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ABSTRACT Antimicrobial resistance (AMR) remains one of the most challenging phe-
nomena of modern medicine. Machine learning (ML) is a subfield of artificial intelli-
gence that focuses on the development of algorithms that learn how to accurately pre-
dict outcome variables using large sets of predictor variables that are typically not
hand selected and are minimally curated. Models are parameterized using a training
data set and then applied to a test data set on which predictive performance is eval-
uated. The application of ML algorithms to the problem of AMR has garnered increas-
ing interest in the past 5 years due to the exponential growth of experimental and clin-
ical data, heavy investment in computational capacity, improvements in algorithm
performance, and increasing urgency for innovative approaches to reducing the burden
of disease. Here, we review the current state of research at the intersection of ML and
AMR with an emphasis on three domains of work. The first is the prediction of AMR
using genomic data. The second is the use of ML to gain insight into the cellular func-
tions disrupted by antibiotics, which forms the basis for understanding mechanisms of
action and developing novel anti-infectives. The third focuses on the application of ML
for antimicrobial stewardship using data extracted from the electronic health record.
Although the use of ML for understanding, diagnosing, treating, and preventing AMR is
still in its infancy, the continued growth of data and interest ensures it will become an
important tool for future translational research programs.
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Use of broad-spectrum antibiotics are a routine part of medical care for a significant
proportion of hospitalized patients globally. Unsurprisingly, this practice has led to

the emergence and global spread of multidrug-resistant pathogens. According to the
Centers for Disease Control and Prevention (CDC), antimicrobial resistance (AMR) was
responsible for the deaths of 35,900 people in the United States in 2018 (1), with pro-
jected increases as the population ages. The death toll worldwide is estimated to be a
staggering 700,000 per year (2). The arrival of a new generation of antibiotics has pro-
vided hope to patients and providers, but bacterial evolution demands continuous
innovation in the realm of drug development to ensure that gains are preserved.
Furthermore, the cost of new treatments and the lack of access in resource-limited set-
tings points to an urgent need for generalizable approaches to prevent AMR.

Drug resistance arises from the multiscale interaction between evolutionary forces,
microbiology, the built environment, and human behavior, making it one of the great
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challenges of the 21st century. Machine learning (ML) is a subfield of artificial intelli-
gence that has emerged as one potential avenue by which to address this complex
phenomenon. ML is primarily concerned with the development of algorithms that are
able to build a predictive model using a training data set, with little to no human input
(3). Algorithms are broadly categorized into supervised ML, where algorithms train on
data that contain the outcome of interest; unsupervised ML, where algorithms learn
structures within the data set de novo; and reinforcement learning, where algorithms
learn to optimize for a desired outcome as new data are continually incorporated.
Relative to traditional statistical modeling, ML algorithms are typically less concerned
with understanding data-generating processes and more focused on performing pre-
diction on unseen data, referred to as a test data set (4). However, in recent years there
has also been considerable progress on developing ML algorithms for causal inference
with observational data (5, 6). Figure 1A provides an overview of the data processing
steps involved in ML analyses, and Fig. 1B illustrates the three main categories of
models.

Interest in applying ML to health care has intensified over the past decade, reflect-
ing the exponential increase in biological and medical data availability, massive
improvements in computational power, and critical breakthroughs in algorithm devel-
opment. Applications to the practice of infectious diseases have encompassed the di-
agnosis of infection (7, 8), the early identification of sepsis (9–11), and targeting preex-
posure prophylaxis for people living with human immunodeficiency virus (12, 13). In
this review, we provide an overview of the current state of research into the applica-
tions of ML for understanding, treating, and preventing AMR. We structure this review
into three sections: the prediction of resistance phenotypes from pathogen genomic
data; the understanding of antibiotic mechanisms of action and its corollary, novel
drug development; and lastly, antimicrobial stewardship using ML-driven clinical deci-
sion support. While the field is still young, we propose that ML will come to play an im-
portant supporting role in the ongoing effort to reduce the burden of AMR worldwide.

ML FOR PREDICTING AMR FROM PATHOGEN GENOMIC SEQUENCES

The increasing prevalence of AMR necessitates routine antimicrobial susceptibility
testing (AST) to ensure adequate treatment. Phenotypic testing is the gold standard
for AST, but the process of bacterial isolation and subsequent culture in the presence
of antibiotics typically takes 2 days for nonfastidious bacterial pathogens and up to
several weeks for slow-growing organisms like Mycobacterium tuberculosis. It is not rou-
tinely performed for some pathogens such as Neisseria gonorrhoeae, despite well-docu-
mented increases in resistance. An alternative method that is gaining traction due to
decreasing sequencing costs and improvements in analytic tools uses the microbial ge-
notype, rather than the phenotype, to determine AMR (14, 15). Genotypic methods
promise to not only be faster than phenotypic methods by bypassing laboratory cul-
ture but may also provide insight into the mechanisms driving AMR, enable early
detection of transmission events, and provide important ancillary information such as
the bacterial strain and virulence factors (16).

Genotypic AMR prediction methods require an organism to be sequenced and for
that sequence to be translated into a prediction using either a rule-based or an ML
approach, as recently reviewed (17). Rule-based approaches use prior knowledge to
interpret the presence or absence of known AMR genes (e.g., mecA and vanA) or resist-
ance-causing mutations (e.g., gyrA S83L conferring fluoroquinolone resistance in
Escherichia coli), resulting in excellent performance in well-studied organisms with a
small number of highly penetrant resistance loci such as Staphylococcus aureus and M.
tuberculosis (18, 19). However, since rule-based approaches require a comprehensive
knowledge of organism-specific resistance mechanisms and manual curation, they are
difficult to scale to encompass the breadth of organisms routinely encountered in clini-
cal practice and tend to have difficulty predicting complex AMR mechanisms, such as
polymyxin resistance in Klebsiella pneumoniae (20).
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ML models have increasingly been shown to provide accurate predictions of AST
when trained on sufficiently large training data sets despite the models not having
prior knowledge of resistance mechanisms. The foundational training data are high
dimensional, given an average genome size of 4Mb, and yet are relatively few in num-
ber due to the limited size of public databases with linked AST phenotypes and the

FIG 1 General overview of machine learning analyses. (A) ML analyses are capable of integrating a wide variety
of data types. These include raw images or instrument traces, pathogen genomic sequences, data obtained
from wet lab experiments, and information contained in the electronic health record. The latter encompasses
clinical pathology results, free text notes, and structured data such as demographics, comorbidities, procedures,
allergies, medication exposures, and hospital encounters. These inputs must be carefully cleaned and the
relevant features extracted or engineered. Multiple validation checks are often necessary to ensure the data
remain accurate after preprocessing. Next, the data are split into a training set used to define the model
parameters and a remaining portion is held out for testing model performance. (B) There are three broad
categories of ML analyses. The first two are supervised and unsupervised learning. In supervised learning,
training data contains labels denoting the outcome of interest (i.e., antibiotic resistance phenotypes). The
model trains on these data and then predicts the predefined outcomes of interest on test data. Unsupervised
models are trained on data that does not contain labels for the outcome of interest. The model therefore
searches on its own for relationships between variables and then predicts these relationships on unlabeled test
data. A typical use for unsupervised learning involves clustering high dimensional data and outlier detection.
The final category of ML analyses are reinforcement learning models. These models comprise an “agent” which
interacts with its environment over time. The state of the environment is provided to the agent, and the agent
then chooses an action, e.g., an antibiotic treatment choice, from a set of available options. It then assesses the
impact of that action on the environment through a reward function. The purpose of the reinforcement
learning agent is to learn a set of actions for different states (i.e., a “policy”) that maximizes the cumulative
reward.
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expense of obtaining new sequences. Thus, the number of input features can vastly
outnumber the training examples, leading to the risk of overfitting (21). Here, we
describe recent advances that have begun to overcome these challenges, specifically
focusing on (i) the training data requirements, (ii) the features that ML models have
been trained to classify, and (iii) the ML models that have been explored.

Importance of training data. Genotypic ML models typically require large data-
bases of high-quality sequencing data from diverse isolates that are labeled with phe-
notypic AST data (Fig. 2A). The sequencing data input for genotypic ML models is most
commonly shotgun DNA sequences from isolates, but shotgun metagenomic DNA
sequences (22) or sequenced amplicons can also be used. Alternatively, rather than
basing predictions solely on genomic DNA sequences, one can use antibiotic treat-
ment-induced transcriptional responses, which have the advantage of incorporating
both phenotypic and genotypic data for the prediction of AMR (23, 24).

Phenotypic AST data are used as the ML model’s “ground truth” and ensuring accu-
racy is critical to ensure model validity. However, clinical microbiologists are well aware
of the variability inherent in AST results even when using standardized operating pro-
tocols. Breakpoints vary among guidelines and can change over time, an example of
“data set shift” (25). Certain drugs may be tested by some labs but not others depend-
ing on local prescribing practices, leading to missing data. MICs can vary by one to two
2-fold dilutions across laboratories, contributing noise to the phenotypic output upon
which the model is trained (26, 27). Subsequently, ML models tend to have higher ac-
curacy for species-drug combinations with clear-cut bimodal MIC distributions, where
the wild-type and resistant populations are clearly distinguished and the impact of
phenotypic measurement variability is the least. Conversely, species-drug combina-
tions with significant overlap between the wild-type and resistant distributions can be
particularly difficult to classify, and isolates with MICs near the breakpoint or in the “in-
termediate” category are sometimes excluded from predictions (26, 28, 29). Hicks et al.
tested a variety of ML models to predict gonococcal resistance to ciprofloxacin (well-
separated bimodal distribution) and azithromycin (significant overlap in wild-type and
resistant distributions). The ciprofloxacin model accuracy was .95% regardless of the
clinical breakpoint or ML model used. Conversely, the azithromycin model accuracy
ranged from 77 to 88% when trained on all isolates. When they removed strains with
azithromycin MICs within two doubling dilutions of the nonsusceptible breakpoint, the
model accuracy improved to 88 to .95%, demonstrating a contribution of the MIC dis-
tribution to model performance. More commonly, intermediate isolates are grouped
with resistant isolates rather than eliminating them all together. Despite these chal-
lenges, accurate MIC predictions have been demonstrated for numerous antibiotics
with N. gonorrhoeae, Salmonella, and K. pneumoniae (30–32), and accurate binary pre-
dictions have been demonstrated more widely (17).

Given the cost and difficulty of obtaining data, how many training examples are
needed? There is no universal rule. Models for exceedingly simple mechanisms such as
methicillin resistance in S. aureus require fewer than 100 examples to achieve .99%
accuracy (33). Species such as Pseudomonas aeruginosa with high genomic variability
and numerous antibiotic resistance mechanisms may require thousands of examples
to capture the long tail of resistance determinants and nonlinear genetic interactions
(34). In a nontyphoidal Salmonella data set, increasing the training set size from 500 to
4,500 genomes improved the average model accuracy from 90 to 95% (30). In addition
to collecting a sufficient number of training examples, it is also important to acquire a
balance of susceptible and nonsusceptible examples that ideally cover a broad range
of MICs. Compared to models trained on balanced data sets, models trained on skewed
data sets comprised mostly of susceptible examples tend to have lower sensitivity and
higher specificity, and vice versa (26), with an overrepresentation of resistant examples.
If generalizability is desired, isolate diversity is also needed to capture resistance mech-
anisms that vary in prevalence geographically and to avoid training on phylogenetic
confounders (26, 30), although strategies to control for population structure have been
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FIG 2 Schematic overview of the process of training a machine learning (ML) model to predict
antimicrobial susceptibility testing (AST) results from whole-genome sequences. (A) ML models rely
on data sets containing tens to thousands of isolates with paired whole-genome sequences and
phenotypic AST results. Data sets are divided into training and test sets, where the training set is
used to fit the parameters of the model and the test set evaluates the model accuracy. An optimal
data set contains a balance of resistant and susceptible examples for each organism-drug
combination. (B) The data inputs are usually quality-controlled sequencing reads or assembled
genomes, which are transformed into overlapping subsequences of length k, referred to as a k-mer. A
typical length for a k-mer feature is 13 to 31 nucleotides, but a length of 6 nucleotides is shown here
for clarity. There are 4k k-mer possibilities (e.g., 4,096 when k= 6), and the counts of each k-mer
present in a given sequence are tallied for each isolate in the data set. The selected features are then
merged with the phenotypic AST data, and this matrix is used as the input for a supervised machine
learning model. The model analyzes the matrix to find the features, e.g., k-mers, that best predict
resistance or susceptibility to a given antibiotic.
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recently demonstrated (35). The CRyPTIC Consortium collected over 10,000 M. tubercu-
losis isolates globally to include all major M. tuberculosis lineages and obtain sufficient
examples of rare ethambutol or pyrazinamide-resistant isolates (19, 26).

General strategies for prediction. Most ML models train on continuous or binary
vectors of fixed width. Transforming complex input data into this form is known as
“feature extraction.” A common method for deriving features from genomic shotgun
sequencing data is to divide the sequencing reads or contigs into subsequences of
length k, also called k-mers (Fig. 2B) (33, 36–40). The k-mers within a given sample can
then be counted and transformed into a vector by marking the presence/absence or
frequency of each k-mer, of which there are 4k possibilities (though only a fraction of
these, approximately five million, are present in a given training set). A typical k-mer
length is from 13 to 31 nucleotides, where longer k-mers are potentially more specific
but prone to sequencing error and require more training data to sufficiently sample
the larger feature space (33, 37, 38, 40, 41). Others have extracted features by mapping
reads to antibiotic resistance genes, functional orthologs, or even pangenomes, which
can capture variations in novel genes and regulatory sequences, and deriving features
based on the presence or absence of genes, single nucleotide variants, or indels
(42–46). An orthogonal approach extracted features from protein sequences based on
the proteins’ function, primary structure, secondary structure, and physicochemical
properties (47).

After featurization, the prediction of AMR becomes a routine supervised learning
problem. Many off-the-shelf ML models have been applied, including logistic regres-
sion, random forests, decision trees (e.g., XGBoost and AdaBoost), and neural networks.
For this particular application, the choice of ML model tends to have less of an effect
on model accuracy than the characteristics of the underlying training data (26). Drouin
et al. took a unique approach by focusing on model interpretability, which is the ability
for a user to understand how a model arrived at its prediction (38). They applied two
algorithms—classification and regression trees, to learn decision trees, and set cover-
ing machines, to learn logical operators—to determine a simple set of rules that reveal
resistance mechanisms and predict phenotypes with fairly high accuracy. More typical
ML models can also provide interpretability, e.g., by mapping predictive k-mers back to
their genomic locus and quantifying the locus’ importance in the overall prediction
(20). Generally, ML models that are interpretable rather than “black-box” are likely to
gain greater acceptance in clinical practice and have the added benefits of generating
testable hypotheses for novel mechanisms and identifying spurious associations (48).

Comparing model accuracy for a given organism across publications is challenging
due to differing validation data sets, evaluation metrics (e.g., area under the curve, F1
score, or accuracy), and drug selection. Head-to-head comparisons of ML algorithms
on well-curated test sets would provide valuable insight into optimal feature and
model selection. For example, Mason et al. recently compared three non-ML WGS-
based phenotypic prediction methods on a test set of 1,379 S. aureus isolates and
found 98.3% concordance between genotypic predictions and laboratory phenotypes,
with 99.6% concordance among the three genotypic methods (49).

Expanding the breadth and depth of genotypic AMR prediction. Significant
advances have been made in the field of genotypic AMR prediction using ML, but
there are important limitations related to comprehensiveness. Studies to date have pri-
marily focused on predicting the most commonly used antibiotics in a few of the most
commonly encountered bacterial pathogens. The use of ML-based prediction models
in routine clinical practice will require expanding training data sets to include the non-
aureus staphylococci, streptococci other than S. pneumoniae, and Enterobacterales
other than E. coli and K. pneumoniae. More focused investigations will also be required
for organisms such as Pseudomonas aeruginosa that have phenotypic plasticity and
complex AMR patterns that can confound genotypic predictions (29, 37). Greater effort
should also be placed on sequencing and predicting unusual but highly clinically signif-
icant organisms such as vancomycin-nonsusceptible S. aureus. It is also a challenge to obtain
sufficient data to predict resistance to new antibiotics, such as ceftazidime-avibactam,
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ceftolozane-tazobactam, cefiderocol, and eravacycline, due to a lack of tested isolates and
the paucity of resistant strains. Initiatives such as the CDC and the U.S. Food and Drug
Administration (FDA) Antibiotic Resistance Isolate Bank and the FDA-ARGOS database that
collect, validate, and sequence organisms with important resistance patterns will be tre-
mendously valuable to fill the current gap.

ML FORUNDERSTANDINGMECHANISMSOF AMRANDANTIMICROBIAL DISCOVERY

While the clinical need for effective antimicrobials is growing, the pipeline for dis-
covering new and effective antimicrobials is shrinking (50). Traditional compound
screening methods used in the pharmaceutical industry commonly fail to arrive at
chemically distinct compound classes, driving innovation for the discovery of new indi-
cations for existing antimicrobials and for novel antimicrobial classes. ML is particularly
well suited to support both of these goals. In this section, we review the growing use
of ML approaches for uncovering antimicrobial mechanisms of action and for the dis-
covery of novel antimicrobial agents.

Understanding antimicrobial mechanisms of action. Antimicrobial agents are
generally understood to function either by inhibiting the activity of essential microbial
gene products or by destroying the mechanical integrity of essential microbial compo-
nents such as membranes or DNA. However, antimicrobial efficacy is highly context de-
pendent, and several aspects of microbial physiology can enhance or inhibit antimicro-
bial treatment outcomes (51) indicating that drug-target interactions alone are
insufficient for explaining why antimicrobials succeed or fail in the clinic. ML-based
approaches are now beginning to meet this knowledge gap, enabling the rapid identi-
fication of physiological processes impacted by antimicrobial agents with unknown
function, pathway mechanisms for antibiotic-induced cell death, and resistance mech-
anisms from sequenced genomes.

Experimental platforms are increasing in throughput and quantitative sophistica-
tion, permitting deep characterization of the cellular phenotypes induced by antimi-
crobial agents. Applications of supervised ML to data from platform technologies such
as high-throughput fluorescence microscopy (52) and mass spectrometry-based
metabolomics (53) are now enabling the inference of antimicrobial mechanisms of
action based on morphology or biochemical fingerprint. These techniques work by first
characterizing the cellular responses to well-characterized antimicrobials and then
applying ML algorithms to these measurements to train an antimicrobial classifier.
Such approaches can be effective if a poorly characterized antimicrobial shares a target
with well-studied antimicrobials, but these techniques are limited by the diversity of
the training data.

Modern ML algorithms are now capable of assembling highly predictive models
when given sufficiently large training data sets; however, the associations between fea-
tures identified by ML algorithms rarely translate to specific biomolecular entities
which can be experimentally perturbed. The result is a so-called “black-box” that pre-
cludes biological understanding. Recent efforts have focused on developing interpreta-
ble “white-box” ML methods that can provide direct insight into biological mecha-
nisms. However, this domain of ML remains in a nascent stage due to limitations in
how training data are often presented to ML algorithms. One of the earliest demon-
strations of interpretable ML sought to identify metabolic pathways contributing to an-
tibiotic-induced lethality (54). Instead of training a predictive model directly on the
metabolites used as biochemical perturbations in a bactericidal antibiotic response
screen, Yang et al. used a literature-curated network model of bacterial metabolism to
first transform screening perturbations into metabolic network states corresponding to
the screening conditions and then applied these metabolic states as training data
alongside the antibiotic response measurements. The resulting ML model directly iden-
tified purine biosynthesis as a novel metabolic pathway involved in the lethal proc-
esses of bactericidal antibiotics, that is activated by antibiotic-induced nucleotide pool
disruptions (55) and that drives lethal stress-induced metabolic dysfunction (56). These
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results were validated genetically and biochemically, demonstrating how interpretable
ML may enable the discovery of causal biological mechanisms.

Interpretable ML approaches are now also beginning to shed light on novel biologi-
cal mechanisms directly from the whole-genome sequences of clinical isolates. As
described above, conventional ML approaches are sufficient for predicting antibiotic
susceptibility phenotypes from genotypic data. However, biological understanding for
how these phenotypes emerge requires additional information on how gene products
have evolved to function together in microbial physiology. Although AMR is commonly
understood to be explained only by mechanisms that either reduce the effective intra-
cellular concentration of an antimicrobial agent or inhibit the interaction between an
antimicrobial and its target, the diversity in antimicrobial treatment failure phenotypes
suggest that some AMR mechanisms may be found in aspects of microbial physiology
beyond the drug-target interaction (57). Metabolic network models are now being
applied to powerfully address this knowledge gap. Kavvas et al. used a genome-scale
metabolic model of M. tuberculosis to transform whole-genome sequences from drug-
resistant clinical strains into interpretable ML training data and identified novel resist-
ance mechanisms that are specific to different antituberculosis antibiotics (58). To
achieve this, these authors first developed strain-specific metabolic models of drug-
susceptible and drug-resistant clinical isolates, applying SNPs in metabolic genes as
modeling constraints, and then developed a ML classifier based on the resulting model
simulations to identify metabolic reactions that would be predictive for AMR against
each antituberculosis antibiotic. These analyses identified both direct targets of these
antibiotics and several metabolic enzymes as drivers of AMR, demonstrating the power
of interpretable ML to uncover novel AMR mechanisms.

Interpretable ML approaches have the potential to transform our understanding of
how AMR arises, and unlike traditional genome-wide association studies, prior knowl-
edge about genes harboring mutations is directly incorporated into the overall ML
framework, providing a direct link between model results and pathway mechanisms.
Elucidating the underlying biological mechanisms responsible for AMR is an important
step toward the development of novel therapeutic regimens that may block the forma-
tion of AMR (59).

Discovering novel antimicrobial agents. ML is poised to fundamentally transform
pharmaceutical drug discovery and development by providing tools that are accelerat-
ing target identification, lead discovery, preclinical development and clinical develop-
ment (60). In the case of antimicrobial discovery, recent studies demonstrate how ML
can be applied to learn small molecule structural features from screens which include
existing antimicrobials to design novel antimicrobials. Innovation in this area has
focused on both the development of novel screening strategies that leverage geneti-
cally engineered microbial strains to improve screening sensitivity (61) and the applica-
tion of novel ML algorithms that utilize new chemical structure representations to
improve algorithmic learning of chemical properties (62). Johnson et al. developed a
screening strategy for discovering biochemical inhibitors of essential genes in M. tuber-
culosis by first generating a genetic library consisting of hypomorph knockdowns for
these essential genes and then screening 50,000 chemical compounds against these
hypomorphs (61). Using known antituberculosis antibiotics as a reference ground-
truth, these authors applied supervised ML classification analyses to identify novel
classes of chemical inhibitors of both existing drug targets (such as DNA gyrase,
mycolic acid synthesis, and folate metabolism) and new drug targets (such as the EfpA
efflux pump), which they validated in wild-type cells.

Stokes et al. performed a biochemical screen of ;2,300 chemically diverse com-
pounds for antimicrobial activity against E. coli and used the resulting data to train a
deep learning ML model to predict antimicrobial activity from chemical structures
alone (62). These authors applied the resulting ML model to the Drug Repurposing
Hub and discovered SU3327 (a c-Jun N-terminal kinase inhibitor), which they validated
as a potent inhibitor of ESKAPE pathogens and multidrug-resistant pathogens.
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Applying this ML model to the .107 million molecules in the ZINC15 database, the
authors discovered eight putative antimicrobial compounds that are structurally dis-
tinct from known antimicrobials, demonstrating how ML can drive lead discovery. Lead
compounds emerging from both these studies powerfully illustrate how ML
approaches can fuel drug discovery and development.

ML approaches have also been applied to aid in the design (63) and optimization
(64) of antimicrobial peptides (AMPs), with demonstrated efficacy against drug-resist-
ant pathogens. AMPs are natural substrates for ML algorithms since they can be fully
represented by their peptide sequences. Moreover, AMPs are typically short (,30
amino acids), making them tractable for oligopeptide synthesis and enabling more
comprehensive screens of the chemical structure landscape than would be possible for
small molecules. Wu et al. designed DP7, a novel 12-amino-acid AMP with activity
against S. aureus, by training an ML model with multiple 12-amino-acid AMPs to esti-
mate the contribution of amino acids at each position to overall antimicrobial activity
(63). These authors then synthesized this AMP and demonstrated that this had in vivo
efficacy against both drug-susceptible and drug-resistant S. aureus (65). Similarly, Porto
et al. applied an ML genetic algorithm to peptides derived from the guava plant to
design optimized plant-templated AMPs with antimicrobial activity (64). These analyses
led to the discovery of the novel AMP Guavanin 2, which the authors demonstrated
had in vivo efficacy against diverse pathogens. As ML approaches improve in their abil-
ity to aid peptide and protein engineering (66), AMPs are likely to become important
tools for combating AMR.

Prospects for overcoming antimicrobial resistance. Collectively, ML approaches
are revealing important insights into the biological mechanisms underlying antimicro-
bial treatment failure and providing novel candidates for accelerating antimicrobial
discovery. Although ML algorithms are becoming increasingly democratized for basic
and translational research, continued innovation at the interface between ML and AMR
requires the availability of large, high-quality data sets. Continued progress hinges
upon advances in screening and sequencing methods that capture the enormous di-
versity of clinical pathogens, sequenced strains, and antimicrobial compounds. As mi-
crobial knowledge bases become increasingly complete, new ML formalisms will also
be required to efficiently and effectively improve the interpretability of the predictive
models generated by ML.

ML FOR ANTIMICROBIAL STEWARDSHIP

Antimicrobial stewardship programs (ASPs) seek to align antibiotic use with appro-
priate indications and to assist in the selection of treatment regimens that are of the
narrowest spectrum and of the shortest duration without compromising efficacy (67).
This is a critically important endeavor as the prescription of unnecessary or inappropri-
ately broad-spectrum antibiotics by health care providers is a major driver of AMR.
ASPs are very effective at the local scale but most require significant investment in
human resources for manual data curation and provider feedback, which limit the abil-
ity to scale up. Clinical decision support systems (CDSSs) for antibiotic stewardship
using probabilistic models exist (68–71) but have not yet been widely adopted since
most are highly specialized to the health systems in which they were trained.

The electronic health record (EHR) is a rich source of information for clinicians, as
well as for ML models that seek to augment clinician decisions. The application of ML-
based CDSSs for antimicrobial stewardship offers a pathway for scaling up ASP inter-
ventions while maintaining highly personalized recommendations. However, very few
studies have used this approach to date. In this section, we review the challenges asso-
ciated with the use of EHR data, integrating early examples of ML-based tools aiming
to support stewardship efforts and provide guidance around best practices for future
work.

Challenges in the analysis of EHR data. The EHR contains many important risk fac-
tors for AMR, including prior infections and resistance profiles, recent exposures to hos-
pitals and antibiotics, laboratory values, imaging and pathological reports, and prior
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responses to treatment. Data come in both structured and unstructured (free-text) for-
mats. Newer ML approaches are bypassing human-entered data altogether by analyz-
ing primary images and waveforms. A unique aspect of clinical microbiologic data is
the existence of susceptibility phenotypes not only for the antibiotic chosen by the cli-
nician but also for other potential treatment candidates. Susceptibility profiles allow
an ML algorithm to evaluate the impact of an array of potential treatment decisions
in parallel, a situation referred to as the counterfactual, and is critical for developing
policies that are optimal for a chosen task while accounting for off-target effects (72).

The use of EHR data, however, presents many challenges. First, it is highly prone to
containing erroneous or indecipherable data due to entry error. Second, the complex-
ity of AMR requires pulling data across multiple databases, significantly increasing the
skill and time necessary to validate data cleaning processes (73). Third, EHR data are
subject to nonrandom missing observations, confounding by indication and selection
bias (74). Fourth, susceptibility data are subject to changes in clinical breakpoints, as
well as shifts in the underlying distribution over time, potentially reducing the accuracy
of models trained on historical data (75). Fifth, representations of data are often spe-
cific to the institution from whence they arose, a potential barrier to generalizability. It
is necessary to pay careful attention to each of these pitfalls to ensure an ML CDSS pro-
duces accurate recommendations specific to the local environment.

Measurements for clinical evaluation. Much of the focus of ML applications in
health care has been on performing prediction for various clinical tasks. Popular met-
rics for model performance include sensitivity, specificity and the Area Under the
Receiver Operating Curve (AUROC) characteristic. In the realm of AMR, Ghosh et al.
describe the use of an ensemble of ML models to predict susceptibility phenotypes
across common pathogen-antibiotic combinations in septic intensive care unit (ICU)
patients (76). Similarly, Feretzakis et al. used an ensemble method to predict AMR in a
single center study of ICU patients in Greece (77), and Goodman et al. reported on an
ML-derived decision tree for identification of patients with a bloodstream infection
due to an extended-spectrum beta-lactamase-producing organism (78). Each study
reported AUROCs, but no evaluations were made to compare the performance of the
model to that of clinicians using unseen test data.

To understand the clinical impact of a CDSS, it is necessary to translate probabilities
into decisions using cutoffs (79) and then evaluate against the decisions made by pro-
viders either retrospectively using a test data set (preferably from a different health
care system) or prospectively in a trial format. In the case of antibiotic stewardship, a
CDSS must choose thresholds that balance the tension between reducing the spec-
trum of therapy and preserving clinical efficacy. Thresholds that intentionally bias deci-
sions away from broad-spectrum therapy may lead to unacceptably high rates of inap-
propriate therapy, defined as the choice of an agent that is shown to be resistant in
vitro. Conversely, thresholds that bias decisions to ensure clinical success could lead to
high levels of broad-spectrum therapy. Sensitivity analyses over a range of clinically rel-
evant thresholds may be necessary to better evaluate tradeoffs. Kanjilal et al. provide
an example of this approach in their evaluation of an empirical treatment decision
algorithm for patients with uncomplicated urinary tract infection (UTI) (80). A wide
range of probability cutoffs were evaluated, with the final selection based on their abil-
ity to maximize reductions in the use of second-line therapies while accepting rates of
inappropriate therapy that were no greater than that of clinicians. Using this approach,
they were able to build an ML policy optimization approach that reduced fluoroquino-
lone usage by .67% relative to the retrospective decisions of clinicians, while also
reducing inappropriate therapy by 18%. In practice, it may be beneficial to allow end
users to adjust thresholds to fit their personal tolerance for risk since this is known to
vary considerably between providers, provided it is within the bounds of practice
guidelines. Subsequent work using the same cohort utilized a direct learning approach
rather than prediction of resistance to individual antibiotics and was able to achieve
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similar outcomes relative to the initial study but allowed for a deeper understanding of
factors influencing antibiotic treatment decisions (72).

Considerations for deployment. Deploying a ML CDSS at the point-of-care entails
integration into clinical workflows and development of a front-end interface that pro-
vides interpretable recommendations with measures of uncertainty. CDSSs should
appear to end users at the appropriate moment in the treatment decision process and
provide rapid recommendations that are specific to the patient. It is important for any
ML-based model to provide the logic behind a recommendation to ensure it can be
adequately assessed by the treating clinician. Furthermore, sustainability will require
that ML models to retrain on a periodic basis using new data that has accrued in data-
bases to ensure recommendations reflect the local patient population.

There are several examples of CDSSs for antibiotic stewardship that have success-
fully deployed at the point of care, though none utilize ML. The TREAT CDSS uses a set
of hand-picked features to predict the probability of bacterial infection and antibiotic
resistance and then provides recommendations on which treatments to choose using
a weighting algorithm. TREAT was evaluated using a cluster randomized control trial
and found to significantly reduce inappropriate antibiotic therapy by 9% (69). The
ongoing INSPIRE-ASP UTI (70) and PNA (71) trials have deployed similar probabilistic
prediction models using a small set of hand-picked variables to provide stewardship
around empirical treatment decisions for UTI and lower respiratory tract infections. The
INSPIRE trials are being conducted as a cluster randomized trial across 59 hospitals in
the United States, with the primary completion date anticipated in 2022.

Existing CDSSs are trained on EHR data that are specific to a hospital or health care
system and have limited generalizability to new environments where data collection
systems and representations may differ greatly. However, over the past decade consid-
erable effort has gone into building universal medical ontologies and backend soft-
ware infrastructure that allows for interoperability of EHR data (81). The goal of such
efforts is to create a marketplace for decision support applications similar to that of an
“application store” for smartphones, where developers can rely on consistent input
data that is agnostic to EHR vendors (82). The maturation of such a marketplace would
be a major development for ML CDSSs designed for antimicrobial stewardship.

Designing for equity. The majority of ML-CDSS applications for clinical infectious
diseases focus on ICU patients in high-income countries, reflecting the relative abun-
dance of data in this population (83). However, the vast majority of antibiotic prescrib-
ing occurs in outpatient settings, where data sets are relatively sparse. The mismatch
between data and clinical need is even more striking for minority populations and in
resource-limited settings in sub-Saharan Africa and Asia (84), where disparities in out-
comes for infections and the burden of AMR are the highest.

The inequality in the amount of data available in disadvantaged populations
reflects fundamental inequalities in access to health care, but there are important steps
that researchers can take to help ensure the benefits of ML are more equitably distrib-
uted. For instance, studies seeking to target vulnerable populations can build their
data collection systems to gather relevant features for the population of interest in a
manner that integrates into larger training databases. This facilitates the generalization
of models developed in higher income or in socioeconomically advantaged commun-
ities to more diverse populations. Researchers can also design models to be computa-
tionally efficient and rely on as few features as possible (77), reducing the barriers to
deployment in settings where the IT infrastructure may be less developed.

Three studies describe the application of ML to antibiotic stewardship in outpatient
and resource-limited settings. Yelin et al. developed an ML CDSS to predict resistance
in outpatients presenting with UTI using insurance claims, susceptibility, and a small
set of clinical metadata. Using logistic regression and gradient boosted decision trees,
they were able to retrospectively achieve a 30% reduction in the selection of inappro-
priate antibiotic therapy (85). The previously mentioned study by Kanjilal et al. similarly
focused on outpatients with uncomplicated UTI (80). A study by Oonsivilai et al. compared
eight different ML models for predicting resistance in Cambodian children with bacteremia
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and showed AUROCs ranging from 0.7 to 0.8 (86). The paucity of studies in this area high-
light the urgent need for researchers to invest more effort in designing ML applications for
underserved populations.

Elements for success. Building an effective and sustainable ML-derived decision
support tool for antimicrobial stewardship requires close collaboration between the
analytic team, clinicians, IT engineers, behavioral scientists, and experts in implementa-
tion science. The analytic team is responsible for developing highly accurate and com-
putationally efficient models that can use data inputs “as is” and provide outputs that
can easily interface with EHR systems independent of vendor. Provider insight is funda-
mental to identifying data features that are clinically relevant to AMR, for evaluating
inconsistencies in the data, interpreting unexpected results, selecting models that are
acceptable to end users and designing randomized trials to evaluate utility. IT engi-
neers are necessary for building and maintaining the infrastructure necessary for
deployment at the point of care. Behavioral scientists can provide an understanding of
the drivers for current prescription practice, identify strategies for behavior modifica-
tion using CDSSs and perform field testing. Implementation science will be critical to
carry research findings into clinical practice. Finally, designing models and CDSSs with
an explicit intent to ensure equity is critical for success.

CONCLUSIONS

A new model for translational research is emerging, which utilizes advanced ML
algorithms to improve AMR diagnostics, provide deeper insight into biologic mechanisms
of resistance, expand pathways for antibiotic development, and develop personalized clini-
cal decision support for rational treatment. These activities hold promise for overcoming
the challenges posed by AMR. The factors limiting growth in the field include the relative
paucity of high-quality training data sets and the small number of groups working at the
intersection of ML and AMR. However, there are no signs that the exponential growth in
data generation, computational capacity, and algorithm development is abating. Similarly,
interest from governmental institutions and public-private partnerships in understanding,
treating, and preventing AMR has never been higher. The confluence of these two trends
ensures that the future of the field is bright. Importantly, a significant and sustained reduc-
tion in the burden of disease will require a strong emphasis on building interdisciplinary
research teams and an intentional focus on equity.
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