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This study investigated whether the mitochondrial-targeted peptide SS-31 can protect against cigarette smoke- (CS-) induced
airway inflammation and oxidative stress in vitro and in vivo. Mice were exposed to CS for 4 weeks to establish a CS-induced
airway inflammation model, and those in the experimental group were pretreated with SS-31 1 h before CS exposure. Pathologic
changes and oxidative stress in lung tissue, inflammatory cell counts, and proinflammatory cytokine levels in bronchoalveolar
lavage fluid (BALF) were examined. The mechanistic basis for the effects of SS-31 on CS extract- (CSE-) induced airway
inflammation and oxidative stress was investigated using BEAS-2B bronchial epithelial cells and by RNA sequencing and
western blot analysis of lung tissues. SS-31 attenuated CS-induced inflammatory injury of the airway and reduced total cell,
neutrophil, and macrophage counts and tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, and matrix metalloproteinase
(MMP) 9 levels in BALF. SS-31 also attenuated CS-induced oxidative stress by decreasing malondialdehyde (MDA) and
myeloperoxidase (MPO) activities and increasing that of superoxide dismutase (SOD). It also reversed CS-induced changes in
the expression of mitochondrial fission protein (MFF) and optic atrophy (OPA) 1 and reduced the amount of cytochrome c
released into the cytosol. Pretreatment with SS-31 normalized TNF-α, IL-6, and MMP9 expression, MDA and SOD activities,
and ROS generation in CSE-treated BEAS-2B cells and reversed the changes in MFF and OPA1 expression. RNA sequencing
and western blot analysis showed that SS-31 inhibited CS-induced activation of the mitogen-activated protein kinase (MAPK)
signaling pathway in vitro and in vivo. Thus, SS-31 alleviates CS-induced airway inflammation and oxidative stress via
modulation of mitochondrial function and regulation of MAPK signaling and thus has therapeutic potential for the treatment of
airway disorders caused by smoking.

1. Introduction

Cigarette smoke (CS) contains thousands of toxins and is one
of the most important risk factors for the development of
chronic obstructive pulmonary disease (COPD), a progressive
lung condition characterized by persistent airway inflamma-
tion and irreversible restriction of airflow [1, 2]. COPD is a
major health concern worldwide because of its highmorbidity,
mortality, and associated healthcare costs [3, 4]. The patho-
genesis of COPD is complex and is not fully understood. CS
induces chronic airway inflammation, airway mucus hyperse-

cretion, and oxidative stress, leading to clinically significant
mechanical obstruction of small airways, reduced airflow,
and a progressive decline in lung function [5, 6].

Mitochondria are the organelles responsible for energy
metabolism and play an important role in maintaining cell
function. Recent studies have suggested that CS can cause
mitochondrial dysfunction and trigger inflammatory
responses and oxidative stress, which are linked to COPD
[7, 8]. SS-31, a novel mitochondrial-targeting antioxidant
compound, can eliminate reactive oxygen species (ROS)
and increase ATP production in mitochondria, thus
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restoring mitochondrial membrane potential [9]. SS-31 was
shown to protect cultured mouse microglial cells against
lipopolysaccharide-induced inflammation and oxidative
stress by stabilizing mitochondrial structure and reducing
mitochondrial fission (FIS) 1 protein expression [10]. It also
alleviated the inflammatory response and oxidative stress
and exerted beneficial effects on leukocytes in type 2 diabetes
patients [11]. In a mouse model of spinal cord injury-induced
lung impairment, SS-31 attenuated mitochondrial dysfunc-
tion and inflammation and reduced the severity of lung
damage [12]. However, it is unclear whether SS-31 can pro-
tect against CS-induced airway inflammation and oxidative
stress.

In this study, we investigated the effect of SS-31 on
inflammation and oxidative stress in the lung induced by
CS in vitro and in vivo along with the underlying molecular
mechanisms.

2. Materials and Methods

2.1. Animals.Male C57BL/6J mice (age 9–10 weeks, weighing
20–22 g) bred under specific pathogen-free conditions were
purchased from GemPharmatech (Nanjing, Jiangsu, China)
and housed at constant temperature of 23°C ± 2°C and 50%
± 10% humidity on a 12 : 12 h light/dark cycle (lights on
from 6:00 a.m. to 6:00 p.m.). The mice had free access to food
and water. Experimental procedures were conducted under
aseptic conditions. Chambers and cages were cleaned every
3 days. The mice were handled in accordance with the
ARRIVE guidelines developed by the National Center for
the Replacement, Refinement, and Reduction of Animals in
Research. The study protocol was reviewed and approved
by the Animal Ethics Committee of West China Hospital,
Sichuan University (approval no. 2020229A).

2.2. CS Exposure and Animal Treatment. Mice were divided
into 4 groups: a control group (n = 7) exposed to room air
without treatment, and 3 experimental groups exposed to
CS for 75min twice daily, 5 days per week for 4 weeks [13].
One experimental group (CS group, n = 7) received no treat-
ment; the SS-31 (L)+CS group (n = 8) was exposed to CS and
treated with a low dose of SS-31 (2.5mg/kg once daily) refer
to the slightly modified dosage [14]; and the SS-31 (H)+CS
group (n = 7) was exposed to CS and treated with a high dose
of SS-31 (5mg/kg once daily) [15, 16]. SS-31 (Topscience,
Shanghai, China) was intraperitoneally injected 1 h before
CS exposure [13, 17]. After 4 weeks, all mice were sacrificed
by intraperitoneal phenobarbital injection (Sigma-Aldrich,
St. Louis, MO, USA) followed by exsanguination from the
right ventricle and abdominal aorta. The heart was flushed
with 10mL sterile phosphate-buffered saline (PBS) from the
right ventricle until the lungs turned white to collect bron-
choalveolar lavage fluid (BALF) and lung tissue samples.

2.3. BALF Collection and Cell Counting. Right lungs were
washed 3 times with 0.5mL of sterile PBS, and >1.3mL of
BALF was recovered from each mouse and centrifuged at
1000×g for 5min. The supernatant was stored at −80°C for
analysis of cytokine levels by enzyme-linked immunosorbent

assay (ELISA). The cell pellet was resuspended in 0.2mL PBS,
and the total cell number was counted with a hemocytome-
ter. Differential cell counting was performed by cytocentrifu-
gation (Cytopro7620;Wescor, UT, USA) at 100×g for 10min
followed by Wright–Giemsa staining.

2.4. Histologic Examination of Lung Tissue. Left lungs with-
out lavage were fixed with 4% phosphate-buffered parafor-
maldehyde under a constant pressure of 25 cm H2O and
embedded in paraffin; 4mm thick sections were cut and
stained with hematoxylin and eosin. An experienced
pathologist who was blinded to the treatments scored lung
inflammation based on the severity of lung lesions including
peribronchiolar infiltrates, alveolar septal infiltrates,
perivascular infiltrates, and combined bronchus-associated
lymphoid tissue hyperplasia [13]. Giemsa staining was per-
formed to assess the density of inflammatory cells in alveoli.

Alcian blue- (AB-) periodic acid Schiff (PAS) staining
was performed to assess the levels of intracellular mucous
glycoconjugates. Immunohistochemical staining for Muc5ac
protein was performed using a kit (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA). Briefly, lung sections were
stained with anti-Muc5ac antibody (clone 45 M1, 1 : 100;
Genetex, Irvine, CA, USA) and the percentage of the total air-
way epithelial area that was positive for AB/PAS staining or
anti-Muc5ac immunoreactivity was quantified using Image-
Pro Plus v6.0 software (Media Cybernetics, Bethesda, MD,
USA).

2.5. CS Extract (CSE) Preparation. CSE was freshly prepared
as previously described [18], with a few modifications.
Briefly, the smoke of 6 Marlboro cigarettes was bubbled
through 20mL of Dulbecco’s modified Eagle’s medium
(DMEM) prewarmed at 37°C. The solution was passed
through a 0.22μm filter after adjusting the pH to 7.4, yielding
100% CSE. Serum-free DMEM was used to dilute the 100%
CSE to the working concentrations.

2.6. Cell Culture and Treatments. BEAS-2B normal human
bronchial epithelial cells (American Type Culture Collection,
Manassas, VA, USA) were cultured in DMEM supplemented
with 10% fetal bovine serum and 1% penicillin G sodium/-
streptomycin sulfate (Invitrogen, Carlsbad, CA, USA). The
effect of CSE on cell viability was evaluated with the Cell
Counting Kit- (CCK-) 8 assay (Dojindo Laboratories, Tokyo,
Japan). Cells (5 × 103/well) were seeded in 96-well plates and
allowed to attach overnight, then incubated for 24 h in
DMEM containing CSE (2%, 4%, 6%, 8%, and 10%). After
removing the supernatant, 10μL of CCK-8 reagent in a
serum-free medium (100μL/well) was added, followed by
incubation for 1 h at 37°C. Absorbance was measured on a
spectrophotometer at 450nm.

To evaluate the role of the mitogen-activated protein
kinase (MAPK) signaling pathway in the anti-inflammatory
and antioxidant effects of SS-31, BEAS-2B cells were pre-
treated with the MAPK activator anisomycin (20μg/mL/mL)
(APExBIO Technology, Houston, TX, USA) for 1 h [19]. The
cells were divided into 5 groups: control, CSE (incubation
with CSE for 24 h), anisomycin+CSE (incubation with CSE
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for 24 h following pretreatment with 20μg/mL anisomycin
for 1 h), anisomycin+SS-31+CSE group (treatment with
100μM SS-31 for 1 h followed by CSE for 24 h after pretreat-
ment with 20μg/mL anisomycin for 1 h), and SS-31+CSE
(incubation with CSE for 24 h following pretreatment with
100μM SS-31 for 1 h). Cells or the supernatants were har-
vested for analyses. The dose of SS-31 and incubation time
of CSE were selected based on previous studies [20–22].

2.7. Measurement of Inflammatory Cytokine Levels. BALF
levels of interleukin- (IL-) 6 and tumor necrosis factor-
(TNF-) α were measured with ELISA kits for mice
(NeoBioscience, Shenzhen, China) according to the manu-
facturers’ instructions. The level of matrix metallopeptidase
(MMP) 9 was measured with an ELISA kit for mice (R&D
Systems, Minneapolis, MN, USA) according to the
manufacturer’s instructions; the stated detection limits were
15 pg·mL−1 for TNF-α, 1.6 pg·mL−1 for IL-6, and
0.014 ng·mL−1 for MMP9. TNF-α, IL-6, and MMP9 levels
in culture supernatant were determined with ELISA kits for
humans (NeoBioscience) according to the manufacturers’
instructions; the stated detection limits were 7.8 pg·mL−1 for
TNF-α, 0.39 pg·mL−1 for IL-6, and 15.6 pg·mL−1 for MMP9.

2.8. Detection of Oxidative Stress and Intracellular ROS.Mal-
ondialdehyde (MDA), superoxide dismutase (SOD), myelo-
peroxidase (MPO) activities in mouse lung homogenate
and glutathione peroxidase (GSH-Px), MDA, and SOD activ-
ities as well as intracellular ROS production in cells were
determined according to commercial protocols (Nanjing
Jiancheng Bioengineering Institute, Jiangsu, China).

2.9. RNA Sequencing. RNA sequencing was performed as
previously described [23]. Briefly, total RNA from lung tissue
of the CS and SS-31 (H)+CS groups was isolated and the
quality was verified according to the protocols of Illumina
(San Diego, CA, USA). A total of 2μg RNA per sample was
used as input material for library construction. Strand-
specific sequencing libraries were generated by the dUTP
method with RNA obtained using the NEBNext Ultra
Directional RNA Library Prep Kit (Illumina) according to
the manufacturer’s instructions. RNA sequencing was per-
formed on an Illumina Hiseq 2000 platform by Genewiz
(Suzhou, China), generating 100 bp paired-end reads.
Adapter sequences were removed from the raw sequencing
data, and the individual libraries were converted to FASTQ
format. Sequence reads were aligned to the mouse genome
(mm10) with TopHat2 v2.0.9, and the resultant alignment
files were reconstructed with Cufflinks v2.1.1 and Scripture
(beta2). For mRNA analyses, the RefSeq database (Build
37.3) was used as the source of annotation references. The
read counts of each transcript were normalized to the length
of the individual transcript and to the total mapped fragment
counts in each sample and expressed as fragments per kilo-
base of exon per million fragments of mRNAmapped in each
sample. Differential expression analyses were conducted
using only samples from the CS and SS-31 (H)+CS groups.
P < 0:05 was used as the cutoff for differentially expressed
genes (DEGs).

2.10. Bioinformatic Analysis. Enrichment analysis of DEGs
was carried out to detect overrepresented functional terms
in the genomic background. Gene Ontology (GO) analysis
of biological processes, cellular components, and molecular
function was performed using the GO-seq R package [24].
Enriched DEG signaling pathway analyses were conducted
using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database.

2.11. Western Blot. Protein samples were isolated from the
right lung of mice and from BEAS-2B cells with radioimmu-
noprecipitation assay lysis buffer supplemented with 1mM
phenylmethanesulfonyl fluoride (Cell Signaling Technology,
Danvers, MA, USA). Total protein was fractionated by 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred to a polyvinylidene difluoride membrane.
After blocking with 5% bovine serum albumin in Tris-
buffered saline at room temperature for 1 h, the membrane
was incubated overnight at 4°C with antibodies against optic
atrophy (OPA) 1 (mouse antibody from Cell Signaling Tech-
nology; human antibody from Proteintech, Rosemont, IL,
USA); mitochondrial fission factor (MFF) (mouse antibody
from Cell Signaling Technology; human antibody from Pro-
teintech); and extracellular signal-regulated kinase (ERK),
phosphorylated- (P-) ERK, P38, P-P38, and glyceraldehyde
3-phosphate dehydrogenase (GAPDH) (all from Cell Signal-
ing Technology). They were then incubated with horseradish
peroxidase-conjugated secondary antibodies, and immune
complexes were detected with SuperSignal West Pico chemi-
luminescent substrate (Pierce, Rockford, IL, USA).

Cytoplasmic proteins were extracted using the Cytoplas-
mic Protein Extraction Kit (KeyGEN BioTech, Nanjing,
China), and mitochondrial proteins were extracted using
the Mitochondria Isolation Kit (Beyotime Biotech, Shanghai,
China). Cytoplasmic extracts were probed with antibodies
against cytosolic cytochrome c (Genetex) and GAPDH (Cell
Signaling Technology). Mitochondrial extracts were probed
with antibodies against mitochondrial cytochrome c (Gene-
tex) and cytochrome c oxidase (COX) IV (Proteintech). Each
experiment was repeated 3 times with different mice. The sig-
nal intensity of protein bands was quantified using ImageJ
software (National Institutes of Health, Bethesda, MD, USA).

2.12. Statistical Analysis. Data are expressed as mean ±
standard deviation, and group means were compared by
one-way analysis of variance followed by the least significant
difference test for multiple comparisons. Data were analyzed,
and figures were prepared using Prism 7 software (Graph-
Pad, San Diego, CA, USA). P < 0:05 was considered statisti-
cally significant.

3. Results

3.1. SS-31 Reverses the CS-Induced Increases in Inflammatory
Cell Numbers and Cytokine Release in Mouse Lung. Total cell,
neutrophil, and macrophage counts in mouse BALF were
increased in CS-exposed mice, which was abrogated by
pretreatment with SS-31 (Figures 1(a)–1(c)). Meanwhile, 4
weeks of CS exposure increased the levels of IL-6, TNF-α,
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and MMP9 in BALF, an effect that was abolished by SS-31
(Figures 1(d)–1(f)).

3.2. SS-31 Abrogates Histologic Changes in the Lung Induced
by CS. Four weeks of exposure to CS markedly increased
peribronchial inflammatory cell infiltration, airway epithelial
cell hyperplasia, airway epithelium thickening, and lumen
obstruction by mucus and cell debris (Figures 2(b) and
2(e)). These changes were abolished by low-dose (2.5mg/kg)
and high-dose (5mg/kg) SS-31 pretreatment, with the latter
yielding better results (P < 0:01; Figure 2(e)). Giemsa staining
showed that the number of neutrophils and macrophages
was increased in CS-exposed mice, but this was reversed by
SS-31 pretreatment (Figures 2(f)–2(i)).

3.3. SS-31 Suppresses CS-Induced Airway Mucus
Hypersecretion. Mucus proteins were stained with AB/PAS.
CS exposure significantly increased the secretion of airway
mucus proteins (Figure 3), but this was suppressed by high-
dose SS-31 pretreatment. Accordingly, the airway mucus
protein Muc5ac was upregulated after 4 weeks of CS expo-
sure (Figures 4(b) and 4(e)) compared to the control group
(Figure 4(a)), but this was abrogated by high-dose SS-31
(Figures 4(d) and 4(e)).

3.4. SS-31 Attenuates CS-Induced Oxidative Stress in Mouse
Lung. After 4 weeks of CS exposure, MDA and MPO activi-
ties were increased (Figures 5(a) and 5(c)) whereas SOD
activity was decreased (Figure 5(b)) in the lungs of mice,
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Figure 1: SS-31 reduces CS-induced increases in inflammatory cell numbers and cytokine infiltration in mouse lung. (a–f) Total cell (a),
neutrophil (b), and macrophage (c) counts and IL-6 (d), TNF-α (e), and MMP9 (f) levels in mouse BALF (control: n = 7, CS: n = 5, SS-31
(L)+CS: n = 8, SS-31 (H)+CS: n = 5). ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 vs. control; #P < 0:05, ##P < 0:01, and ####P < 0:0001 vs.
CS; &&P < 0:01, &&&P < 0:001, and SS-31 (L)+CS vs. SS-31 (H)+CS. Abbreviations: BALF: bronchoalveolar lavage fluid; CS: cigarette
smoke; SS-31 (H): high-dose SS-31 (5mg/kg); SS-31 (L): low-dose SS-31 (2.5mg/kg).
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Figure 2: Continued.
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Figure 2: SS-31 attenuates CS-induced histologic changes in mouse lung. (a–d) H&E staining of mouse lung tissue from control (n = 7) (a),
CS (n = 7) (b), SS-31 (L)+CS (n = 8) (c), and SS-31 (H)+CS (n = 7) (d) groups (200x magnification, scale bar = 50μm). (e) Inflammation
scores of mouse lungs. Bottom images depict an enlarged view of boxed areas in corresponding top images; red box: peribronchiolar
infiltrates; blue box: alveolar septal infiltrates; yellow box: perivascular infiltrates; green box: bronchus-associated lymphoid tissue
hyperplasia. (f–i) Giemsa staining of mouse lung tissue from control (f), CS (g), SS-31 (L)+CS (h), and SS-31 (H)+CS (i) groups (600x
magnification, scale bar = 100μm). Red arrow: neutrophils; black arrow: macrophages. ∗∗∗∗P < 0:0001 vs. control; ####P < 0:0001 vs. CS;
&&P < 0:01 SS-31 (L)+CS vs. SS-31 (H)+CS. Abbreviations: CS: cigarette smoke; H&E: hematoxylin and eosin; SS-31 (H): high-dose SS-31
(5mg/kg); SS-31 (L): low-dose SS-31 (2.5mg/kg).
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Figure 3: SS-31 attenuates CS-induced airway mucus hypersecretion. (a–d) Mouse lung tissue from control (n = 7) (a), CS (n = 7) (b), SS-31
(L)+CS (n = 8) (c), and SS-31 (H)+CS (n = 7) (d) groups after AB/PAS staining (400x magnification, scale bar = 20 μm). (e) The positive
percentage of epithelial area with AB/PAS staining. Bottom images depict enlarged views of boxed areas in corresponding top images.
∗∗∗∗P < 0:0001 vs. control; #P < 0:05 vs. CS. Abbreviations: AB/PAS: Alcian blue/periodic acid Schiff; CS: cigarette smoke; SS-31 (H):
high-dose SS-31 (5mg/kg); SS-31 (L): low-dose SS-31 (2.5mg/kg).

6 Oxidative Medicine and Cellular Longevity



CON

20 μm

20 μm

(a)

20 μm

20 μm

CS

(b)

SS-31 (L)+CS

20 μm

20 μm 

(c)

SS-31 (H)+CS

20 μm

20 μm 

(d)

⁎⁎⁎⁎

##

CO
N CS

SS
-3

1 
(L

)+
CS

SS
-3

1 
(H

)+
CS

0.0

1.5

3.0

4.5

6.0
M

uc
5a

c-
st

ai
ne

d 
ar

ea
 o

f e
pi

th
el

iu
m

 (%
)

(e)

Figure 4: SS-31 suppresses CS-induced airway mucus protein secretion. (a–d) Immunohistochemical detection of Muc5ac in mouse airway
epithelium (400x magnification, scale bar = 20 μm) from control (a), CS (b), SS-31 (L)+CS (c), and SS-31 (H)+CS (d) groups (n = 7 per
group). (e) The positive percentage of epithelial area with anti-Muc5ac immunoreactivity. Bottom images depict enlarged views of boxed
areas in corresponding top images. ∗∗∗∗P < 0:0001 vs. control; ##P < 0:01 vs. CS. Abbreviations: CS: cigarette smoke; SS-31 (H): high-dose
SS-31 (5mg/kg); SS-31 (L): low-dose SS-31 (2.5mg/kg).
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Figure 5: SS-31 attenuates CS-induced oxidative stress in mouse lung. (a–c) Effects of SS-31 on lung MDA (a), SOD (b), and MPO (c)
activities in CS-exposed mice (n = 7 per group). ∗∗∗∗P < 0:0001 vs. control; #P < 0:05, ##P < 0:01, ###P < 0:001, and ####P < 0:0001 vs. CS;
&P < 0:05, &&P < 0:01, and SS-31 (L)+CS vs. SS-31 (H)+CS. Abbreviations: CS: cigarette smoke; MDA: malondialdehyde; MPO:
myeloperoxidase; SOD: superoxide dismutase; SS-31 (H): high-dose SS-31 (5mg/kg); SS-31 (L): low-dose SS-31 (2.5mg/kg).
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indicating that oxidative stress was induced. SS-31 pretreat-
ment mitigated this effect in a dose-dependent manner
(Figure 5): SOD and MPO activities were significantly higher

in mice pretreated with 5mg/kg SS-31 as compared to
2.5mg/kg SS-31 before CS (Figures 5(b) and 5(c)), suggesting
that SS-31 has strong antioxidant activity. MPO activity in
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Figure 6: SS-31 prevents mitochondrial dysfunction in CS-induced mouse lung. (a–d) Protein levels of OPA1, MFF (a, b), and cytochrome c
(c, d) in lungs were evaluated by western blot following exposure to CS with or without SS-31 pretreatment. GAPDH or COX IV was used as a
loading control (n = 3 per group). ∗∗P < 0:01 and ∗∗∗P < 0:001 vs. control; #P < 0:05 vs CS. Abbreviations: COX IV: cytochrome c oxidase IV;
CS: cigarette smoke; Cyt c: cytochrome c; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; MFF: mitochondrial fission factor; mit:
mitochondrion; OPA1: optic atrophy 1; SS-31 (H): high-dose SS-31 (5mg/kg); SS-31 (L): low-dose SS-31 (2.5mg/kg).
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Figure 7: RNA sequencing in mouse lung. (a) Clustering of DEGs in the CS and SS-31 (H)+CS groups (n = 3 per group). (b) GO analysis of
DEGs. The figure is composed of 3 parts: molecular functions, cellular components, and biological processes. The significance level of
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the lungs was positively correlated with neutrophil count
(Supplementary Figure 1).

3.5. SS-31 Protects against Mitochondrial Dysfunction in CS-
Exposed Mouse Lung. The levels of the mitochondrial fusion
protein OPA1 and fission protein MFF were assayed as
markers of mitochondrial function. CS exposure for 4 weeks
reduced the expression of OPA1 and increased that of MFF
in the lungs (Figures 6(a) and 6(b)). This was accompanied
by a decrease in mitochondrial cytochrome c but an increase
in the cytosolic pool (Figures 6(c) and 6(d)), which was
reversed by high-dose SS-31 pretreatment. The western blot
analysis and densitometry results are summarized in
Supplementary Table 1.

3.6. RNA Sequencing Analysis of Mouse Lung. DEGs were
defined as genes with a fold change ≥ 1:0 in the SS-31
(H)+CS group compared to the CS group. According to this
criterion, 4038 DEGs were identified (Figure 7(a)) including
2034 upregulated and 2004 downregulated genes; the top
10 of each are summarized in Supplementary Table 2. The
DEGs were categorized into 30 GO categories under 3
ontologies (Figure 7(b)) and 30 KEGG pathways
(Figure 7(c)). The KEGG pathway analysis revealed that
these genes were enriched in the MAPK, cyclic (c) AMP,
and 5′ AMP-activated protein kinase (AMPK) signaling
pathways and extracellular matrix-receptor interaction
(Figure 7(c)).

3.7. SS-31 Inhibits CS-Induced Phosphorylation of ERK and
P38. The signaling pathway potentially mediating the effects
of SS-31 was investigated by evaluating the expression of pro-
teins in mouse lung tissue samples by western blot. After 4
weeks of CS exposure, the phosphorylation of ERK and P38
was increased in mouse lung. High-dose SS-31 abrogated
the activation of both proteins (Figure 8). The western blot
analysis and densitometry results are summarized in
Supplementary Table 1.

3.8. SS-31 Prevents CSE-Induced Inflammatory Cytokine
Release via Inactivation of MAPK Signaling in Bronchial
Epithelial Cells. To confirm the in vivo finding that SS-31
attenuated CS-induced inflammation and oxidative stress
via inhibition of P38 MAPK signaling and to more closely
examine the underlying mechanism, we evaluated the effects
of anisomycin on BEAS-2B cells pretreated with CSE and SS-
31. We first assessed the toxicity of CSE with the CCK8 assay.
The cell viability in cells treated with 2%, 4%, 6%, and 8%
CSE was >80% compared to the control group, but 10%
CSE considerably decreased the percentage of living cells
(<80%) (Figure 9(a)). To establish a bronchial epithelial cell
model of CSE-induced airway inflammation, BEAS-2B cells
were treated with 8% CSE for 24h in the following
experiments.

The P38 MAPK activator anisomycin was used to stabi-
lize P38 at the protein level. Anisomycin significantly
increased P38 phosphorylation (Figure 9(b)). SS-31 reduced
the level of phosphorylated P38 MAPK in CSE-incubated
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Figure 8: SS-31 alleviates CS-induced phosphorylation of ERK and P38. (a) Protein levels of ERK, P-ERK, P38, and P-P38 were detected by
western blot. (b) Activation of these signaling molecules was evaluated based on the ratio of the density of phosphorylated protein to total
protein (n = 3 per group). ∗P < 0:05 and ∗∗∗P < 0:001 vs. control; #P < 0:05, ##P < 0:01, and ###P < 0:001 vs. CS. Abbreviations: CS:
cigarette smoke; ERK: extracellular signal-regulated kinase; P-ERK: phosphorylated extracellular signal-regulated kinase; P-P38:
phosphorylated P38; SS-31 (H): high-dose SS-31 (5mg/kg); SS-31 (L): low-dose SS-31 (2.5mg/kg).
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BEAS-2B cells, but this was blocked by anisomycin
(Figures 9(b) and 9(c)). Moreover, the levels of IL-6, TNF-
α, and MMP9 were higher in the anisomycin+CSE+SS-31
group than in the SS-31+CSE group (Figures 9(d)–9(f)).
These results imply that SS-31 inhibits MAPK signaling to
alleviate CSE-induced inflammation.

3.9. SS-31 Prevents CSE-Induced Oxidative Stress via
Inactivation of MAPK Signaling. ROS levels are an important
indicator of intracellular oxidative stress. Anisomycin pre-
treatment reduced the suppressive effect of SS-31 on CSE-
induced ROS production (Figure 10(a)) and abolished the

downregulation of MDA activity and upregulation SOD
activity in SS-31-treated BEAS-2B cells (Figures 10(b) and
10(c)), although it had no effect on GSH-Px activity
(Figure 10(d)). These results indicate that inactivation of
MAPK signaling is essential for the protective effect of SS-
31—which may be specific to antioxidant enzymes—against
oxidative stress induced by CSE.

3.10. SS-31 Prevents CSE-Induced Mitochondrial Dysfunction
via Inactivation of MAPK Signaling. The downregulation of
OPA1 and upregulation of MFF induced by CSE in BEAS-
2B cells were reversed by SS-31, but these changes were
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Figure 9: SS-31 inhibits CSE-induced inflammation and activation of MAPK signaling in BEAS-2B cells. (a) Cell viability was measured with
CCK-8 following treatment with indicated concentrations of CSE (n = 3 per group). (b, c) Phosphorylated and total P38 protein levels (n = 3
per group). (d–f) IL-6 (d), TNF-α (e), and MMP9 (f) levels in BEAS-2B cell supernatant (n = 3 per group). ∗∗P < 0:01, ∗∗∗P < 0:001, and
∗∗∗∗P < 0:0001 vs. control; #P < 0:05, ##P < 0:01, and ####P < 0:0001 vs. ani+CSE; &P < 0:05 and &&P < 0:01 vs CSE; $P < 0:05, $$P < 0:01,
and ani+SS-31+CSE vs. SS-31+CSE. Abbreviations: ani: anisomycin; CSE: cigarette smoke extract; P-P38: phosphorylated P38.
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abolished by the MAPK activator anisomycin (Figures 11(a)
and 11(b)). Thus, activation of the P38 MAPK signaling
pathway can block the protective effects of SS-31 against
CSE-induced mitochondrial dysfunction.

4. Discussion

SS-31 is a Szeto–Schiller peptide that selectively targets the
inner mitochondrial membrane and exerts protective effects
during inflammatory responses and oxidative stress [25–
27]. In the current study, we found that SS-31 attenuated
CS-induced airway inflammation, mucus hypersecretion,
and oxidative stress in mice. SS-31 also preserved mitochon-
drial function through up- and downregulation of mitochon-
drial proteins (OPA1 andMFF, respectively) and by blocking

the release of cytochrome c into the cytosol. The results of the
RNA sequencing analysis suggested that these effects may be
related to inhibition of CS-induced MAPK signaling. In vitro
experiments demonstrated that SS-31 protected BEAS-2B
cells from CSE-induced inflammation, oxidative damage,
and mitochondrial dysfunction via suppression of the MAPK
signaling pathway.

CS-induced mitochondrial oxidative stress amplifies
airway inflammation and airway mucus hypersecretion and
is closely associated with COPD progression [28, 29]. Anti-
oxidants are beneficial in COPD as they inhibit the inflam-
matory response [30]. SS-31 was shown to suppress
inflammation, as evidenced by the decreased levels of IL-6,
IL-1β [16, 31], TNF-α [31], and MMP9 [14]. Additionally,
SS-31 restored the activities of SOD, MDA [30], and MPA
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Figure 10: SS-31 suppresses CSE-induced oxidative stress via inhibition of MAPK signaling. (a) Intracellular ROS generation in BEAS-2B
cells. (b–d) Activities of MDA (b), SOD (c), and GSH-Px (d) in cells (n = 3 per group). ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P <
0:0001 vs. control; ##P < 0:01 and ###P < 0:001 vs. ani+CSE; &P < 0:05 and &&&P < 0:001 vs. CSE; $$P < 0:01 and ani+SS-31+CSE vs. SS-31
+CSE. Abbreviations: ani: anisomycin; CSE: cigarette smoke extract; GSH-Px: glutathione peroxidase; MDA: malondialdehyde; ROS:
intracellular reactive oxygen species; SOD: superoxide dismutase.
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[12] and mitigated ROS production [32], thereby balancing
oxidative status. These results provide novel evidence that
SS-31 has a protective role against CS-induced airway inflam-
mation and oxidative stress and thus has therapeutic potential
for the treatment of CS-related lung disorders such as COPD.

CS-induced mitochondrial dysfunction has been linked
to the initiation and progression of COPD [8], which may
be effectively treated with mitochondrial-targeting antioxi-
dants [28]. SS-31 restored the balance of cytochrome c levels
between mitochondria and the cytoplasm in renal fibrosis
[33] and obstructive nephropathy [34]. Pretreatment with
SS-31 also reversed alterations in the expression of the mito-
chondrial proteins dynamin-related protein (DRP) 1, FIS1,
mitofusin (MFN) 1, MFN2, and OPA1 in Alzheimer disease
[35]. Here, we demonstrate for the first time that SS-31 coun-
ters CS-induced airway inflammation and oxidative stress by
alleviating mitochondrial dysfunction.

The RNA sequencing analysis revealed that SS-31 altered
the expression of 4038 genes in mouse lung. Interestingly,
one of the genes that was upregulated was the circadian clock
gene nuclear receptor subfamily 1 group D member (NR1D)
1. The downregulation of NR1D1 has been linked to patho-
logic changes in the respiratory tract induced by CS [36].
Pretreatment with an NR1D1 agonist and antagonist blocked
IL-1β secretion and increased macrophage and neutrophil
infiltration, respectively [37], while mutation of the NR1D1
gene enhanced inflammation and chemokine release [38,
39]. NR1D1 regulates mitochondrial energy production and

enhances cellular antioxidant mechanisms to protect cells
against oxidative stress [40]. Thus, the modulation of mito-
chondrial oxidative stress and inflammation by SS-31 may
involve disruption of the circadian clock, with NR1D1 serv-
ing as a downstream target of SS-31.

The RNA sequencing results suggested that SS-31 regu-
lates many aspects of cell function including epithelial cilium
movement and cilium assembly. CS exposure was shown to
result in cilia loss and impaired beating [41], and alterations
in cilia structure or function have been implicated in COPD
pathogenesis [42]. Signaling molecules involved in the occur-
rence and development of COPD such as MAPK and cAMP
help regulate inflammation and airway remodeling, as does
extracellular matrix degradation [43]. AMPK modulates
inflammatory responses, senescence, mitochondrial dysfunc-
tion, and metabolic dysregulation [44]. There is increasing
evidence that constitutive or aberrant MAPK activation con-
tributes to several COPD-associated phenotypes including
mucus overproduction and secretion, inflammation, and
cytokine expression [45, 46]. Various small-molecule inhibi-
tors may exert lung-protective effects by blocking the ERK1/2
and MAPK signaling [43, 47]. It was previously reported that
SS-31 exerts antioxidant effects by suppressing the activation
of P38 MAPK [48–50]. This was confirmed by our observa-
tion that SS-31 treatment reversed the increases in ERK and
P38 phosphorylation in CS-exposed mice. Thus, SS-31 pro-
tects the lungs in COPD by attenuating CS-induced activa-
tion of the ERK/P38 MAPK pathway, which was supported
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Figure 11: SS-31 protects against CSE-induced mitochondrial dysfunction via suppression of MAPK signaling. (a, b) Protein levels of OPA1
and MFF detected by western blot in BEAS-2B cells (n = 3 per group). ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 vs. control; #P < 0:05 and
##P < 0:01 vs. ani+CSE; &P < 0:05 vs. CSE. Abbreviations: ani: anisomycin; CSE: cigarette smoke extract; MFF: mitochondrial fission factor;
OPA1: optic atrophy 1.
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by the finding that the MAPK activator anisomycin [51]
partly reversed the anti-inflammatory and antioxidant effects
of SS-31 in response to CSE in bronchial epithelial cells.

The current study had several limitations. Firstly, in
order to minimize the number of mice used, we did not
include a control group that was pretreated with SS-31 but
was not exposed to CS. Secondly, two BALF samples were
not lavaged successfully in the CS and SS-31 (high)+CS
groups; because of the small sample size, the inhibitory effect
of 5mg/kg SS-31 on the number of neutrophils in the BALF
may have been minimized. Thirdly, because of a lack of spe-
cific equipment, we did not examine the effect of SS-31 treat-
ment on lung function in mice exposed to CS. Finally, the
effects of anisomycin and SS-31 on mitochondrial cyto-
chrome c were not evaluated because of the difficulty of
extracting this protein. A major challenge of studies on CS-
induced inflammation is translating the experimental data
into clinically relevant studies. For the clinical application
of SS-31 in the treatment of CS-related disorders in humans,
additional studies are needed to determine the appropriate
dosing and potential adverse effects.

5. Conclusion

The results of this study demonstrate that SS-31 has thera-
peutic potential for the treatment of CS-induced lung disea-
ses—particularly COPD—based on its anti-inflammatory
and antioxidant properties in vitro and in vivo, which involve
the downregulation of MAPK signaling and modulation of
mitochondrial function.
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