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ABSTRACT Infections caused by extended-spectrum-b-lactamase (ESBL)-producing
Escherichia coli are a significant cause of morbidity and health care costs. Globally,
the prevailing clonal type is ST131 in association with the blaCTX-M-15 b-lactamase
gene. However, other ESBLs, such as blaCTX-M-14 and blaCTX-M-27, can also be prevalent
in some regions. We identified ST38 ESBL-producing E. coli from different regions in
the United States which carry blaCTX-M-27 embedded on two distinct plasmid types,
suggesting the potential emergence of new ESBL lineages.
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Infections caused by multidrug-resistant organisms present a major threat to health
care systems worldwide (1). Disease caused by extended-spectrum-b-lactamase

(ESBL)-producing organisms (such as Escherichia coli) is on the rise in the United States,
with estimated costs to the health care system of $1.2 billion in 2017 (2). ESBLs confer
resistance to most b-lactam antibiotics, including penicillins, oxyimino-cephalosporins
(e.g., ceftriaxone), and monobactams, and can cause difficult-to-treat nosocomial- and
community-acquired infections (3, 4). Globally, sequence type (ST) 131 is the predomi-
nant ESBL-producing E. coli isolated from urinary tract infections (UTIs) and blood-
stream infections (BSIs), although other STs have been associated with ESBL carriage
(i.e., ST38, ST648, ST405, ST10, and ST1193) (5–7). In the United States and elsewhere, a
subclone of ST131 (C2/H30Rx) that carries the blaCTX-M-15 b-lactamase gene is often
reported (8). Another ST131 clade (C1-M27) was first observed in 2006 in Japan and
subsequently emerged as a major lineage; C1-M27 is also reported in Europe (5, 6).
C1-M27 carries the blaCTX-M-27 gene on IncF[F1:A2:B20]-type plasmids (9, 10). Little is
known about the epidemiology and genetic context of the blaCTX-M-27 gene among
clonal types other than ST131.

In 2017, we performed whole-genome sequencing (WGS) of 89 ceftriaxone-resistant
E. coli urine and sterile site isolates collected by our laboratory (“URMC ESBL”; Table 1),
which serves several counties in western New York. We identified ST38 as a frequent
lineage second only to ST131 (ST131, 41/89 [46.1%] isolates; ST38, 14/89 [15.7%] iso-
lates) (11). ST38 is a phylogroup D lineage that encompasses a variety of O:H serotypes
and has been described as a hybrid uropathogenic/enteroaggregative strain (12). ST38
is far less characterized than ST131, and clear CTX-M-associated ST38 lineages have not
been defined, although blaCTX-M-14 and blaCTX-M-15 have been found in ST38 (6, 7, 13–15).
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In contrast, in our 2017 study, ST38 was strongly associated with blaCTX-M-27, which was
found in 10/14 (71.4%) of ST38 isolates compared to 11/41 (26.8%) of ST131 isolates. In
ST38, blaCTX-M-27 was typically associated with IncF[F2:A-:B10] replicon plasmids,
whereas in ST131, it was found on IncF[F1:A2:B20] plasmids (11, 16).

In the current study, we sought to determine whether the occurrence of blaCTX-M-27

in ST38 was regional or more widespread. To address this question, 12 ST38 isolates
collected in 2017 from Colorado, New Mexico, and New York by the Centers for
Disease Control and Prevention (CDC) Emerging Infections Program (EIP) (17) were
sequenced alongside their purified plasmids. These isolates were ceftazidime, cefotax-
ime, or ceftriaxone resistant, susceptible to all carbapenems tested, and confirmed to
be ESBL positive (“CDC EIP” in Table 1). We compared the CDC EIP isolates to our previ-
ous ST38 E. coli isolated in 2017 (“URMC ESBL” in Table 1) and to 11 more recent (2018
to 2019) ST38 isolates (“URMC 2018–2019” in Table 1) from our institution in New York.

Library preparation and Nanopore- and Illumina-based sequencing for University of
Rochester Medical Center (URMC) isolates (11) and EIP isolates (18) were performed as
described previously. Only URMC and EIP isolates from 2017 were sequenced on the
MinION platform (Oxford Nanopore Technologies, Cambridge, MA). Plasmid DNA was puri-
fied using the QIAfilter plasmid midi kit (Qiagen, Germantown, MD) from 100-ml Luria-
Bertani (LB) cultures incubated for ;18 h at 37°C shaking. Read processing, assembly,
single-nucleotide polymorphism (SNP) calling (GenBank accession no. NZ_CP026723.1),
and phylogenetic analysis were done as described (18). The average coverage of the
reference strain was 87.3% (74.7% to 95.1%). Illumina-Nanopore hybrid read assemblies
were generated with Unicycler (19). Sequence contigs were screened for antibiotic resist-
ance genes (ARGs) and putative virulence factors using ABRicate (including ResFinder and
VFDB databases) (https://github.com/tseemann/abricate). Plasmids were aligned with
Mauve (20), and sequence identity was depicted with Easyfig (21). This study was
approved with a waiver of consent by the University of Rochester institutional review
board (IRB) office.

The CDC’s EIP ESBL surveillance found that 12 of 97 (12.4%) isolates typed as ST38
(6 from Colorado, 3 from New Mexico, and 3 from New York). Two of these 3 New York
E. coli isolates were isolated from our hospital laboratory and were described previ-
ously as URMC_35 and URMC_51 (11). The third, URMC_725, was isolated from another
local hospital system. An SNP-based phylogenetic tree was constructed using the 12
EIP ST38 isolates and the 23 other E. coli ST38 isolated and sequenced in our laboratory
between 2017 and 2019 (35 isolates in total) (Table 1; Fig. 1A). Isolates appeared to
group by b-lactamase type rather than state of origin. The most frequent b-lactamase
gene detected was blaCTX-M-27 (total, 17/35 [48.6%]; New York, 14/26 [53.8%]; Colorado,
1/6 [16.6%]; New Mexico, 2/3 [66.7%]), followed by blaCTX-M-14 (total, 14/35 [40.0%]; New
York, 10/26 [38.5%]; Colorado, 3/6 [50.0%]; New Mexico, 1/3 [33.3%]). Less prevalent
b-lactamase genes detected included blaTEM-1B (6/35 [17.1%]), blaCTX-M-15 (4/35 [11.4%]),
blaCMY-12 (1/35 [2.9%]), blaDHA-1 (1/35 [2.9%]), and blaOXA-48 (1/35 [2.9%]). All isolates with
blaTEM-1B also carried one other b-lactamase gene, either blaCTX-M-27 (1/6 [16.7%]),
blaCTX-M-15 (1/6 [16.7%]), or blaCTX-M-14 (4/6 [66.7%]). The blaOXA-48 carbapenemase gene

TABLE 1 Summary of ST38 isolates included in this study

Parent collection
Description
(reference no.) Yr(s) isolated Location

No. of ST38 isolates
included in current study

URMC ESBL 89 ceftriaxone-resistant
surveillance isolates (11)

2017 NY 14

CDC EIP 97 isolates from 5 EIP
surveillance sitesa

2017 NY, CO, NM 12

URMC 2018–2019 Additional ceftriaxone-
resistant ST38 isolates
found in clinical archive

2018–2019 NY 11

Total 35b

aResistant to ceftazidime, cefotaxime, or ceftriaxone, and nonresistant to all carbapenems tested and confirmed to be ESBL positive.
bTwo ST38 URMC isolates were submitted to the CDC EIP program (35 unique isolates in total).
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was detected in 1 ST38 E. coli (URMC_568) isolated from New York, which also carried
blaDHA-1 and blaCTX-M-14.

The median SNP distance between the 17 isolates carrying the blaCTX-M-27 gene was
199 SNPs (or 101 SNPs, excluding URMC_96 and URMC_645) compared to a median
distance of 2,727 SNPs between all isolates carrying blaCTX-M-14. Isolates URMC_96 and
URMC_645 were more distant (median of 4,153 SNPs) from the other blaCTX-M-27-carry-
ing E. coli. Long-read sequencing established that these also carried the blaCTX-M-27

FIG 1 Whole-genome sequence SNP-based phylogenomic tree of ST38 E. coli isolates obtained in New York, New Mexico, and Colorado with alignments
and sequence identity of related plasmids harboring the blaCTX-M-27 gene. (A) Phylogenomic tree of 35 unique ST38 isolates showing year isolated, inclusion
in the CDC EIP program, collection site, detection of b-lactamase genes (including only those with .95% sequence coverage), predicted phylotype and
serotype, and plasmid name (with size in bp) and replicon type (fast atom bombardment [FAB] nomenclature). (B) Gene schematic and linear alignment of
complete plasmids encoding the blaCTX-M-27 gene from ST38 (with genes shown as arrows). Antibiotic resistance genes are show in black. All blaCTX-M-27

plasmids identified in CDC EIP isolates are depicted (URMC_645_p_157668, URMC_638_p_147846, and URMC_646_p_152257) alongside selected previously
described plasmids of the same FAB replicon type (URMC_96_p_153061 and URMC_9_p_149685) (11).
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gene on plasmids (URMC_96_p_153061 and URMC_645_p_157668) of a different plas-
mid multilocus sequence typing (pMLST) type (IncF[F1:A2:B20]) compared to blaCTX-M-27-
carrying plasmids (IncF[F2:A-:B10]) found in the other ST38 isolates (Fig. 1B). Despite this,
these different plasmid types shared some synteny (generally, ;92% identity over 42%
of the conserved tra gene backbone versus;100% identity over;78% of the conserved
ARG region). In addition to blaCTX-M-27, which was flanked by insertion elements in an
arrangement known in ST131 (i.e., IS26-DISEcp1-blaCTX-M-27-DIS903D-IS26) (9), other ARGs
found on these plasmids putatively included those for resistance to tetracyclines [tet(A)],
sulfonamides (sul1, sul2), trimethoprim (dfrA17), aminoglycosides [aadA5, aph(6)-Id, aph
(30)-Ib, ant(30)-Ia], and macrolides [mph(A)]. A class 1 integron harbored the dfrA17,
aadA5,mph(A), and sul1 genes (22).

This work suggests the emergence of blaCTX-M-27 in ST38 on a newly described and
conserved plasmid backbone (IncF[F2:A-:B10]) across three states from different
regions of the United States. Also identified were two ST38 isolates with the gene on a
plasmid type (IncF[F1:A2:B20]) already known in ST131 (10). This finding suggests two
pathways for horizontal transfer of the b-lactamase among ST38. The association
between blaCTX-M-27 and ST38 may potentially result in the emergence of new ESBL-pro-
ducing clones and lead to an increase in antibiotic-resistant UTIs and BSIs.

Data availability. The sequence information presented in this study has been de-
posited under NCBI BioProject accession nos. PRJNA692174 and PRJNA510429.
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