Experimental protocol and sleep architecture. (a) Experimental design and results. Animals (N = 13) were implanted with matrices of single wires into the hippocampus (HPC) and the retrosplenial cortex (RSC), and recorded 3 h before (pre) and after (post) a contextual fear conditioning protocol (CFC). During training, seven animals underwent standard CFC (shock group), whereas six (sham group) underwent the same experimental steps, except for the foot-shocks during training. Both groups were tested for CFC 24 h after training. Inset: The shock group shows significant fear behavior compared to before training and to the sham group. Average freezing across animals for each group during testing (sham n = 6: training vs test, p = 0.63 and shock n = 7: training vs test, p = 0.02; Wilcoxon signed rank test. Testing: sham n = 6 vs shock n = 7: p = 0.001; Wilcoxon rank-sum test). (b) Sleep architecture throughout pre and post recordings averaged across animals and spanning 4 behavioral states: wake (WK), slow wave sleep (SWS), intermediate sleep (IS), and rapid eye movement (REM) sleep. Data expressed as the percentage (%) of each state per 30 s epochs, 15 s overlap. As expected, animals from the shock group remained awake for the majority of time during the first hours after fear training (time awake during post; 1st: 83.8 ± 2.8%, 2nd: 49.2 ± 9.2%, and 3rd hour: 37.3 ± 7.7%), although the exposure to novelty without foot-shock elicited a similar trend in the sham group (1st: 72.6 ± 7.1%, 2nd: 55.2 ± 8.4%, and 3rd hour: 42.3 ± 10.9%). (c) REM sleep is not significantly reduced after training. Percentage of REM sleep within each period (pre or post) for groups sham (top) and shock (bottom) (pre × post: sham n = 6, p = 0.15; shock n = 7: p = 0.58; Wilcoxon signed rank test). *p < 0.05. Graphs show mean ± SEM (lines/bars ± shades/lines).