119) Histone methylation

-Chromatin accessibility
-Regulate KMT2C or CAMPASS members [146–149]
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Table 2:

Overview of epigenetic drugs/inhibitors along with the structures implicated in SCLC.

Drug/Inhibitor Structure Target Outcomes Reference

Iadademstat 
(GSK2879552/

ORY-1001)

LSD1 -Activates NOTCH
-Decreases ASCL1 [89, 131]

T-3775440 LSD1 -Acts on LSD1-INSM1 interactions
-Decreases ASCL1 [145, 265]

Vorinostat HDAC -Increases acetylation of histone H3
-Enhances the efficacy of cisplatin & BCL2 inhibitors [195, 202, 203]

Belinostat HDAC -Increases lysine acetylation
-Effective in NE subtypes [195, 201]

Romidepsin HDAC -Increases acetylation of histone H3 & H4 [195, 266]

Panobinostat/
LBH589 HDAC -Increases efficacy of DNMT inhibitors

-Sustains stable diseases [204, 267]

Trichostatin A HDAC -Effective in EGFR mutated distinct subtype
-Increases acetylation of histone H4 [200, 268]

Pracinostat HDAC
-Increases acetylation of histone 3 (H3K27ac)
-Increases CDH1 expression
-Effective in CREBBP deleted SCLC tumors

[128]

Ricolinostat HDAC -Enhances efficacy of BET inhibitors
-Activates NK cell mediated innate immunity [207]

MGCD0103/
Mocetinostat HDAC

-Increases efficacy of topoisomerase inhibitors
-Increases tumor antigen presentation
-Enhances check-point inhibitor therapy

[205, 252]
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Drug/Inhibitor Structure Target Outcomes Reference

Valproate/valproic 
acid HDAC -Augments cisplatin and etoposide activity (standard first-

line chemotherapy) [206]

5-AzaC -Modulates death receptor & caspase-8 expression [253, 269]

JQ1 BET -Enhances efficacy of HDAC inhibitors
-Activates NK cell mediated innate immunity [207]

EPZ011989 EZH2

-Decreases methylation of histone H3 (H3K27me3)
-Increases SLFN11 expression
-Prevents emergence of chemoresistance
-Augments chemoresponse

[76, 270]

Tazemetostat/ 
EPZ-6438 EZH2 [76]
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