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ABSTRACT The increasing emergence of carbapenemase-producing Klebsiella pneu-
moniae (CPK) isolates is a global health alarm. Rapid methods that require minimum
sample preparation and rapid data analysis are urgently required. Matrix-assisted
laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has
recently been used by clinical laboratories for identification of antibiotic-resistant
bacteria; however, discrepancies have arisen regarding biological and technical
issues. The aim of this study was to standardize an operating procedure and data
analysis for identification of CPK by MALDI-TOF MS. To evaluate this approach, a se-
ries of 162 K. pneumoniae isolates (112 CPK and 50 non-CPK) were processed in the
MALDI BioTyper system (Bruker Daltonik, Germany) following a standard operating
procedure. The study was conducted in two stages; the first is denominated the
“reproducibility stage” and the second “CPK identification.” The first stage was
designed to evaluate the biological and technical variation associated with the entire
analysis of CPK and the second stage to assess the final accuracy of MALDI-TOF MS
for the identification of CPK. Therefore, we present an improved MALDI-TOF MS data
analysis pipeline using neural network analysis implemented in Clover MS Data
Analysis Software (Clover Biosoft, Spain) that is designed to reduce variability, guar-
antee interlaboratory reproducibility, and maximize the information selected from
the bacterial proteome. Using the random forest (RF) algorithm, 100% of CPK isolates
were correctly identified when all the peaks in the spectra were selected as input
features and total ion current (TIC) normalization was applied. Thus, we have dem-
onstrated that real-time direct tracking of CPK is possible using MALDI-TOF MS.
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The increasing emergence of carbapenemase-producing Klebsiella pneumoniae
(CPK) is recognized as a global health alarm by different organizations, such as the

ECDC, CDC, and WHO (1–4). In addition, carbapenemases can confer resistance to
almost all available beta-lactam antibiotics, which are the antibiotics most commonly
used to treat infections caused by Enterobacterales (5). Antimicrobial resistance detec-
tion and bacterial typing are usually based on widely approved molecular techniques
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(6). However, they remain time consuming, labor intensive, and expensive. Methods
involving minimum sample preparation and providing rapid results are therefore
urgently needed.

Matrix-assisted laser desorption–ionization mass spectrometry (MALDI-TOF MS) is a
proteomic technique used for identification of microorganisms by analysis of ribo-
somal proteins of between 2 and 20 kDa from whole cells, indicating the high diversity
of these proteins among different species of bacteria (7–9). Mass spectra consist of
hundreds or thousands of peaks of mass-to-charge (m/z) ratios per bacterial isolate, in-
tensity levels, and areas under the curve for each mass peak. This is translated into
thousands of data points with a specific statistical distribution. Neural network tools,
such as machine learning and deep learning, are powerful classification strategies that
have been used in health sciences, such as cancer genomics (10, 11). As advancements
in high-throughput technologies lead to the production of large amounts of data, the
classification features are expanding the use to other omics areas, such as proteomics
in clinical microbiology.

Due to the popularity and the good performance of MALDI-TOF MS, the primary
purpose of the technique has been redirected from microorganism identification to
discrimination of subgroups within the same species of pathogens (12–15). Various dif-
ferent mass spectrometers, with the corresponding experimental procedures and data-
bases, have been successfully evaluated for identifying resistance mechanisms by
means of the protein profiles of K. pneumoniae (16), Staphylococcus aureus (17), and
Enterococcus faecium (18, 19). This MALDI-TOF MS application has also served for typ-
ing a large number of bacterial species, such as Pseudomonas aeruginosa (20, 21),
K. pneumoniae (22), Escherichia coli (23), and Clostridium difficile (24). Several MALDI-
TOF MS-based procedures and data analyses have been published; however, inconsis-
tencies and discrepancies in the identification of antibiotic-resistant bacteria have
arisen regarding biological and technical reproducibility and data analysis that limit
the overall applicability of MALDI-TOF MS as a first-line typing methodology (25–29).

Biological variation, defined as the physiological fluctuation of the constituents of
living organisms around a homeostatic point, has two components: intraindividual
(within-subject) and interindividual (between-subject) variation. The variation in pro-
tein expression in bacteria is reflected by the numbers and intensities of average peaks.
This source of variability may be significant in relation to replicating the results of dif-
ferent studies.

Technical variation occurs due to the imprecision of the different steps and condi-
tions throughout the entire analytical process, ranging from sample preparation to
instrumental conditions of the equipment used (MALDI-TOF MS). Sample preparation
is often a critical point because it consists of several steps with a high level of associ-
ated imprecision. MALDI-TOF MS has multiple sources of imprecision (instrumental
conditions), including the laser power, distance to the sample, cleanliness of the
source, and detector capacity. To reduce the technical variation, computational proce-
dures like normalization of the resulting spectra are typically used.

In this study, we evaluated the biological and technical variation associated with
the detection of CPK isolates by MALDI-TOF MS to design a standard operating proce-
dure and a MALDI-TOF MS data analysis pipeline for direct tracking of CPK isolates that
could be implemented in routine screening in clinical microbiology laboratories at no
additional cost and with no requirement for specific laboratory expertise. Besides this,
we recommend good practice guidelines for MALDI-TOF MS identification of antibi-
otic-resistant bacteria and protein biomarker performance.

MATERIALS ANDMETHODS
Bacterial isolates. The study included a representative collection of 162 unduplicated clinical isolates.

One hundred twelve of the 162 were CPK isolates, and the remaining 50 isolates were not carbapenemase
producers. Regarding the CPK isolates, 93 were collected during a nationwide survey of carbapenemase-
producing Enterobacterales (CPE) from 15 participating hospitals throughout Spain. The call was promoted
by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and by the Spanish
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Network for Research in Infectious Diseases (REIPI). Another 19 isolates used in the study form part of our
own collection (30).

Isolates were screened for carbapenemase production according to the screening cutoff values rec-
ommended by European Committee on Antimicrobial Susceptibility Testing (EUCAST), that is, having a
meropenem or ertapenem MICof .0.125mg/liter. The isolates belonging to the Spanish national survey
were characterized by whole-genome sequencing, and the isolates from our laboratory collection were
characterized by PCR.

Genomic characterization of the isolates. The 93 clinical isolates belonging to the national survey
on CPE used in the study were analyzed by whole-genome sequencing (WGS). Total genomic DNA was
obtained using a genomic DNA buffer set with a genomic-tip 20/G (Qiagen). Purified genomic DNA from
all isolates was sequenced in parallel using short-read (Illumina MiSeq benchtop; Illumina) (31) and long-
read (MinION; Oxford Nanopore Technologies) approaches (32–34). The resultant long and short reads
from each isolate were assembled using the Unicycler version 0.4.6 hybrid assembler. The contigs were
visualized using Bandage software (32). The assemblies obtained were finally annotated using Prokka ver-
sion 1.13 (33). Analysis of the total antimicrobial resistance gene content of the isolates was carried out in
silico using Resfinder software version 3.2 (34) and the Comprehensive Antibiotic Resistance Database
(CARD) (33). Multilocus sequence typing (MLST) was performed in silico from assembled whole-genome
sequencing data using available online databases (https://cge.cbs.dtu.dk/services/MLST/).

The 19 isolates belonging to our laboratory collection were characterized by routinely used genomic tech-
niques. A PCR assay was performed to detect the genes coding for the carbapenemases OXA-48 and KPC. DNA
was extracted using the boiling method (10min at 95°C). Specific oligonucleotides were used to amplify the
different genes (OXA-48 Fw, GCGTGGTTAAGGATGAACAC; OXA-48 Rv, CATCAAGTTCAACCCAACCG; KPC Fw,
CGTCTAGTTCTGCTGTCTTG; and KPC Rv, CTTGTCATCCTTGTTAGGCG) (35). The presence of the different carba-
penemase genes was confirmed by sequencing the PCR products. MLST of K. pneumoniae was conducted
according to the reference protocol (https://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html), under the follow-
ing conditions: initial denaturation at 94°C for 2min; 35 cycles of 20 s at 94°C, 30 s at 50°C, and 30 s at 72°C;
and final elongation for 5min at 72°C. Nucleotide sequences were compared with existing entries in the MLST
database (https://bigsdb.web.pasteur.fr/cgi-bin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef) for genera-
tion of allelic numbers and assignment of STs.

Study design. The first part of the study, the reproducibility stage (Fig. 1), was designed to evaluate
the biological and technical variation associated with the entire analysis of CPK isolates by MALDI-TOF
MS. Initially, imprecision associated with two different extraction methods (“full” versus “in-target”) and
two different integration peak methods (“intensity” versus “area under the curve” [AUC]) were evaluated
in the Complejo Hospitalario Universitario de A Coruña (CHUAC). The least imprecise methods were cho-
sen for completion of this stage in the Hospital General Universitario Gregorio Marañón (HGUGM) in
Madrid and the Hospital Universitario Puerta del Mar (HUPM) in Cádiz.

The second part of the study, CPK identification, was carried out in several stages. In the first, the
prevalidation stage, a brief study was carried out to determine the state-of-the-art use of MALDI-TOF MS
to identify CPK. The accuracy of identification was also related to the technical imprecision obtained in
the previous reproducibility stage to check for any possible correlation. It was decided that, if the results
of the prevalidation stage were very good (kappa. 80%) (36), a more extensive validation study would
be performed to assess the final accuracy of MALDI-TOF MS for the identification of CPK. The complete
analytical scheme is shown in Fig. 2.

(i) Reproducibility stage. In the reproducibility stage, the mass peak at 5,380Da was chosen as the
reference peak, since it represents 50S ribosomal protein L34, a highly conserved protein in K. pneumo-
niae, which thus appears in all spectra (Uniprot identification number A0A0V9I726). Imprecision was
expressed by the coefficient of variation (%CV), so that the higher the CV, the greater the imprecision.
We then identified possible sources of imprecision throughout the analytical process and grouped these
sources into “extraction,” “spotting,” and “MALDI.” Thus, “CVEXT” represents imprecision during protein
extraction from CPK isolates. Two of the most widely used extraction methods were initially evaluated in
the CHUAC: the full extraction method (CVFULL) and the in-target extraction method (CVIN-TARGET).
“CVSPOTTING” represents the imprecision associated with the formation, homogenization, and spotting of
the sample-matrix mixture on the plate. As the in-target extraction method is performed on the same
plate, it does not have a CVSPOTTING-associated imprecision, unlike the full method; that is to say, in the
in-target extraction protocol, we cannot differentiate the extraction from the spotting process. Finally,
“CVMALDI” represents imprecision associated with conditions inherent in the MALDI-TOF MS equipment.
In the CHUAC, MALDI peak integration was conducted in two different ways, by intensity and area under
the curve. All isolates were analyzed in triplicate in each step, “extraction,” “spotting,” and “MALDI.” All
CVs were calculated for both raw and normalized data. In addition, in the CHUAC, isolates were analyzed
on three different days in order to calculate biological variation (BV). Finally, the least imprecise methods
(full versus in-target and intensity versus AUC) were chosen to complete the reproducibility stage in the
HGUGM and HUPM. The intraindividual biological variation (BVINTRA) was determined as the mean of the
CVs obtained for each isolate over 3 different days, while the interindividual biological variation (BVINTER)
was determined as the mean of the CVs of all the individuals on 3 days. The testing of the isolates for
the analysis of the biological variation was performed after 36 h, and always after thawing and resubcul-
turing. This workflow was adopted for every analysis reported herein (Fig. 2). Mathematical formulas for
calculating all CVs are included in Table S1 in the supplemental material.

(ii) CPK identification stage. The CPK identification part of the study was carried out to assess the ac-
curacy of MALDI-TOF MS for the identification of CPK (blaOXA-48, blaKPC, and blaNDM)-producing isolates.
Therefore, the mass spectrum of each isolate was generated by two methods (MTHRESHOLD and MLINEAR), both
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for raw and normalized data. The mass spectra were then analyzed with two of the most-used multivariate
analytical tools based on neural networks, i.e., partial least squares discriminant analysis (PLSDA) and ran-
dom forest (RF) analysis, implemented in the Clover MS Data Analysis Software (Clover Biosoft, Spain).
The software analyzes the similarities and differences between the mass peaks in the spectra and assigns a

FIG 1 The different steps involved in formulation of the study, the reproducibility phase and the CPK identification, are in turn
divided into prevalidation and validation steps. CPK, carbapenemase-producing Klebsiella pneumoniae; AUC, area under the curve;
CHUAC, Complejo Hospitalario Universitario A Coruña; HUPM, Hospital Universitario Puerta del Mar; HGUGM, Hospital General
Universitario Gregorio Marañón, CV, coefficient of variation; BV, biological variation; PLSDA, partial least squares discriminant analysis;
RF, random forest; MLINEAR and MTHRESHOLD, methods of generating mass spectra.
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relative weight in the algorithm to each mass peak in the spectrum for final classification. Both neural net-
work tools are supervised, that is, the algorithm is trained on “historical” data and thus “learns” to assign
the appropriate output label to the new sample, i.e., it predicts the result based on proper training data.
The PLSDA method is a variant of the partial least squares regression method, where the relationship
between the intensity values of the spectrum and the input categories (OXA-48, NDM, KPC, and non-CPK) is
modeled by linear regression. Otherwise, the RF classifier builds a model based on multiple decision trees
that differentiate the input categories associated with each spectrum (37). Finally, kappa values were
obtained for the correct identification of the CPK isolates and, more specifically, the correct identification of
blaOXA-48, blaKPC, and blaNDM carbapenemases. Non-carbapenemase-producing isolates were introduced as
a category in the analysis, so κ values were also obtained for these isolates. In summary, we evaluated
the accuracy of CPK identification for eight possible combinations of data tools, PLSDA-MTHRESHOLD-RAW,
PLSDA-MTHRESHOLD-NORM, PLSDA-MLINEAR-RAW, PLSDA-MLINEAR-NORM, RF-MTHRESHOLD-RAW, RF-MTHRESHOLD-NORM,
RF-MLINEAR-RAW, and RF-MLINEAR-NORM.

(a) Prevalidation stage. Mass spectra from the reproducibility stage were processed as explained
above. Thus, the kappa statistics for the eight tool combinations were obtained in each laboratory, as
well as the total kappa for CPK identification. With the results obtained, we had an initial view of the
state of the art of this technology for CPK identification, and if the results were very good (kappa. 80%)
(36), a more extensive validation study would be performed. The possible correlation between the eight
tools’ combination kappa values and their CVs calculated in the reproducibility stage was also studied.

(b) Validation stage. CPK isolates that were not used in the prevalidation stage were processed in
CHUAC. Isolates were analyzed by the same operator, with in-target extraction, the peak intensity
method, and the same MALDI-TOF MS instrument. A training step was developed for the eight tool com-
binations to allow the software to learn to identify CPK correctly. We determined how many samples
were required to obtain a kappa peak for each of the eight groups. When the training step was com-
pleted, we performed the final validation step, in which the accuracy (kappa) of the eight combinations
in CKP identification was obtained.

FIG 2 Standard operating procedure for evaluation of the biological and technical variability in the identification of CPK isolates followed by the Complejo
Hospitalario Universitario de A Coruña (CHUAC), Hospital General Universitario Gregorio Marañón (HGUGM), and Hospital Universitario Puerta del Mar
(HUPM). The HGUGM and HUPM only evaluated the methods associated with least imprecision to complete the reproducibility phase. The CVs associated
with each step of the procedure are illustrated in the figure. CV, level of imprecision associated with the extraction (CVEXT) or the MALDI-TOF MS process
(CVMALDI) and total or technical imprecision (CVT); BV, biological variation of isolates; BVINTER, interindividual BV; BVINTRA, intraindividual BV.
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MALDI-TOF MS spectrum acquisition. Bacterial isolates were stored at 280°C using glass cryo-
pearls in a small vial (Deltalab, Barcelona, Spain). On the first day, isolates were thawed on a blood agar
plate by removing one of the pearls from the tube with a sterile loop and then rolling it on the plate.
After 18 h of incubation, isolates were subcultured for another 18 h on a blood agar plate for analysis
under standard conditions. Incubation was performed in an aerobic atmosphere at 37°C (Fig. 2). All iso-
lates were of the same age to control for senescence-associated changes in the mass peak spectrum.
Isolates were submitted to a modified Hodge test to check for the presence of the carbapenemase
enzyme (38). No discordant results were found in relation to the phenotypic and genotypic annotation.

The same operator performed the analysis of all isolates in each laboratory to reduce the associated
variability. The operators were given a precise protocol (Fig. 1) for conducting the whole procedure to
avoid externally introduced experimental imprecision. Bacterial proteomes were analyzed by in-target
and full protein extraction (39). Briefly, the in-target extraction consists of a protein extraction made
directly in the MALDI target by spotting 1ml of formic acid once the sample is dried and then adding
the IVD HCCA (a-cyano-4-hydroxycinnamic acid)-portioned matrix (Bruker Daltonics, Germany). The full
protein extraction consists of performing a full ethanol/formic acid extraction of the isolate in a tube
and then spotting the extract in the MALDI target plate. Protocols are provided in Table S2.

All participating laboratories used the MALDI Biotyper (Bruker Daltonics, Germany). MALDI-TOF MS
spectra were acquired in a microflex LT/SH smart instrument with the FlexControl software version 3.4 in
a linear positive ion mode within a mass range of 2 to 20 kDa. A total of 240 satisfactory laser shots were
acquired in 40 shot steps for each spectrum using the spiral small movement. External calibration was
performed using bacterial test standard (BTS; Bruker Daltonics, Germany) prior to each run. Species had
to be confirmed in comparison with the mass spectrum library using the MALDI Biotyper Compass soft-
ware (version 4.1.100, Bruker Daltonics).

Spectra were processed with the Clover MS Data Analysis Software (Clover Biosoft, Granada, Spain).
The first step involved preprocessing all spectra by applying noise reduction with the Savitzky-Golay fil-
ter (smoothing filter with window length of 11 and polynomial order 3) and then subtracting the base-
line by using the Top-Hat filter (baseline-removing filter with a factor of 0.02). Nine replicates (3 spots
with 3 spectra each) of each isolate were processed. For the data from the three laboratories, an average
spectrum for each isolate was obtained by a two-step process of alignment. The first step consisted of
aligning the spectra for all spots and then obtaining a unique average spectrum. The second step
involved repeating this process but aligning the spectra obtained for each spot to produce the final av-
erage spectrum. Once this process was completed, only one average spectrum remained for each
isolate. The main goal of performing an alignment-plus-average spectrum process was to minimize the
variability between replicates of the same isolate. Once one spectrum per isolate was available in the
software platform, all the spectra were again aligned in order to increase the accuracy of the next steps.
All the alignment processes were performed by considering the most representative peaks of each sam-
ple included in the set to be aligned. These peaks were then used to form a reference peak list. Each
spectrum peak was shifted within a linear tolerance of 2,000 ppm to correspond to this list.

Up to this point, all of the procedures explained are common to both acquisition methods,
MTHRESHOLD and MLINEAR, and it is in the subsequent steps where the methods differ.

For generating a peak matrix in the MTHRESHOLD method, a threshold value (0.01) was established so
that all peaks with at least 1% of the maximum intensity of the spectrum were considered. All the result-
ant peaks were merged into a common list within a linear tolerance of 2,000 ppm. The MLINEAR method
did not perform the peak finding step, and the mass lists for each spectrum were merged into a com-
mon list. Peak matrices were later normalized by the total ion current (TIC) method. This method consists
of accumulating all the values of the resulting spectrum (for MTHRESHOLD, the values are the peaks
obtained, and for MLINEAR, the values are the raw intensities which compose the spectrum) and then
dividing each intensity value by the resulting accumulated value.

Bioinformatics tools for identification of CPK isolates. After the spectrum acquisition, we
obtained four different matrices: MTHRESHOLD-RAW, MTHRESHOLD-NORM, MLINEAR-RAW, and MLINEAR-NORM. Two super-
vised machine learning algorithms were then applied to these matrices: PLSDA and RF. The main pur-
pose of these analyses was to study how each of the eight different combinations of tools discriminated
the different categories (OXA-48, KPC, NDM, and non-CPK). The kappa statistic value was used to explain
the efficacy of the combined results.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 8.0 software. The nor-
malized distribution was tested with the D’Agostino-Pearson test. Continuous variables are presented as
median values and interquartile ranges (IQRs) (25th to 75th percentiles), and categorical data are dis-
played as counts and percentages. Analysis of differences between 2 groups was performed using the
Wilcoxon matched-pairs signed-rank test. A two-sided P value of ,0.05 was considered statistically sig-
nificant for all calculations. The kappa value was the score of a k-fold (k= 10) cross-validation analysis,
obtained as the relationship between the number of samples correctly classified and the total number
of spectra under study (40).

Data availability. The BioProject accession number for strain genomes is PRJEB39112. It is antici-
pated that this accession number will be released by early 2022; until that time, the strain genome data
will be available from the corresponding author upon request.

RESULTS
Bacterial isolates. The 112 CPK isolates represent a not-geographically related sam-

pling, coming from 15 different hospitals throughout the territory, in addition to 16 isolates
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of unknown origin. Among them, 11 different sequence types (STs) were detected: ST-11
(n = 27), ST-512 (n = 27), ST-15 (n = 12), ST-147 (n = 13), ST-307 (n = 12), ST-1961 (n = 8),
ST-101 (n = 6), ST-273 (n = 3), ST-437 (n = 2), ST-395 (n = 1), and ST-405 (n = 1). A total of 47
of the 112 isolates carried the blaKPC gene, 58 harbored the blaOXA-48 gene, and 7 carried the
blaNDM gene. Carbapenemase-nonproducing K. pneumoniae isolates were not submitted to
detailed genomic analysis. Data are summarized in Table S3.

Nineteen of the 112 representative and randomly selected CPK isolates were used
in the reproducibility stage, including 9 KPC-producing isolates (4 belonging to ST11
and to 5 ST512) and 10 OXA-48-producing isolates (5 belonging to ST11 and 5 to ST15)
(Table S3). These isolates were examined in triplicate in the three laboratories (CHUAC,
HGUGM, and HUPM).

Reproducibility stage. (i) Intensity versus AUC. In the CHUAC, the peak at m/z
5,380 was integrated in two different ways, area under the curve (AUC) and intensity.
AUC integration was slightly more imprecise (although clearly significant [P , 0.0001])
for both raw and normalized data (Fig. 3A). The imprecision for raw data was a CVAUC

value of 13.4 (8.2 to 19.8) and a CVINTENSITY value of 12.7 (8.1 to 18.8). The imprecision
for normalized data was a CVAUC value of 3.8 (2.3 to 6.2) and a CVINTENSITY value of 3.6
(2.3 to 5.7). Throughout the study, all peaks from the MALDI spectra were subsequently
integrated using the intensity mode.

(ii) Full versus in-target. Comparison of the full versus in-target extraction meth-
ods revealed that the full method was slightly more imprecise than the in-target
method. For raw data, the CVFULL value was 24.0 (17.5 to 32.8) and the CVIN-TARGET value
was 21.3 (13.2 to 32.6), with no significant difference between them (P=0.3004)
(Fig. 3A). For normalized data, the CVFULL value was 18.0 (14.3 to 26.6) and the
CVIN-TARGET value was 10.2 (7.0 to 15.5), with a significant difference between the full
and in-target extraction values (P, 0.0001). Throughout the study, all isolates were
subsequently extracted using the in-target extraction method.

For further examination of these results, we must first remember that the total
imprecision associated with an extraction method was calculated as the sum of the
imprecision from protein extraction plus that from the spotting process. As the in-tar-
get extraction method is performed on the same plate, it does not have an associated
CVSPOTTING imprecision, unlike the full method. To evaluate the imprecision associated
with the full method, we represent the two components (extraction and spotting) sep-
arately. As observed from the results in Fig. 3, the variability in the protein extraction
component (E) is almost double that in the spotting (S) process.

(iii) Interlaboratory variability. Once the CHUAC study was completed, the same
19 isolates were processed in the HGUGM and HUPM using the in-target extraction
method, and the peak at m/z 5,380 was integrated as intensity. Thus, in each labora-
tory, we obtained the levels of imprecision associated with the extraction (CVEXT), with
the MALDI-TOF MS process (CVMALDI), and with the total or technical imprecision (CVT).
The results are shown in Fig. 3B, both for raw and normalized spectra, including signifi-
cant differences. Intra- and interlaboratory levels of imprecision were also calculated.

The lowest total levels of imprecision for both raw and normalized spectra were
obtained in the HGUGM, and the highest levels in the HUPM. In all three laboratories,
there was a significant reduction in imprecision after normalization of the data (except
for extraction in the HGUGM, which was already low initially). The total interlaboratory
imprecision values obtained were a CVT value of 26.0 (17.7 to 43.9) for raw spectra and
a CVT value of 15.6 (10.0 to 22.6) for normalized spectra. Therefore, a significant reduc-
tion in the total imprecision of 40% (P, 0.0001) was achieved. For normalized spectra,
the total imprecision due to extraction (CVEXT = 3.9 [8.3 to 19.4]) was twice that due to
the MALDI reading (CVMALDI = 5.4 [4.2 to 7.9]).

(iv) Biological variation. Biological variation (BV) was calculated in the CHUAC for
the 19 isolates processed during three different days. The intraindividual variation,
BVINTRA, was 28 (19 to 42), and the interindividual variation, BVINTER, was 43 (30 to 58).

CPK identification. (i) Prevalidation. The results obtained in the PLSDA-MTHRESHOLD

group showed a clear improvement for correct CPK identification (Dκ = 118%) after
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FIG 3 Reproducibility stage. (A) Initial study. Coefficients of variation (CVs) obtained in the CHUAC to compare intensity versus
AUC methods of peak acquisition and full versus in-target methods of extraction. Norm, normalized data; E, extraction; S, spotting;
F, full extraction. (B) Interlaboratory CVs obtained in 3 hospitals for K. pneumoniae isolates analyzed by MALDI-TOF MS (top) and
considering the results from the 3 laboratories together (bottom). EXT, extraction step (in-target method); MALDI, MALDI-TOF MS

(Continued on next page)
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normalization of the mass spectra, except in the HGUGM, where the imprecision was
the same for raw and normalized spectra (it was very low in both groups) (Fig. 4A).
Consequently, for the PLSDA-MTHRESHOLD group, technical imprecision (CV) appears to
be inversely related to the accuracy of CPK identification (kappa). For the other groups,
no clear association between imprecision and CPK identification accuracy was
observed. The kappa results were good (kappa . 65) for all eight tool combinations
and very good for the RF-MLINEAR group, which achieved a mean kappa of 95% for cor-
rect CPK identification (Fig. 4). The kappa results were remarkably similar among the
three hospitals for all tool combinations, and the MALDI-TOF MS replicability between
laboratories for CPK identification was confirmed. These promising results led us to
continue with the next validation stages.

(ii) Validation stage. The training sets used were the spectra obtained in the CHUAC
from the 110 isolates. The kappa values for the eight tool combinations were obtained
using an increasing number of isolates. Thus, the training set began with 10 isolates and
reached up to 60 isolates, increasing in groups of 10. The isolates used for the training sets
were randomly selected by the software. The maximum kappa value (in which correct CPK
identification was maximal) was achieved with 40 samples for the RF algorithm, applying
either the MTHRESHOLD or the MLINEAR method. When analyzing the PLSDA algorithm, the
maximum kappa was obtained with 50 isolates using the MLINEAR and with 60 isolates using
the MTHRESHOLD method (Fig. 4B). The graphs showed that once a maximum was reached,
the curves flattened out or increased very slowly. In general, the accuracy of CPK identifica-
tion was slightly higher for normalized than for raw spectra, especially as the kappa values
increased. The need of fewer isolates in the MLINEAR than in the MTHRESHOLD method and in
the RF than in the PLSDA algorithm for achieving the maximum kappa reveals that the
method with higher classifying capabilities is the RF-MLINEAR. To unify criteria, the same
number of isolates was chosen in the training set for all methods. The criterion applied
was using the smallest number of isolates to achieve the maximum value for the kappa.
Thus, a sampling size of 40 isolates was chosen for the definitive final validation stage. The
maximum kappa value was achieved for the RF-MLINEAR method after normalization, yield-
ing 97.5% accuracy. In this case, the RF feature importance, that is, the description of the
mass peaks in the spectrum that are most relevant in the formulation of the model, is
described in Fig. S1. However, no specific mass peaks or biomarkers in the spectrum that
were specific to a type of carbapenemase were identified, but the entire mass peak data
set was taken into account in the final algorithm in which each mass peak has its relative
importance (16).

The final validation stage was carried out with the remaining 122 isolates, which in
turn consisted of 84 CPK and 38 non-CPK isolates. Among the CPK isolates, 45 of the
84 were OXA-48, 36 of the 84 were KPC, and 3 of the 84 were NDM (Table 1). Thus,
with a greater number of samples than in the previous stages, the relationship
between tool combinations and imprecision depended similarly on both the type of
spectrum acquisition (threshold versus linear) and the machine learning tool used for
the analysis (PLSDA versus RF) (Fig. 4C). Therefore, we observed that for all the meth-
ods of analysis, there was a considerable increase in the kappa value for normalized
versus raw spectra. In contrast, for RF-MLINEAR, there was no such dependence, with this
tool combination yielding similar kappa values regardless of the normalization of the
spectra, especially in the identification of CPK.

The final validation was divided into two subsequent stages. The first was the identifi-
cation of CPK (Fig. 4C.1). As in previous stages, RF-MLINEAR yielded the highest overall kappa
value, reaching correct identification of 100% (84/84) of CPK isolates and also reaching

FIG 3 Legend (Continued)
process; TOTAL, the entire process (EXT1MALDI); HGUGM, Hospital General Universitario Gregorio Marañon; CHUAC, Complexo
Hospitalario Universitario A Coruña; HUPM, Hospital Universitario Puerta del Mar; interlaboratory, represents overall CV from the 3
hospitals involved; 2D%, % decrease in kappa of normalized versus raw data. All data are presented as median values (bars) and
interquartile ranges (error bars). All adjusted P values were obtained by Wilcoxon matched-pairs signed-rank test. ns, P$ 0.05; *,
P, 0.05; **, P, 0.005; ***, P, 0.001.
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FIG 4 CPK identification. (A) Prevalidation. Kappa values for CPK identification (KPC versus OXA-48) obtained in three hospitals for four
data processing bioinformatic tool combinations (PLSDA-MTHRESHOLD, PLSDA-MLINEAR, RF-MTHRESHOLD, and RF-MLINEAR) for both raw and
normalized spectra. PLSDA, partial least square discriminant analysis; RF, random forest; THRESHOLD, threshold mode of spectrum

(Continued on next page)
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100% (38/38) specificity, meaning that the method is able to identify a CPK isolate among
all K. pneumoniae isolates with maximum reliability (Table 1). Regarding the identification
of the type of carbapenemase (Fig. 4C.2), again, the RF-MLINEAR method yielded the highest
overall kappa value, reaching correct identification of 82% (69/84) of the isolates; thus very
good results were also obtained in the final validation stage. The highest rate of correct
identifications was accomplished for the OXA-48 isolates, with 93% (42/45) identified cor-
rectly. For KPC and NDM isolates, the rates of correct identifications were very similar, 69%
(25/36) and 66% (2/3), respectively, thus obtaining good results. However, the number of
NDM isolates was too low to reach significance (Table S4).

DISCUSSION

Analysis of the operating procedure and subsequent data management are critical
for reliable recovery of information from mass spectrum profiles obtained by MALDI-
TOF MS. In this study, we analyzed the biological and technical reproducibility of the
operating procedure, we evaluated how this variance can affect the final results of the
analysis, and finally, we introduced an improved MALDI-TOF MS data analysis pipeline
for the identification of CPK. Accordingly, we suggest some solutions for a number of
current bottlenecks in processing MALDI-TOF MS data and provide technical know-
how regarding CPK identification.

Regarding the analysis of biological variation, it is known that for a method to be
adequate in terms of technical specifications, the imprecision associated with the tech-
nique must be half the intraindividual biological variation (BVINTRA) (41, 42). In the pres-
ent study, this held true when the spectra were normalized, as the total interlaboratory
imprecision was a CVT value of 15.6%, which is approximately half of the BVINTRA value
of 28%. However, raw spectra with a CVT value of 26% did not fit the above criterion,
and normalization of MALDI-TOF MS spectra is therefore greatly encouraged.

TABLE 1 Results of the optimized model for CPK identification by MALDI-TOF

Characterization

No. of isolates characterized as CPK or as bearing
indicated type of carbapenemase using:

% agreementc
Genomic
analysisa

MALDI-TOF MS using the RF-
MLINEAR algorithm for data analysisb

CPK Non-CPK
CPK 84 84 0 100
Non-CPK 38 0 38 100
Total 122 100

KPC NDM OXA-48
KPC 36 25 0 11 69
NDM 3 0 2 1 66
OXA-48 45 0 3 42 93
Total 84 82

Overall accuracy 122 88
aNumber of isolates included for validation in each group.
bResults for the identification of carbapenemase-producing K. pneumoniae (CPK) or of the type of
carbapenemase, obtained by MALDI-TOF MS using the RF-MLINEAR algorithm for data analysis.

cPercentage of agreement between the genomic analysis obtained by whole-genome sequencing and the
proteomic analysis obtained by MALDI-TOF MS.

FIG 4 Legend (Continued)
acquisition; LINEAR, linear mode of spectrum acquisition; Norm, normalized; HGUGM, Hospital General Universitario Gregorio Marañon;
CHUAC, Complexo Hospitalario Universitario A Coruña; HUPM, Hospital Universitario Puerta del Mar. (B) Training. Kappa values obtained
in the training set versus the number of isolates used for both raw and normalized spectra. (C) Final validation. 1. Identification of CPK
isolates. Kappa values obtained with a group of 122 isolates (84 CPK and 38 non-CPK) processed at the CHUAC by MALDI-TOF MS and
four bioinformatic tool combinations. 2. Identification of the type of carbapenemase. Kappa values obtained for the 84 CPK isolates when
identification of the type of carbapenemase (OXA-48, KPC, and NDM) was performed.
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In addition to BV, several experimental and instrumental influences introduce system-
atic and random variations into the mass spectra obtained by MALDI-TOF MS. Oberle et al.
studied an ESBL-producing-E. coli outbreak by MALDI-TOF MS and reported that the tech-
nical reproducibility was the most critical part of the process and should be further investi-
gated (43). The performance of MALDI-TOF MS could be evaluated by the modifications in
growth conditions, the type of extraction method, the use of various matrixes, and/or a
change in the mass range or the post-data treatment of the mass peaks in the spectra.
The type of medium and other culture conditions have some effects but do not affect the
overall ability of MALDI-TOF MS for identification of bacterial species, as previously demon-
strated (25). To simplify the process, we chose HCCA, which is the most widely used matrix
in the routine identification of microorganisms by MALDI-TOF, and a mass range from 2 to
20 kDa, so the software parameters would be the same as those already used in the rou-
tine identification. When evaluating the type of extraction, the in-target method proved
more precise than the full extraction method. This finding favors the application of the
CPK identification, as it can be performed in real-time in practice, allowing add-on informa-
tion, as only one spectrum is used for bacterial identification and detection of antibiotic re-
sistance for an isolate. When evaluating the full extraction method, the extraction step is
the most critical part in the process, as the variability is almost twice that in the spotting
step, and extra attention and care must be taken with the sample when choosing this pro-
cedure. When replicating the analysis in different laboratories, the variability in the process
differed significantly between laboratories. The CV values obtained correlated with the rel-
ative experience of the centers: the greater the experience of the center, the lower the CV
value obtained, with the HGUGM and CHUAC being the most experienced and the HUPM
the least experienced. In general, normalizing the spectra obtained almost halves (40%)
the associated imprecision. Therefore, normalization is crucial for reducing the variability
of the results at all stages of the analytical process. The spectra associated with the highest
levels of imprecision will be the most improved by the normalization process. The integra-
tion of the mass peaks is significantly better and contributes to less imprecision when the
intensity of the mass peaks is used rather than the AUC.

In the prevalidation step for CPK identification using neural networks tools, we
found that for the PLSDA-MTHRESHOLD group, technical imprecision (CV) appeared to be
inversely related to the accuracy of CPK identification (kappa). However, for the other
groups, no such clear association between imprecision and CPK identification accuracy
was observed. This finding led us to conclude that when using specific and definite
numbers of peaks and classical statistics, the imprecision significantly affected the
results of the analysis, but when using neural network tools, this imprecision was mini-
mized. In addition, comparison of the accuracy of the different methods of analysis
among the three laboratories showed that the levels of accuracy were very similar for
the different types of analysis, although the associated imprecision was highly depend-
ent on the laboratory concerned. This again supports the idea that normalization helps
in reducing variability and so improves the interlaboratory transferability, previously
identified as a factor precluding the use of MALDI-TOF MS for detection of antibiotic
resistance and for typing purposes (25–29).

In the training of neural network tools, normalization reduces the number of samples
available for achieving the maximum accuracy but also improves the accuracy (higher
kappa values). Furthermore, in the final validation stage, we observed that the addition of
the MLINEAR method with the RF algorithm reduces the imprecision the maximum amount,
being less dependent on the normalization procedure and increasing the kappa values.
Thus, we conclude that using the whole spectra for the analysis, rather than specific peaks,
reduces the imprecision and has less impact on the results of the analysis. Focusing the
analysis on specific peaks has proved to be less accurate, as it is strongly influenced by the
variability in the processing. In addition, peak shifts and variable intensities can depend on
the solubility or on missense mutations with changes in the amino acid sequence.

Being aware of the error and the variability of the procedure is fundamental for
implementation of good practice guidelines and improving the accuracy of the results
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obtained. Thus, we provide a summary of our study findings that could lay the ground-
work for future studies regarding antimicrobial resistance detection and bacterial typ-
ing using MALDI-TOF MS (44), as follows.

Good practice guidelines for MALDI-TOF MS identification of antibiotic-resistant
isolates.

1. Include large and well-characterized collections of nonepidemiologically related
isolates to build a training set.
2. Integrate mass spectra with the intensity of the mass peaks.
3. The in-target extraction method can be used not only to build the model but also
for clinical validation and for use in clinical practice (need for preliminary study).
4. If using the full extraction method as the operating procedure, pay special atten-
tion to the extraction step, which is strongly influenced by variability.
5. Highly trained personnel operating MALDI-TOF MS generally provide the most
accurate results.
6. When using specific biomarkers, ensure the validity of the extraction method and
train individuals in the operating procedure, as the results are very imprecise.
7. For generating spectra, use methods that use the maximum number of peaks pos-
sible, as these methods are less influenced by the variability in the processing steps.
8. The use of neural network analysis to detect antimicrobial resistance patterns is
highly recommended, as the analysis is less influenced by the expression of certain
peptides or proteins, variability is reduced, and transferability is guaranteed.
9. Normalization helps to reduce the variability and is therefore strongly encour-
aged, especially when definite biomarkers are used.

MALDI-TOF MS proved valuable for assessing potential different groups of resistance
using high-quality data focused on the existence or the lack of definite spectral mass peaks
to recognize antibiotic-resistant bacteria (16–21). However, unlike most other studies, we did
not focus on target peaks but based the classification on neural network analysis. This type
of analysis is especially useful for identifying patterns or trends that are hidden in the data in
automatic learning, as interpreting the amount and complexity of the information generated
by visual inspection of large data sets is often not possible. RF is a supervised machine learn-
ing technique based on decision trees. Its main advantage is that, for similar training per-
formances, it obtains a better generalization yield than other supervised machine learning
algorithms. In our case, an improved MALDI-TOF MS data analysis pipeline was designed
with a succession of steps that implied noise reduction with the Savitzky-Golay filter, base-
line subtraction by using the Top-Hat filter, a two-step process of alignment, selection of all
peaks contained in the bacterial spectra, integration of mass spectra with the intensity of the
mass peaks, TIC normalization, and an RF algorithm for analysis that provided a rate of 100%
correct CPK identifications. The whole procedure, presented herein, is designed to reduce
variability, guarantee interlaboratory reproducibility, and maximize the information obtained
from the bacterial proteome. In contrast to approaches based on genomic assays, this
approach is much less expensive, faster, and simpler. Thus, we think the ideal workflow for
this MALDI-TOF application would be as an initial screening test for identification of CPK iso-
lates in a clinical laboratory, as direct tracking can be performed at the same time as bacterial
identification, using the same hands-on procedure and the same spectrum. The only differ-
ence would be the later processing by machine learning algorithms that would only take
minutes to apply, once the software is designed with the optimized parameters (Clover MS
Data Analysis Software; Clover Biosoft, Spain). The processing is fully automated, so no par-
ticular skills beyond the basic use of MALDI-TOF MS are needed, allowing full integration
into the routine laboratory workflow.

The identification of the type of carbapenemase contributes to the prescription of
targeted treatments against specific classes of carbapenemases, such as the new
b-lactam–b-lactamase inhibitors imipenem/relebactam and ceftazidime/avibactam,
which are particularly valuable in treating KPC- and OXA-48-producing isolates, respec-
tively (45). The analysis yielded 82% correct identifications and had special success in
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identifying the OXA-48 type of carbapenemase, with 93% agreement between the pro-
teomic and the genomic analysis. Further introduction of KPC and NDM isolates into
the training set would enhance the rates of accuracy for these groups of carbapene-
mases. Replacement of molecular techniques by MALDI-TOF MS at this stage is still far
from consideration. However, the determination of the type of carbapenemase in a
specific epidemiological setting, such as in areas with a high prevalence of OXA-48-
producing K. pneumoniae isolates, could be very helpful until molecular results are
available.

Validation in a further collection of K. pneumoniae isolates is necessary before the
method can be fully integrated into the normal workflow in clinical microbiological labo-
ratories. It would also be interesting to expand the application to the identification of
carbapenemases in other Enterobacterales. However, we have demonstrated that direct
tracking of CPK isolates using MALDI-TOF MS is possible within minutes, reproducible
with technical know-how available for all users, and significantly less expensive than
genomic-based technologies. In a potential outbreak situation, MALDI-TOF MS-based
identification of CPK isolates might provide the first evidence to initiate intensive health
care and infection control measures, modifying the clinical outcome of these infections.
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