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Abstract

Mechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) 
in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, 
Setaria. Recombinant inbred lines (RILs) derived from a Setaria italica×Setaria viridis cross were grown with ample 
or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal 
patterning, and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature 
were positively correlated but both were negatively correlated with total above-ground biomass. These trait rela-
tionships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal 
size and aperture. Multiple quantitative trait loci (QTL) were identified for stomatal density and canopy temperature, 
including co-located QTL on chromosomes 5 and 9. The direction of the additive effect of these QTL on chromosome 
5 and 9 was in accordance with the positive phenotypic relationship between these two traits. This, along with prior 
experiments, suggests a common genetic architecture between stomatal patterning and WUE in controlled environ-
ments with canopy transpiration and productivity in the field, while highlighting the potential of Setaria as a model to 
understand the physiology and genetics of WUE in C4 species.
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Introduction

Drought stress is the primary limiting factor to crop produc-
tion worldwide (Boyer, 1982). This is underpinned by the un-
avoidable loss of water vapor from leaves, via stomata, to the 
atmosphere in order for CO2 to move in the reverse direction 
and be assimilated through photosynthesis. In the coming dec-
ades, crops are likely to experience increasingly erratic rain-
fall patterns, with more frequent and intense droughts, due 
to climate change (Stocker et  al., 2013). Irrigation of crops 
already accounts for ~70% of freshwater use, limiting the sus-
tainability of any increase in irrigation to address drought 
limitations (Hamdy et al., 2003). Consequently, there is great 
interest in understanding and improving crop water use ef-
ficiency (WUE; Leakey et al., 2019) as well as crop drought 
resistance (Cattivelli et al., 2008).

Substantial advances have been made in understanding 
WUE and drought resistance at the genetic, molecular, bio-
chemical, and physiological levels in the model species, 
Arabidopsis thaliana (Zhang et al., 2004; Valliyodan and Nguyen, 
2006; Nakashima et al., 2012). Unfortunately, efforts to trans-
late this knowledge into improved performance of crop plants 
in the production environment have not resulted in success 
as frequently as hoped (e.g. Nelson et al., 2007; Nemali et al., 
2015). Physiological, agronomic, and breeding studies directly 
in crops have also resulted in improved drought avoidance 
and drought tolerance (e.g. Condon et al., 2004; Sinclair et al., 
2017), but there are challenges associated with trying to apply 
modern systems biology and bioengineering tools to crops 
that are relatively large in stature and have generation times 
of several months. Consequently, Setaria viridis (L.) has been 
proposed as a model C4 grass that has characteristics that make 
it tractable for systems and synthetic biology while also being 
closely related to key C4 crops, so that discoveries are more 
likely to translate to production crops (Brutnell et  al., 2010; 
Li and Brutnell, 2011). This study aimed to assess natural gen-
etic variation in Setaria for two key traits related to WUE and 
drought response: stomatal density and canopy temperature (as 
a proxy for the rate of whole-plant water use).

Setaria italica and S. viridis are model C4 grasses belonging to 
the panicoideae subfamily, which also includes maize, sorghum, 
sugarcane, miscanthus, and switchgrass (Brutnell et al., 2010; Li 
and Brutnell, 2011). Foxtail millet (S. italica) is also a food crop in 
China and India (Devos et al., 1998). The availability of sequence 
data for its relatively small diploid (2n=18) genome, short life 
cycle, small stature, high seed production, and amenability for 
transformation make Setaria a good model species for genetic 
engineering (Brutnell et  al., 2010; Bennetzen et  al., 2012). In 
addition, Setaria is adapted to arid conditions and is a potential 
source of genes conferring WUE and drought resistance.

Whole-plant WUE is the ratio of plant biomass accumulated 
to the amount of water used over the growing season (Condon 
et al., 2004; Morison et al., 2007; Blum, 2009; Tardieu, 2013). 
WUE at the leaf level is a complex trait controlled by factors 

including photosynthetic metabolism, stomatal characteristics, 
mesophyll conductance, and hydraulics (Farquhar et al., 1989; 
Condon et al., 2002; Hetherington and Woodward, 2003). At 
the whole-plant scale, it is modified by canopy architecture, 
and root structure and function (Martre et al., 2001; White and 
Snow, 2012).

Stomata regulate the exchange of water and carbon dioxide 
(CO2) between the internal leaf airspace and the atmosphere 
(Hetherington and Woodward, 2003; Bertolino et  al., 2019). 
Stomatal conductance (gs), which is the inverse of the resist-
ance to CO2 uptake and water loss, is controlled by a com-
bination of stomatal density, patterning across the leaf surface, 
maximum pore size, and operating aperture (Faralli et al., 2019; 
Nunes et  al., 2020). Of these traits, stomatal density is most 
simple to measure (Dow and Bergmann, 2014). Consequently, 
genetic variation in stomatal density has been explored in a 
range of species, including the identification of quantitative 
trait loci (QTL) in rice (Laza et al., 2010), wheat (Schoppach 
et  al., 2016; Shahinnia et  al., 2016), barley (Liu et  al., 2017), 
Arabidopsis (Dittberner et al., 2018; Delgado et al., 2019), bras-
sica (Hall et  al., 2005), poplar (Dillen et  al., 2008), and oak 
(Gailing et al., 2008). However, there is a notable knowledge 
gap regarding genetic variation in stomatal density within C4 
species. While many genes involved in the regulation of sto-
matal development are known in Arabidopsis, investigation of 
whether their orthologs retain the same function in grasses 
and other phylogenetic groups that include the major crops is 
still relatively nascent (e.g. Raissig et al., 2017; Lu et al., 2019; 
Mohammed et  al., 2019). This is in part because standard 
protocols for measuring stomatal density are still laborious and 
time consuming, which slows the application of quantitative, 
forward, and reverse genetics approaches to identifying candi-
date genes and confirmation of their function. Therefore, im-
proved methods for acquiring and analyzing images of stomatal 
guard cell complexes and other cell types in the epidermis are 
an area of active research (Haus et al., 2015; Dittberner et al., 
2018; Fetter et al., 2019; Li et al., 2019). In addition, alternative 
approaches to rapidly screen stomatal conductance or rates of 
transpiration at the leaf and canopy scales (including tempera-
ture as a proxy) have also been developed and used to reveal 
genetic variation in traits related to drought stress and WUE 
(Liu et al., 2011; Bennett et al., 2012; Awika et al., 2017; Prado 
et al., 2018; Deery et al., 2019; Vialet-Chabrand and Lawson, 
2019). However, the links between genetic variation in sto-
matal density and measures of water use, which would be ex-
pected in theory, are rarely tested and, when tested, the results 
are inconsistent (e.g. Fischer et al., 1998; Ohsumi et al., 2007; 
Kholová et al., 2010; Schoppach et al., 2016).

To address these questions, we used a field study of a 
biparental mapping population developed from an interspecific 
cross between S. viridis (A10) and S. italica (B100).

The study was designed with the aim of (i) applying rapid, 
image-based methods for phenotyping stomatal density and 
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canopy water use; (ii) identifying variation in stomatal patterning, 
canopy temperature, and productivity; (iii) assessing trait relation-
ships between stomatal density, canopy temperature, and biomass 
production; and (iv) identifying QTL for these traits in Setaria, 
grown in the field under wet and dry treatments.

Materials and methods

Plant material
This study used a population of 120 F7 recombinant inbred lines (RILs), 
which were generated by an interspecific cross between domesticated 
S. italica accession B100 and a wild-type S. viridis accession A10 (Devos 
et al., 1998; Wang et al., 1998).

Greenhouse experiment
Variation in stomatal density among the RILs was assessed in a green-
house study at the University of Illinois, Urbana-Champaign in 2015. 
Plants were grown in pots (10×10×8.75 cm) filled with potting mixture 
(Metro-Mix 360 plus, Sun Gro Horticulture). Three seeds were sown 
directly into the pot. After germination, plants were thinned to one plant 
per pot. Growth conditions were 30/24  °C during the day/night and 
plants received supplemental photosynthetically active radiation from 
high-pressure sodium and metal halide lamps during the day (350 µmol 
m−2 s−1 on a 16 h day/8 h night cycle). Throughout the growing period, 
water was added to pot capacity along with fertilizer (EXCEL-CAL-
MAG 15-5-5) 2–3 times a week.

The youngest fully expanded leaf was excised from the plant 
17–22 days after sowing (DAS), covered in a wet paper towel, sealed in 
airtight bags, and stored at 4 °C. Within 48 h, a sample was excised with 
a razor blade from midway along the leaf to provide a cross-section from 
one leaf margin to the midrib (~20–30 mm length, 3–20 mm wide). This 
sample was attached to a glass microscope slide using double-sided adhe-
sive tape, and the abaxial surface was immediately imaged using an μsurf 
explorer optical topometer (Nanofocus, Oberhausen, Germany; Haus 
et al., 2015). Two fields of view in a transect from the midrib to the edge 
of a single leaf were imaged using a ×20 magnification objective lens 
with 0.6 numerical aperture. The instrument generates a grayscale image 
in the proprietary *.nms format with dimensions of 0.8×0.8 mm in the 
x- and y-axes by stacking all the focused pixels across planes of the z-axis. 
The images were then exported into TIF files (Supplementary Fig. S1) 
and the stomatal number was manually counted using the cell counter 
tool in ImageJ software (http://rsbweb.nih.gov/ij/). Stomatal density was 
calculated by normalizing the number of stomata with the area of the 
field of view (0.64 mm2). Data from each of the four fields of view were 
treated as subsamples and averaged to estimate mean stomatal density for 
each replicate plant of a given RIL (Supplementary Table S1). 

Field experiment
The field experiment to assess variation in canopy temperature and 
total above-ground biomass was conducted at the SoyFACE field site, 
University of Illinois, Urbana-Champaign in 2015, in the manner de-
scribed by Feldman et  al. (2017). The average air temperature over 
the growing season was 21.5  °C with a relative humidity of 82% 
(Supplementary Fig. S2). In brief, plants were germinated in plug trays 
in the greenhouse and then, at 9 DAS, seedlings were hand transplanted 
(15 July 2015) into plots at the field site. Twelve retractable awnings (Gray 
et al., 2016) were placed over the plots to block all water from any rain-
fall event in both wet and dry treatments (Supplementary Fig. S3). Drip 

irrigation was supplied once a week in order to maintain greater soil 
moisture in the wet treatment.

Each genotype subplot in the experiment measured 25×20 cm and 
contained 30 plants with a grid spacing of 5  cm between the plants. 
There was a 25 cm space for the aisle between two columns of plots and 
10  cm spacing between the rows of plots. Each awning contained 66 
subplots including six check plots of the B100 accession. The volumetric 
water content in the center of each awning was measured every 15 min 
throughout the growing season using soil moisture probes (CS650; 
Campbell Scientific) at 5 cm and 25 cm depths.

Canopy temperature of all field plots under both wet and dry treat-
ments was measured 30 and 32 DAS once canopy closure had occurred in 
all plots (Supplementary Table S2). A telescopic boom lift was used to col-
lect images from a height of 9.1 m above the ground using a hand-held 
infrared camera (FLIR T400, FLIR Systems, Boston, MA, USA). On each 
date, one infrared and one RGB image was acquired for each awning, 
which consisted of 66 plots (Fig. 1). The time of the measurements was 
between 11.00  h and 15.00  h. Infrared imaging was performed only 
during clear and sunny weather conditions. Data from the 36 pixels at 
the center of each genotype subplot were used to estimate the canopy 
temperature (FLIR Tools, FLIR Systems). This ensured that temperature 
data were only sampled from pixels completely covered by plant canopy 
and not containing data from soil in the nearby aisles between plots. The 
data from the two dates were not structured in a way that would justify 
treating them as a repeated measure and therefore they were considered 
as two separate traits (CT-T1 and CT-T2).

Three plants from the center of each plot were destructively har-
vested 30 d after panicle emergence to estimate the shoot biomass 
(Supplementary Table S3). The plants were cut at the base, and the leaf, 
stem, and the panicles were separated and dried at 65  °C. The dried 
weights of leaf, stem, and panicle were summed to obtain the total shoot 
biomass. Culm height and tiller height were measured on the same plants 
from the base of the plant to the ligule of the youngest fully expanded 
leaf (Supplementary Table S4). Panicle emergence was measured as the 
number of days after sowing at which the panicle head was seen past the 
collar of the culm flag leaf in at least half of the individuals in a genotype-
specific subplot (Supplementary Table S4).

Data analysis
The greenhouse experiment was conducted with four replicates of each 
RIL arranged in a randomized complete block design with 120 genotypes 
as described in the equation below, where Yij is the individual observation 
of the trait of interest, μ is the overall mean, Genotypei is the effect of the 
ith genotype, Blockj is the effect of the jth block, and ε ij is the error term.

Yij = µ+ Genotypei + Blockj + εij

The field experiment was conducted as a randomized complete block 
design in a split plot arrangement with three blocks, two treatment con-
ditions, 12 awnings nested within treatments and blocks, and 120 geno-
types as described below:

Yijkl = µ+ Blocki + Treatmentj + εij + Awningk(ij)

+Genotypel + Genotype× Treatmentlj + εikl

where Yijkl is the individual observation of the trait of interest, μ is the 
overall mean, Blocki is the effect of the ith block, Treatmentj is the ef-
fect of the jth treatment, ε ij is the first error term, Awningk(ij) is the kth 
awning nested within Blocki and Treatmentj, Genotypel is the lth geno-
type, Genotype×Treatmentlj is the interaction between Genotypel and 
Treatmentj, and ε ijkl is the second error term.

The broad sense heritability was computed using the variance compo-
nents from the mixed model using the formula below.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
http://rsbweb.nih.gov/ij/
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
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The variance components from the mixed model were extracted using 
the lme4 package in R (Bates et al., 2015). Best linear unbiased pre-
dictors (BLUPs) were calculated for each trait of interest using the 
experimental designs discussed earlier where genotypes and blocks 
were considered as random effects and treatment and awning as fixed 
effects. Phenotypic correlations were computed using the ggplot2 
package (Wickham, 2016) in R software to determine the strength 
and directionality of the relationship between all the traits collected 
in this study.

The QTL mapping was performed on the BLUP values for stomatal 
density and canopy temperature under different treatments and sam-
pling dates using ~1400 single nucleotide polymorphism (SNP) markers. 
Mapping was performed using a custom biparental linkage mapping pro-
gram (Feldman et al., 2017) based upon the functionality encoded within 
the R/qtl (Broman et al., 2003) and funqtl (Kwak et al., 2014) packages 
in R. All codes used can be found at https://github.com/maxjfeldman/
foxy_qtl_pipeline. A two-step procedure was performed (Feldman et al., 
2017). First, a single QTL model genome scan was performed using 
Haley–Knott regression to identify QTL with a logarithm of odds (LOD) 
score higher than the significant threshold obtained through 1000 per-
mutations at alpha 0.05. Second, a stepwise forward/backward selection 
procedure was performed to identify an additive, multiple QTL model 
based upon maximization of the penalized LOD score. The two-step pro-
cedure was conducted on all the traits and time points. QTL that lie 
within a 20 cM window were considered to be co-located (Feldman 
et al., 2017).

Results

Soil moisture profile

Soil moisture content was equivalent in the wet and dry treatments 
at the beginning of the experiment (Fig. 2). As time progressed, 
plants in the wet treatment continued to have adequate water supply 
(30–40% v/v) throughout the growing period. In contrast, plants in 
the dry treatment experienced progressively drier soil conditions as 
the water they transpired was not replaced by rainfall or irrigation. 
The soil moisture was reduced in the dry treatment compared with 
the wet treatment at 5 cm and 25 cm depth by 20 DAS, resulting 
in a statistically significant interaction between treatment and time 
(P<0.001) as well as significant overall effects of drought treatment 
(P<0.001), depth (P<0.001), and time (P<0.001). Midday canopy 
temperature data were collected after this date, 30 and 32 DAS, when 
plants in the dry treatment were experiencing rapidly decreasing 
availability of soil moisture. This indicates that while plants in the 
dry treatment were subjected to limited water supply, they were still 
physiologically active; that is, drought stress was moderate.

Genotypic variation in stomatal density and canopy 
temperature

Among the 120 RILs, stomatal density on the abaxial surface 
of the youngest fully expanded leaf ranged between 58 and 

Fig. 1. Aerial infrared and RGB images of Setaria subplots under awnings in wet and dry treatments. Infrared image of wet awning (A) and dry awning 
(B). RGB image of wet awning (C) and dry awning (D). The square boxes are the measured area of each subplot canopy.

https://github.com/maxjfeldman/foxy_qtl_pipeline
https://github.com/maxjfeldman/foxy_qtl_pipeline
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115 stomata mm–2, with a mean of 84 stomata mm–2 (Fig. 3; 
Supplementary Fig. S4). The broad sense heritability of sto-
matal density was 0.58. Among the 120 RILs, the mean canopy 
temperature at midday ranged from 28.8 °C to 31.9 °C at 30 
DAS and from 28.6°C to 31.9 °C at 32 DAS in the wet treat-
ment, and from 30.9°C to 39.2 °C at 30 DAS and from 29.3°C 
to 38.1 °C at 32 DAS in the dry treatment. The mean midday 
canopy temperature across the RIL population was greater in 
the dry treatment than in the wet treatment at both 30 DAS 
(32.9 °C versus 29.9 °C; P<0.001) and 32 DAS (32.0 °C versus 
29.6  °C; P<0.001; Fig. 4), with the treatment effect being 
slightly greater at 30 DAS (3.0 °C) than at 32 DAS (2.4 °C). 
Midday canopy temperature was positively correlated between 
the two measurement dates for both wet (ρ=0.78, P<0.001) 
and dry (ρ=0.66, P<0.001) conditions, which gives confi-
dence in the phenotyping method (Supplementary Fig. S5). 
The broad sense heritability of canopy temperature was 0.54 
and 0.40 at 30 and 32 DAS, respectively.

Phenotypic relationships among canopy temperature, 
stomatal density, and total biomass

Midday canopy temperature was negatively correlated 
with total above-ground biomass under both wet and dry 
treatments at both 30 DAS (wet: ρ= –0.38, P<0.001; dry: 
ρ= –0.32, P<0.001; Fig. 5A) and 32 DAS (wet: ρ= –0.49, 
P<0.001; dry: ρ= –0.46, P<0.001; Fig. 5B). The average 

increase in total above-ground biomass production associ-
ated with a decrease in midday canopy temperature of 1 °C 
was greater in the wet treatment than in the dry treatment 

Fig. 2. Soil volumetric water content (% v/v) at depths of 5 cm and 25 cm over the growing season in plots of Setaria supplied with either regular 
irrigation to maintain adequate water supply (wet treatment; light gray) or receiving no irrigation (dry treatment; dark gray). Rainfall was blocked from 
entering plots of both treatments using retractable rainout shelters. Data points and error bars shown the mean and SE of three replicates per treatment. 
The dashed vertical lines indicate the dates when canopy temperature was measured.

Fig. 3. Frequency distribution of stomatal density (pores mm−2) of 120 
recombinant inbred lines derived from a cross of S. italica and S. viridis, 
and the B100 parental line. Data are genotype means derived from two 
fields of view per leaf from each of four replicate plants. The dotted vertical 
lines represent the population mean value.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
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on both measurement dates (Table 1). The amount of vari-
ation in total above-ground biomass production explained 
by variation in midday canopy temperature was slightly 
greater in the wet treatment than in the dry treatment on 
both sampling dates (Table 1). The parental line A10 was 
one of the genotypes with the lowest biomass and highest 
canopy temperature under both treatments and days of 
measurement, while the parental line B100 had trait values 
that were close to the mean of the population.

Stomatal density was positively correlated with midday 
canopy temperature under both wet and dry treatments at both 
30 DAS (wet: ρ=0.40, P<0.001; dry: ρ=0.38, P<0.001; Fig. 
5C) and 32 DAS (wet: ρ=0.37, P<0.001; dry: ρ=0.39, P≤0.001; 
Fig. 5D). Correspondingly, stomatal density was negatively cor-
related with total above-ground biomass under both dry (ρ= 
–0.33, P≤0.001) and wet (ρ= –0.23, P=0.012) conditions (Fig. 
6). The correlation between stomatal density and total biomass 
was stronger under the dry treatment than under the wet treat-
ment. Stomatal density was not significantly correlated with 
panicle emergence date, tiller height, or culm height in either 
wet or dry treatments (Supplementary Figs S6, S7).

QTL mapping results

QTL analysis identified a total of 32 QTL across seven traits, 
including three significant loci for stomatal density and eight 
significant loci for canopy temperature (Table 2; Fig. 7). The 
proportion of phenotypic variation associated with these QTL 
ranged between 8% and 23% for both stomatal density and 

canopy temperature.. On chromosome 9 at ~40 cM, a QTL for 
stomatal density co-located with QTL for canopy temperature, 
biomass production, and culm height under both wet and dry 
treatments (Fig. 7). The effect of the B100 allele was negative 
for stomatal density and canopy temperature while being posi-
tive for biomass and culm height (Fig. 7). On chromosome 5, 
a QTL for stomatal density co-located with QTL for canopy 
temperature, culm height, and tiller height. The effect of the 
B100 allele at this location was negative for all traits (Fig. 7). 
The QTL for the date of panicle emergence overlapped with 
the QTL for canopy temperature on chromosome 7, with 
consistent allelic effects across all trait and treatment combin-
ations (Fig. 7).

Discussion

This study successfully characterized phenotypic and genetic 
variation in stomatal density, rates of canopy water use, and 
productivity in Setaria, which can be used as a foundation for 
future studies to apply systems biology approaches to advance 
understanding of WUE and drought resistance in C4 species. 
Significant trait correlations were detected among stomatal 
density, canopy temperature, and total above-ground biomass 
in both the wet and dry treatments.

The stomatal densities of RILs in this population (58–
115 mm−2; Fig. 3) were slightly greater than previously reported 
for faba bean (30–75 mm−2, Khazaei et al., 2014) and wheat 
(36–92 mm−2,Schoppach et al., 2016; 43–92 mm−2, Shahinnia 

Fig. 4. Frequency distribution of canopy temperature (°C) of 120 RILs in wet (light gray) and dry (dark gray) treatments at 30 and 32 days after sowing 
(DAS). Data are means derived from all pixels in the interior of three replicate plots per genotype. The dashed vertical lines represent the treatment mean 
value for each treatment.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
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et  al., 2016), but generally lower than for Arabidopsis (90–
210 mm−2 Dittberner et al., 2018) and rice (273–697 mm−2, 
Laza et  al., 2010; 200–400  mm−2, Kulya et  al., 2018). While 
the magnitude of variation in stomatal density among the RIL 
population was sufficient to allow for QTL mapping and ana-
lysis of trait correlations, the parents of the population were 
not selected on the basis of this trait. Thus, the resulting mag-
nitude of variation across the population was relatively modest. 

It would be valuable to investigate how much more variation 
for stomatal density may be found among genotypes within 
either S. italica or S. viridis, as well as the genus as a whole. The 
present study provided a proof of concept for the use of op-
tical tomography to image the leaf epidermis. As proposed by 
Haus et al. (2015), optical tomography does not require sample 
preparation steps and can also be used on frozen leaf samples. 
This was significantly less laborious and more convenient than 

Fig. 5. (A and B) Scatterplot of total biomass (g per plant) in relation to canopy temperature (°C) for Setaria RILs and the parent lines (A10 and B100) 
under wet (gray circles) and dry conditions (black circles) at 30 and 32 days after sowing (DAS). (C and D) Scatterplot of canopy temperature (°C) in 
relation to stomatal density (pores mm−2) for Setaria RILs and the parent lines (A10 and B100) under wet (gray) and dry (black) conditions at 30 and 32 
DAS. Data are best linear unbiased predicted (BLUP) values for each genotype. Lines of best fit are shown along with the Pearson’s correlation coefficient 
(ρ) and associated P-value.
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standard methods of taking leaf imprints of fresh leaves with 
dental gum and nail varnish (Rowland-Bamford et al., 1990).

The magnitude of variation in canopy temperature across 
the Setaria RIL population was similar to that observed for 
sorghum (Awika et al., 2017) and wheat (Mason et al., 2013) 
RIL populations. Variations in canopy temperature among 
the RIL population were similar on 30 DAS (wet 3.1 °C, dry 
8.3 °C; Fig. 4) and 32 DAS (wet 3.3 °C, dry 8.8 °C; Fig. 4), 
and canopy temperature was correlated across the two dates 
sampled for both the wet (r=0.78) and dry treatments (r=0.66) 
(Supplementary Fig. S5). This might be considered surprising 
given the highly dynamic nature of canopy temperature in re-
sponse to wind gusts, diurnal variation in solar radiation, and 
daily or seasonal variation in climate. However, the reprodu-
cibility of the data across dates is consistent with the com-
prehensive analysis by Deery et al. (2019), which analyzed 98 
independent time points of canopy temperature data collected 

for a wheat population over 14 dates in 2 years. These authorts 
concluded that canopy temperature could be reliably screened 
from one or two sampling points if data were collected under 
clear sky conditions in the afternoon, as was done in the cur-
rent study. The present study also highlighted Setaria as a highly 
tractable model for field trials because its small stature allows 
non-destructive, remote-sensing approaches to phenotyping, 
such as thermal imaging, to be performed on hundreds of rep-
licated plots using hand-held cameras and a boom lift. This 
is significantly simpler in terms of data acquisition and data 
analysis than using drones or vehicles to gather data across 
field trials of crops with larger stature that require field trials 
covering larger areas (Deery et al., 2016; Sagan et al., 2019).

Canopy temperature was negatively correlated with the 
total above-ground biomass of the Setaria RILs under both 
wet and dry conditions (Fig. 5A, B). This is consistent with 
RILs that had higher temperatures due to less evaporative 
cooling being able to assimilate less CO2, and therefore pro-
ducing less biomass, which was expected based on theory and 
previous studies (Fischer et al., 1998; Jones, 2004). In addition, 
canopy temperature was significantly greater in the dry treat-
ment compared with the wet treatment (Fig. 5A, B), which 
was consistent with stomatal closure reducing water use and 
evaporative cooling when there is limited water availability 
(Turner et al., 2001). The relationship between canopy tem-
perature and biomass was stronger in the wet treatment than 
in the dry treatment on both measurement dates (Fig. 5A, B). 
This was reflected in canopy temperature explaining a greater 
proportion of variation in biomass (i.e. greater correlation 
coefficient) and a greater loss of biomass production per unit 
increase in canopy temperature under wet than under dry 
conditions (Fig. 5A, B). This pattern of response is also con-
sistent with prior observations (Bennett et al., 2012; Mason 
et al., 2013), but does not appear to have been the subject of 
much discussion. While it may seem initially counterintuitive 
that the relationship between the rate of water use and prod-
uctivity would be weaker when water is limiting, it is con-
sistent with genotypes that have inherently high rates of 
transpiration (i.e. cooler canopies) having greater reductions 
in productivity in response to drought stress than geno-
types with inherently low rates of transpiration (i.e. warmer 
canopies). We suggest that this differential response may be 

Fig. 6. Scatterplot of total biomass (g per plant) relative to stomatal 
density (pores mm−2) for Setaria RILs and the parent lines (A10 and B100) 
under wet (gray) and dry (black) conditions. Data are best linear unbiased 
predicted (BLUP) values for each genotype. Lines of best fit are shown 
along with the Pearson’s correlation coefficient (ρ) and associated P-value.

Table 1. Regression parameters for total above-ground biomass (g per plant) in relation to canopy temperature (°C) and stomatal 
density (pores per mm2) of Setaria genotypes grown under wet and dry treatments

Intercept (b) Slope (a) R2 P-value

Biomass=Intercept (b)+a (Canopy temperature) 
Canopy temperature 30 DAS Wet 40.00 –1.19 0.13 <0.001

Dry 24.02 –0.63 0.09 <0.001
32 DAS Wet 58.21 –1.82 0.24 <0.001

Dry 27.01 –0.74 0.20 <0.001
Biomass=Intercept (b)+a (Stomatal density)
Stomatal density  Wet 8.94 –0.05 0.05 0.012

Dry 8.31 –0.06 0.10 <0.001

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab166#supplementary-data
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conserved. Also, it adds weight to the argument that genetic 
variation in WUE is best screened under well-watered condi-
tions (Leakey et al., 2019).

The positive correlation of stomatal density with the canopy 
temperature under drought stress suggests that the relationship 
between these two traits is complicated (Fig. 5C,D), since—if 
all else is equal—greater stomatal density would be expected 
to increase transpiration and lead to canopy cooling (Dow 
and Bergmann, 2014). Consistent with that theory, previous 
studies have reported that stomatal density is positively cor-
related with WUE (Xu and Zhou, 2008). However stomatal 
conductance is influenced by multiple factors, including sto-
matal density, maximum size, and operating aperture (Dow 
and Bergmann, 2014; Faralli et al., 2019). In addition, there are 

multiple examples across diverse species where the expected 
positive correlation between stomatal density and stomatal 
conductance was not observed (Jones, 1977; Liao et al., 2005; 
Ohsumi et  al., 2007). So, it is plausible that greater stomatal 
density within this population of Setaria RILs was associated 
with a developmental or functional shift that led to smaller 
stomatal apertures and lower rates of transpiration. As a result, 
within this population, lower stomatal density was also associ-
ated with greater biomass production. However, it should be 
noted that this relationship may be a function of the forced 
recombination across many parental alleles that is found in 
a RIL population. Breaking up gene linkage that can result 
from selection has been proposed to be a powerful approach to 
understand the biophysical basis for phenotypic relationships 

Table 2. Putative quantitative trait loci (QTL) for stomatal density (SD), canopy temperature at 30 DAS (CT-T1) and 32 DAS (CT-T2), 
biomass (BM), culm height (CH), panicle emergence (PE), and tiller height (TH) traits in the 120 F7 recombinant inbred line population 
derived from a cross of S. italica and S. viridis, and the B100 parental line

Trait Treat-
ment

Peak marker Chr Pos 
(cM)a

LOD at 
peakb

Variance 
(%)c

Additive 
effect

Left CI 
(cM)d

Right 
CI (cM)

BM Dry S2_37761700 2 69.7 5.0 12.6 –1.8 69.2 70.0
Dry S2_37820883 2 70.0 6.9 17.9 2.1 69.7 71.1
Dry S9_6724364 9 34.9 5.4 13.5 0.4 30.6 38.6
Wet S1_31298551 1 66.9 2.5 5.4 0.2 61.1 83.0
Wet S2_37761700 2 69.7 4.8 10.8 –1.7 69.2 70.0
Wet S2_37820883 2 70.0 6.9 16.2 2.1 69.7 71.1
Wet S9_6724364 9 34.9 6.3 14.7 0.4 31.3 38.6

CH Dry S5_41999990 5 100.4 7.5 20.5 –50.6 97.7 101.1
Dry S9_5686516 9 32.0 5.4 14.2 41.8 29.4 36.4
Wet S1_35287681 1 80.1 7.1 8.0 36.5 78.3 83.5
Wet S2_26339986 2 43.7 4.2 4.4 37.1 39.9 44.9
Wet S2_37820883 2 70.0 3.4 3.6 28.5 59.6 75.4
Wet S3_2542615 3 16.5 6.6 7.3 35.2 11.4 20.7
Wet S5_41999990 5 100.4 19.4 28.4 –76.5 100.2 100.7
Wet S9_6724364 9 34.9 9.5 11.3 45.8 32.8 36.4

CT-T1 Dry S5_39309008 5 93.8 5.7 14.1 –0.2 92.8 100.2
Dry S7_32133319 7 99.9 8.0 21.1 0.4 92.5 101.9
Dry S9_7218054 9 35.9 6.0 15.0 –0.2 32.8 38.6
Wet S5_39309008 5 93.8 4.4 10.0 –0.2 76.2 104.1
Wet S7_31494503 7 93.3 9.2 23.1 0.3 89.3 101.9
Wet S9_6724364 9 34.9 8.8 21.8 –0.2 33.9 38.6

CT-T2 Wet S7_31494503 7 93.3 3.8 12.0 0.2 89.3 101.9
Wet S9_6724364 9 34.9 6.4 21.0 –0.2 32.8 38.6

PE Dry S7_31178325 7 89.3 6.7 21.5 1.8 85.8 101.9
Dry S9_54618932 9 164.4 3.3 10.1 1.1 140.7 168.5
Wet S2_43563669 2 90.6 3.8 9.5 1.1 69.7 95.7
Wet S7_32133319 7 99.9 8.5 23.3 2.2 93.3 101.9
Wet S9_54618932 9 164.4 4.8 12.2 1.2 160.2 168.5

SD Wet S5_42996052 5 104.8 8.3 20.8 –3.8 101.1 106.6
Wet S9_10073675 9 45.6 5.0 11.6 –2.3 40.4 52.7
Wet S9_50690449 9 136.5 3.7 8.3 –2.0 133.0 146.9

TH Wet S5_42757204 5 104.4 9.8 33.7 –62.8 99.2 106.1

a Position of the peak marker in centiMorgans (cM).
b Logarithm of odds (LOD) of the peak marker.
c Percentage of phenotypic variance explained by the QTL.
d Left confidence interval of the QTL.
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(Des Marais et  al., 2013). The observed positive correlation 
may reflect the developmental trade-off where stomatal size 
and stomatal density are widely found to be negatively cor-
related due to a limited amount of space on the epidermis 
(Shahinnia et al., 2016; Faralli et al., 2019), but this needs to 
be confirmed experimentally. In contrast, stomatal density 
was either not correlated or was weakly, positively correl-
ated with yield in wheat grown under both well-watered and 
drought treatments (Khazaie et  al., 2011; Schoppach et  al., 
2016; Shahinnia et al., 2016; Faralli et al., 2019). So, the balance 
of trade-offs between stomatal density and aperture may be 
different among different biparental mapping populations, if 
not more generally in Setaria versus wheat. It would be valu-
able to compare if the same phenotypic relationship is ob-
served across other biparental populations within these species 
as well as across natural accessions of these crops. New ma-
chine learning-enabled phenotyping methods for measuring 
stomatal size (e.g. Xie et al., 2020, Preprint) will aid this ef-
fort, because manual estimation of stomatal size currently takes 
~30 times longer than manually measuring stomatal density, 
making it infeasible to assess in many experiments.

This study identified three unique QTL each for stomatal 
density and canopy temperature (Fig. 7). All three of the canopy 
temperature QTL were robust in terms of being observed in 
both the wet and dry treatments. In addition, the canopy tem-
perature QTL on chromosomes 5 and 9 co-localized with 
QTL for stomatal density (Fig. 7). Genetic fine mapping would 
be required to discount the possibility that there are two loci 

in linkage at those locations, as <10% of the lines are dis-
cordant between the identified SNPs in each case. However, 
the observed pattern could be the result of pleiotropy, where 
a single locus regulates both traits. Additionally, this would be 
concordant with the consistent direction of the allelic effects 
and the positive correlation between stomatal density and tem-
perature, as well as the theoretical expectation that stomatal 
patterning on the epidermis influences transpiration rates. It is 
notable that the allelic effects of the QTL identified for bio-
mass production and culm height at ~40 cM on chromosome 9 
are also consistent with the phenotypic correlations among the 
traits (Table 2). This opens up the possibility of pleiotropic ef-
fects at that locus across multiple measures of plant carbon and 
water relations which are logically linked to stomatal function.

Flowering time genes can have pleiotropic effects on sto-
matal apertures and stomatal conductance in Arabidopsis 
(Ando et  al., 2013; Kimura et  al., 2015; Auge et  al., 2019), 
but data were not reported in those studies on stomatal 
patterning. Flowering time in wheat also impacts WUE 
in a complex manner that is environmentally dependent 
(Condon et  al., 2004). Overlapping QTL for the date of 
panicle emergence and either stomatal density (chromosome 
9)  or canopy temperature (chromosome 7)  opens up the 
possibility that similar processes occur in Setaria. However, 
the underlying basis of these interactions is not easily inter-
preted from the current data.

The ability to detect the same QTL in a greenhouse 
screen of stomatal density as for canopy temperature in the 

Fig. 7. QTL identified for stomatal density (SD) and canopy temperature at 30 DAS (CT-T1) and 32 DAS (CT-T2), total biomass (BM), panicle emergence 
(PE), culm height (CH), and tiller height (TH) under wet (gray) and dry (pink) treatments in the Setaria RIL population. Each panel corresponds to a 
chromosome. The arrows indicate the direction of the B100 allelic effect.
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field suggests that rapid controlled-environment screening 
might be a tractable way to accelerate progress in under-
standing and manipulating epidermal patterning and WUE 
in Setaria. Such an approach would avoid the challenges as-
sociated with the lower heritability for stomatal density that 
can be observed under stress in some species (De Kort et al., 
2020). At the same time, stomatal density varies in response 
to many environmental conditions (Casson et al., 2010), and 
genotype×environment interactions are still poorly under-
stood in C4 species. So, further investigation of stomatal 
traits alongside plant water use and productivity in the field 
is needed. The small stature and rapid life cycle of Setaria 
make it particularly amenable for addressing these various 
next research steps. In that context, it is useful to know that 
the proportion of phenotypic variation explained by the 
stomatal density QTL in Setaria was similar to those of faba 

bean (Khazaei et al., 2014), rice (Laza et al., 2010), and wheat 
(Shahinnia et al., 2016; Wang et al., 2016).

Previous studies have identified many QTL for different 
morphological and physiological traits using the same 
RIL population in Setaria in both controlled-environment 
and field experiments (Mauro-Herrera and Doust, 2016; 
Feldman et  al., 2017, 2018; Banan et  al., 2018; Ellsworth 
et al., 2020). These include measurements of traits with direct 
relevance to this study such as WUE of biomass production 
(i.e. biomass production relative to water use, as assessed by 
image analysis and metered irrigation on a high-throughput 
phenotyping platform linked to a controlled-environment 
chamber). Meta-analysis of all the studies (Fig. 8) reveals 
that QTL for stomatal density and canopy temperature 
overlap with QTL for WUE, δ 13C (Ellsworth et al., 2020), 
plant height, panicle emergence, and various measures of 

Fig. 8. QTL on chromosomes 5, 7, and 9 identified across multiple studies of S. italica×S. viridis RIL populations (Mauro-Herrera and Doust, 2016; 
Feldman et al., 2017, 2018; Banan et al., 2018; Ellsworth et al., 2020). The arrows indicate the direction of the B100 allelic effect. The QTL for stomatal 
density and canopy temperature identified in this study are denoted in bold and italics. BM, biomass, BN, branch number; CH, culm height; CT, canopy 
temperature, D13C, ∆ 13C; LM, leaf mass; ML, mesocotyl length; PAI, plant area index; PE, panicle emergence; PH, plant height; PM, panicle mass; RVR, 
reproductive to vegetative mass ratio; SD, stomatal density; STH, secondary tiller height; VM, vegetative mass, WUE, water use efficiency.
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above-ground productivity Also, the effect of the B100 allele 
at each locus on canopy temperature was logically consistent 
with lower water use being associated with greater WUE, 
as measured gravimetrically on an indoor high-throughput 
phenotyping facility. This adds further evidence for the no-
tion that controlled-environment and field studies of Setaria 
can be used in conjunction with one another when studying 
these traits. It is noteworthy that on chromosome 7 and at 
~40 cM on chromosome 9, the percentage of the pheno-
typic variance explained by these QTL for stomatal density 
and canopy temperature, along with WUE, was generally 
greater than, or equal to, that for the other traits assessed 
to date. One explanation for this would be that these loci 
directly regulate traits related to stomatal function and then 
indirectly influence the other traits via effects on crop water 
use. There is no reason to think the experimental design 
used here results in any greater statistical power to detect 
genotype–phenotype associations than the other studies. 
However, additional experimentation where all traits are 
measured simultaneously is needed to test this notion 
definitively.

In conclusion, this study identified genetic loci in Setaria 
that are associated with variation in stomatal density as well as 
other traits important to WUE, productivity, and drought re-
sistance. This suggests that Setaria is an experimentally tractable 
model system that would be highly suitable for more in-depth 
investigation of the mechanisms underpinning stomatal devel-
opment and their influence on WUE in C4 species. An add-
itional benefit to identifying QTL and genes in Setaria is that 
it is also an agronomic crop, so the findings could have direct 
relevance to crop improvement programs as well as potentially 
translating into benefits for close relatives including maize, sor-
ghum, and sugarcane.
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Fig. S1. Representative images from optical tomography of 

abaxial leaf surfaces of Setaria viridis (A10) and Setaria italica.
Fig. S2. Daily average values of air temperature and relative 

humidity at the SoyFACE experimental field site
Fig. S3. Field experiment layout for canopy temperature and 

biomass measurements.
Fig. S4. Stomatal density of 120 recombinant inbred lines 

derived from a cross of S.  italica and S. viridis, and the B100 
parental line.

Fig. S5. Scatterplot of midday canopy temperature for Setaria 
RILs and B100 on 30 DAS versus 32 DAS under wet and dry 
treatments.

Fig. S6. Phenotypic trait correlations of stomatal density 
versus canopy temperature at 30 DAS (CT-T1) and 32 DAS 
(CT-T2), total biomass, panicle emergence, culm height, and 
tiller height under wet treatment conditions in this study.

Fig. S7. Phenotypic trait correlations of stomatal density 
versus canopy temperature at 30 DAS (CT-T1) and 32 DAS 
(CT-T2), total biomass, panicle emergence, culm height, and 
tiller height under dry treatment conditions in this study.

Table S1. Stomatal density per field of view of setaria abaxial 
leaf surface.

Table S2. Plot mean values for canopy temperature.
Table S3. Plot mean values for above-ground biomass.
Table S4. Plot mean values for tiller height, culm height and 

panicle emergence date.
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