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Prediagnostic circulating 
metabolites in female breast 
cancer cases with low and high 
mammographic breast density
Benedetta Bendinelli1, Alessia Vignoli2, Domenico Palli1*, Melania Assedi1, 
Daniela Ambrogetti1, Claudio Luchinat3,4, Saverio Caini1, Calogero Saieva1, Paola Turano3,4 & 
Giovanna Masala1

Mammographic breast density (MBD) is a strong independent risk factor for breast cancer (BC). We 
designed a matched case–case study in the EPIC Florence cohort, to evaluate possible associations 
between the pre-diagnostic metabolomic profile and the risk of BC in high- versus low-MBD women 
who developed BC during the follow-up. A case–case design with 100 low-MBD (MBD ≤ 25%) and 100 
high-MDB BC cases (MBD > 50%) was performed. Matching variables included age, year and type of 
mammographic examination. 1H NMR metabolomic spectra were available for 87 complete case–case 
sets. The conditional logistic analyses showed an inverse association between serum levels of alanine, 
leucine, tyrosine, valine, lactic acid, pyruvic acid, triglycerides lipid main fraction and 11 VLDL lipid 
subfractions and high-MBD cases. Acetic acid was directly associated with high-MBD cases. In models 
adjusted for confounding variables, tyrosine remained inversely associated with high-MBD cases 
while 3 VLDL subfractions of free cholesterol emerged as directly associated with high-MBD cases. A 
pathway analysis showed that the “phenylalanine, tyrosine and tryptophan pathway” emerged and 
persisted after applying the FDR procedure. The supervised OPLS-DA analysis revealed a slight but 
significant separation between high- and low-MBD cases. This case–case study suggested a possible 
role for pre-diagnostic levels of tyrosine in modulating the risk of BC in high- versus low-MBD women. 
Moreover, some differences emerged in the pre-diagnostic concentration of other metabolites as well 
in the metabolomic fingerprints among the two groups of patients.

Mammographic breast density (MBD) extensively emerged as a strong risk factor for breast cancer (BC), regard-
less of any potential masking effect. A 3–5-fold increased BC risk was estimated among women in the highest 
quartiles of MBD in comparison with low-MBD women1–4. MBD is influenced by age, body mass index and 
by several hormonal, reproductive (such as parity, age at first birth, menopause and hormone use) and lifestyle 
factors which are also associated with BC risk5–8.

The well-known reduction of mammographic sensitivity in women with high MBD has been associated with 
a delayed diagnosis of BC in screened populations. Tumors detected in dense breast may thus, on average, have 
progressed to a higher stage, with worse prognostic characteristics at diagnosis9,10. Many studies examined the 
association between MBD, BC subtypes and a series of tumor characteristics at diagnosis3,4,11–17 and a recent 
review found evidence to support a positive relationship between high MBD, tumour size and lymph node 
positivity while no associations emerged between high MBD and subtype or receptor status18.

Metabolomics is the -omic science that deals with the characterization of the metabolome, i.e. the ensemble 
of low molecular weight molecules present in a biological specimen19. Since the metabolome is downstream of 
all the other omic products, it is the most affected by environmental factors, lifestyle, dietary habits, stress con-
ditions, and drug treatments. As a consequence, metabolites can be thought as the most proximal reporters of 
any disease status or phenotype20, making metabolomics a technology with an enormous potential for the study 
and comprehension of the mechanisms of human health and diseases21.
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Nuclear Magnetic Resonance spectroscopy (NMR) is suitable for the high-throughput, untargeted, metabo-
lomics analysis of serum samples22 and provides a comprehensive picture of all metabolites present in the sample 
above the NMR detection limit (1 μM)23.

The applications of metabolomics in cancer research includes studies on disease etiology, biological mecha-
nisms and metabolic pathways24. In particular, metabolomics in BC has been used to classify different cancer 
types, grades and stages, to identify markers for early diagnosis and prediction of prognosis and treatment 
outcomes25–30. Moreover, in prospective studies, metabolomics has been used to estimate the long-term risk of 
developing BC31. Being able to simultaneously quantify dozens of molecules in the same biological specimen, 
NMR could help finding new etiological pathways or biomarkers associated with BC in women with different 
levels of MBD.

We designed this study to investigate the differences in the metabolomic profiles of pre-diagnostic serum 
samples from a series of BC cases diagnosed in women with high- and low-MBD, through a matched case–case 
design. BC was not present at the time of blood sampling, but it was diagnosed during the follow up several years 
later. This design allows to evaluate for the first time, to the best of our knowledge, possible associations between 
the pre-diagnostic metabolomic profile and the risk of BC in women with high- versus low-MBD.

Methods
Study cohort.  The European Prospective Investigation into Cancer and nutrition (EPIC) Florence cohort 
has been set up as a part of the EPIC European prospective study and enrolled (between 1993 and 1998) 10,083 
clinically healthy women aged 35–64 years residing in the Florence area (Tuscany, Central Italy). All study par-
ticipants signed an informed consent and gave permission to use the data collected during the study. The study 
was approved by the local Ethics Committee “Azienda Sanitaria Firenze”. All procedures performed were in 
accordance with the ethical standards of the institutional and national research committee and with the 1964 
Helsinki declaration and its later amendments or comparable ethical standards.

At enrolment, weight, height, waist and hip circumferences were measured by trained nurses according to an 
international standard protocol. Data on frequency of consumption of 188 foods and drinks and usual portion 
size were obtained through a validated self-administered Food Frequency Questionnaire specifically developed 
to capture the Italian dietary habits. A standardized lifestyle questionnaire collected detailed information on 
reproductive history, smoking and alcohol drinking history, educational level, physical activity habits and medical 
history. Information on drug use including hormone replacement therapy (HRT) was also collected. Following 
a standardized protocol, a fasting blood sample was collected for every participant, processed, aliquoted and 
stored in the liquid nitrogen biological bank of the study, for long-term storage32.

The ascertainment of vital status was carried out through the linkage with the local town offices and the 
local Mortality Registry, thereby identifying the deceased subjects and the date and cause of death. Standard-
ized follow-up procedures have been periodically implemented for the identification of cancer cases diagnosed 
after enrolment. The identification of BC cases (code C50 according to ICD-O-2 classification) was obtained 
through periodical linkage with the hospital discharge system and the Pathology Department registries32. At 
the 31/12/2015 follow up, 573 BC cases have been identified in the EPIC Florence cohort. Information on 
oestrogen receptor (ER) and progesterone receptor (PR) status was provided on the basis of pathology reports. 
Two categories (negative/positive) were considered according to well-established cut-off values (10% for both 
ER and PR)33,34.

In order to update the mammographic examination (ME) history of the EPIC female participants, we per-
formed periodically a linkage with the mammographic archives of the population-based local mammographic 
screening (run by ISPRO, Florence) and of the MEs performed in a clinical setting at our Institution35. For each 
newly identified BC case we retrieved a negative ME performed at least one year before the BC diagnosis, if 
available, or otherwise the diagnostic ME. All MEs were revised by the study radiologist (DA) and classified 
according to the 4th Breast Imaging Reporting and Data System (BI-RADS) criteria: D1 < 25%, D2 = 25–50%, 
D3 = 51–75%, D4 > 75% of the area of the breast showing fibroglandular density. Overall, 481 out of the 573 
identified BC cases have been classified according to the 4 BI-RADS categories36.

Design of the nested case–case study.  A case–case design was used to compare the pre-diagnostic 
metabolites’ concentrations among low-MDB women who developed a BC (low-MBD cases) and among high-
MDB women who also developed a BC (high-MBD cases).

A 1:1 case–case study was set up by selection of 100 high-MDB cases (MBD > 50%, BI-RADS = D3 or D4) 
and 100 low-MBD cases (MBD < 25%, BI-RADS = D1) matched by age at cohort entry (± 5 years), characteristics 
of the ME used to classify the MBD (analogical/digital; negative/diagnostic) and year of ME (before/after 31st 
December, 1999). The population included in the present study consisted of all pairs that could be obtained 
through the above described procedure.

A total of 194 serum samples (97 complete case–case sets) were retrieved from the liquid nitrogen biological 
bank of the study and shipped to the study laboratory for the metabolomic profile examination. Metabolomic 
spectra were available for 174 serum samples corresponding to 87 complete case–case sets. Ten case–case sets 
were excluded because serum samples were of insufficient quality for metabolomics analysis (i.e. haemolyzed).

Laboratory analysis.  Serum samples were tested in the CERM laboratory (Centro di Risonanze Magnet-
iche) of the University of Florence, Italy. One-dimensional 1H NMR spectra were acquired at 310 K using a 
Bruker 600 MHz spectrometer (BrukerBioSpin) operating at 600.13 MHz proton Larmor frequency37. For each 
serum sample three standard 1D 1H NMR spectra namely CPMG (selective detection of low molecular weights 
metabolites), Diffusion-edited (selective detection of high molecular weights molecules), and NOESY (detec-
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tion of all molecules present in concentrations above the detection limit) spectra were acquired. Samples were 
prepared and NMR spectra acquired following standard procedures22. Free induction decays were multiplied by 
an exponential function equivalent to a 0.3 Hz line-broadening factor before applying Fourier transform. Trans-
formed spectra were automatically corrected for phase and baseline distortions and calibrated at the anomeric 
glucose signal at 5.24 ppm using TopSpin 3.2.

Statistical analysis.  Main baseline characteristics of BC cases were described separately for high- and low-
MBD. Means, standard deviations and p-values from t test or Wilcoxon rank-sum tests were performed for 
continuous variables. Frequencies and Pearson’s chi-squared tests were performed for categorical variables.

Quantification of metabolites, lipid main fractions and subfractions was performed using the Bruker IVDr 
platform38. Completeness of measures and limits of quantification (LOQ) are shown in Supplementary Table 1. 
Values lower than the limit of quantification (LOQ) were imputed with half the LOQ. Metabolites with more 
than 20% of observation under the LOQ (n = 6) were excluded from the statistical analyses39.

Means of metabolite concentrations in high- and low-MBD cases were computed.
Metabolites, lipid main fractions and lipoprotein subfraction concentration values were log-transformed 

in order to normalize the distribution. Conditional logistic regression models were performed to estimate the 
association between metabolites, lipid main fractions and lipoprotein subfractions concentration and being a 
high-MBD case. Each single metabolite, lipid main fraction and lipoprotein subfraction (continuous, per stand-
ard deviation) was separately added to the model.

Additional models were performed in order to adjust for a set of potential confounding variables mainly 
related to MBD modulation (age at diagnosis, baseline menopausal status, number of full-term pregnancies, ER 
status, breastfeeding and baseline body mass index class,). Further models were also performed adjusting for 
waist/hip ratio, diabetes, hypertension and hyperlipidaemia. p values were adjusted for multiple testing using the 
false discovery rate (FDR) procedure with Benjamini–Hochberg correction at α = 0.0540. STATA 14.1 software 
was used for these analyses.

MetaboAnalyst41,42 was used to analyse the involved metabolic pathways related to the identified metabolites. 
The metabolic pathways analysis was conducted on the metabolites showing a significant association in condi-
tioned logistic models, with the exclusion of lipid fractions that were not directly matchable with MetaboAnalyst. 
According to previous studies, only pathways with an impact > 0.2 were considered43.

To perform the multivariate analysis on the NMR spectra, each 1D spectrum in the range 0.2–10.00 ppm 
(thus the whole spectra, considering both assigned and unassigned metabolites) was segmented into 0.02 ppm 
chemical shift bins and the corresponding spectral areas were integrated using AMIX software (version 3.8.4, 
Bruker BioSpin). The region between 5.12 and 4.40 ppm containing the residual water signal was removed and 
the dimension of the system was reduced to 455 bins. The total spectral area was calculated on the remaining 
bins and total integral normalization was carried out prior to pattern recognition.

Unsupervised Principal Component Analysis (PCA) was used as first exploratory analysis to visualize the 
data and to discover possible outliers. Differences in the serum metabolomic fingerprints were then assessed 
using a supervised Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA) to cluster the groups 
of interest. In each OPLS-DA model the minimum number of latent variables that maximize model accuracy 
was retained (CPMG n = 7; NOESY n = 9; Diffusion n = 6). Accuracy, sensitivity and specificity for the OPLS-DA 
classifications were assessed by means of 100 cycles of a Monte Carlo cross-validation scheme (MCCV, R script 
in-house developed). Briefly, 90% of the data were randomly chosen at each iteration as a training set to build 
the model, the remaining 10% was tested and sensitivity, specificity and accuracy for the classification were 
assessed according to the standard definition. Significance of the classification results was assessed by means of 
a permutation test using 102 permutations.

Results
The MEs used to classify the MBD of BC cases were mostly analogical (75 of the 87 case–case sets; 86.2%), non 
diagnostic (73 sets; 83.9%) and performed after 31st December, 1999 (53 sets; 60.9%).

BC diagnosis occurred on average 8.6 and 8.2 years after blood sample collection in low- and high-MBD 
cases, respectively (p = 0.65). Mean age at diagnosis was significantly lower among high-MBD cases (62.9 and 
59.8 years in low- and high-MBD cases, respectively, p = 0.002). High-MBD cases also showed a lower number 
of pregnancies and of breastfeeding months. Moreover low-MBD cases were mainly among post-menopausal 
women and among women with a higher body mass index (Table 1).

Fifteen metabolites (acetic acid, alanine, citric acid, creatine, creatinine, glucose, glutamine, glycine, histidine, 
isoleucine, lactic acid, leucine, pyruvic acid, tyrosine, valine), 7 lipid main fractions (triglycerides, cholesterol, 
LDL cholesterol, HDL cholesterol, APO A1, APO A2, APO B100) and 95 lipoprotein subfractions were quantified 
in the spectra. Mean concentrations according to low- and high-MBD are reported in Supplementary Table 2.

Logistic models conditioned on the matching variables showed that 6 out of the 15 metabolites were inversely 
associated with high-MBD BC cases: alanine (OR 0.59, 95%CI 0.42–0.83, p value 0.003); leucine (OR 0.71, 95%CI 
0.52–0.98, p value 0.03); tyrosine (OR 0.59, 95%CI 0.42–0.82, p value 0.002); valine (OR 0.72, 95%CI 0.53–0.99, p 
value 0.04); lactic acid (OR 0.69, 95%CI 0.49–0.96, p value 0.03); pyruvic acid (OR 0.59, 95%CI 0.41–0.84, p value 
0.003). Also the triglycerides lipid main fraction was inversely associated with high-MBD BC cases (OR 0.67, 
95%CI 0.48–0.93, p value 0.02) as well as 11 VLDL subfractions of triglycerides, cholesterol, phospholipids and 
APO B (p value < 0.05). Acetic acid was directly associated with high-MBD BC cases (OR 1.67, 95%CI 1.19–2.35, 
p value 0.003). Overall, 7 metabolites (out of 15), 1 lipid fraction (out of 7) and 11 lipoprotein subfraction (out 
of 95) emerged as associated with high-MBD BC cases (Tables 2, 3).
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Variables

Low MBD cases
N = 87

High MBD cases
N = 87

p valueMean (SD) or N (%) Mean (SD) or N (%)

Age at blood collection (years) 54.3 (6.7) 51.6 (6.9) 0.01j

Age at diagnosis (years) 62.9 (6.4) 59.8 (6,8) 0.002j

Length of follow-up from blood collection (years) 8.6 (4.6) 8.2 (4.5) 0.65k

Mean time between blood collection and mammographic examinations 
(years) 6.1 (5.0) 6.4 (4.9) 0.78j

Mean time between mammographic examinations and breast cancer (years) 2.5 (2.8) 1.8 (2.6) 0.12j

Diabetesa

No 84 (98.8) 85 (97.7)

Yes 1 (1.2) 2 (2.3) 0.57l

Hyperlipidaemiab

No 59 (70.2) 67 (77.0)

Yes 25 (28.8) 20 (23.0) 0.32l

Hypertensiona

No 69 (81.2) 71 (81.6)

Yes 16 (18.8) 16 (18.4) 0.94l

Tumor characteristics

Cancer sizec

T1 (< 2 cm) 55 (71.4) 53 (71.6)

T2 (2–5 cm) 9 (11.7) 10 (13.5)

T3 (> 5 cm) 1 (1.3) 0 (0.0)

T4 (any size, growing into the chest wall or skin) 1 (1.3) 0 (0.0)

Tis (in situ) 11 (14.3) 11 (14.9) 0.73 l

Lymph node statusd

Negative 47 (77.0) 41 (66.1)

Positive 14 (23.0) 21 (38.9) 0.60 l

ER statuse

Negative 6 (7.9) 13 (18,8)

Positive 70 (92.1) 56 (81.2) 0.05l

PR statuse

Negative 35 (46.1) 27 (39.1)

Positive 41 (53.9) 42 (60.9) 0.40l

Reproductive history

Age at first menstrual period (years) 12.2 (1.6) 12.4 (1.4) 0.30k

Contraceptive pilla

No 48 (56.5) 53 (60.9)

Yes 37 (43.5) 34 (39.1) 0.55l

Number of full-term pregnancies

0 8 (9.2) 20 (23.0)

1 30 (34.5) 32 (36.8)

2 33 (37.9) 33 (37.9)

 ≥ 3 16 (18.4) 2 (2.3) 0.006l

Age at first full-term pregnancy (years) 26.0 (4.6) 26.9 (3.9) 0.24j

Breastfeeding

Nog 18 (20.7) 30 (34.5)

Yes 69 (79.3) 57 (65.5) 0.04l

Breastfeeding months (126 breastfeeding women) 9.5 (6.6) 5.7 (3.3) 0.0001j

Menopausal status at blood collectiona

Premenopausal 21 (24.7) 34 (39.1)

Postmenopausal 64 (75.3) 53 (60.9) 0.043l

Menopausal status at mammographic examinationf

Premenopausal 3 (3.6) 13 (15.5)

Postmenopausal 81 (96.4) 71 (84.5) 0.009l

Menopausal hormones use at blood collectionh

No 42 (71.2) 34 (81.0)

Yes 17 (28.8) 8 (19.0) 0.26l

Continued
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In models adjusted for confounding variables (age at diagnosis, baseline menopausal status, number of full-
term pregnancies, ER status, breastfeeding, baseline body mass index class) only tyrosine emerged as inversely 
associated with high-MBD cases (OR 0.51, 95%CI 0.27–0.94, p value 0.03) (Table 2), while 3 VLDL subfractions 
of free cholesterol showed a direct association with high-MBD cases (Table 3). Results did not change after further 
adjustment for waist/hip ratio, diabetes, hyperlipidaemia and hypertension (data not shown).

None of the examined molecules remained associated, in adjusted models, after controlling for multiple 
tests by FDR.

The results of the pathway analysis are presented graphically in Fig. 1. A total of 17 pathways were detected 
related to the 7 metabolites significantly associated with high-MBD cases in unadjusted logistic models condi-
tioned on the matching variables. Two pathways emerged with an impact > 0.2. The first pathway was the “phe-
nylalanine, tyrosine and tryptophan biosynthesis” (significant FDR adjusted p value), with 4 total compounds 
including 1 Hit corresponding to tyrosine. The second pathway was the “pyruvate metabolism” (non significant 
FDR adjusted p value). This pathway included 22 total compounds among which we had 3 Hits corresponding 
to pyruvic acid, lactic acid and acetic acid).

The PCA performed on the 87 case–case sets showed no outliers (Supplementary Fig. 1). Results of the super-
vised OPLS-DA for all the three types of NMR spectra (score plots: Fig. 2, loading plots: Supplementary Fig. 2) 
revealed a slight but significant separation between BC cases with high and low MBD (accuracy 61.2–62.6%, 
p-value < 0.05). The spectral regions that mainly contribute to the discrimination between high and low MBD 
women in the OPLS-DA models are those related to VLDL lipoproteins. Regarding low molecular weight metabo-
lites, detected only in NOESY and CPMG spectra, the bins of alanine, valine, 3-hydroxybutyrate, pyruvate and 
lactate showed the highest discriminating power.

Discussion
This study aimed to evaluate the possible differential role of individual pre-diagnostic metabolomic profiles in two 
matched series of BC cases identified in participants with low or high MBD. Pre-diagnostic serum samples from 
BC cases were examined in the frame of a case–case study nested in the EPIC Florence cohort. Since all study 
subjects developed BC, the investigated association is not to be interpreted as a BC risk assessment related to 
pre-diagnostic serum metabolites, but rather as an estimation of the possible differential effect of pre-diagnostic 
metabolomic profiles in the modulation of the risk to develop a BC in women with high vs low MBD.

As expected, a lower mean age at diagnosis emerged among high-MBD BC cases compared to their matched 
low-MBD BC cases. A reduction in MBD with aging has been extensively reported in literature6. The parameters 
associated with the reproductive history were also in line with the evidences reported in literature5–7. High-MBD 
cases occurred mainly in pre-menopause women and in women with a lower number of pregnancies.

As reported in literature8, in our study body mass index, body weight and waist and hip circumferences were 
significantly lower among high-MBD BC cases compared to low-MBD BC cases.

Results of the conditional logistic analyses showed an inverse association between serum levels of six metabo-
lites and high-MBD BC cases, as well as for serum levels of the triglycerides lipid main fraction and 11 VLDL 
subfractions of triglycerides, cholesterol, phospholipids and APO B. One other metabolite was, on the other 
hand, directly associated with high-MBD BC cases. After adjustment for age at diagnosis, menopausal status, 
number of full-term pregnancies, breastfeeding, ER status and body mass index, tyrosine confirmed the signifi-
cant inverse association with high-MBD BC cases and an association emerged between 3 VLDL subfractions 
of free cholesterol and high-MBD BC cases, although the reported associations lose significance after checking 
for multiple tests.

Alterations of amino acid levels in plasma or serum samples of breast cancer patients as compared with 
healthy controls were investigated by some studies with contradictory results44. Both tyrosine and alanine not 
only were found higher in BC patients, but their levels seem to be also influenced by the stage of the disease45. 

Variables

Low MBD cases
N = 87

High MBD cases
N = 87

p valueMean (SD) or N (%) Mean (SD) or N (%)

Menopausal hormones use at mammographic examinationi

No 46 (93.9) 37 (90.2)

Yes 3 (6.1) 4 (9.8) 0.52l

Anthropometric measures

Height (cm) 160.5 (5.9) 161.0 (5.7) 0.56j

Weight (kg) 71.9 (11.4) 60.7 (8.4) < 0.0001j

Body Mass Index (kg/m2) 27.9 (4.5) 23 (3.3) < 0.0001j

Waist/hip ratio 0.80 (0.07) 0.76 (0.06) < 0.0001k

Table 1.   Mean values and distribution of study participants according to the main characteristics for 87 case–
case sets (EPIC Florence, low- vs high-MBD BC case–case study). a Missing = 2; bmissing = 3; cmissing = 23; 
dmissing = 51; emissing = 29; fmissing = 6. g No breastfeeding women or women with no full-term pregnancies. 
h Postmenopausal women at blood collection = 117 (missing = 16). i Postmenopausal women at mammographic 
examination = 152 (missing = 62). j p value from t test. k p value from Wilcoxon rank-sum test. l p value from 
Pearson’s chi-squared.
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We observed higher levels of alanine and tyrosine in pre-diagnostic serum samples of low MDB cases in com-
parison to high MDB cases, although in our series no differences emerged in tumor characteristics of low- and 
high-MBD matched BCs.

In our study three free cholesterol VLDL subfractions showed a direct association with with high-MBD cases 
in adjusted models. Notably, our results remained significant in models adjusted for diabetes, hyperlipidaemia 
and hypertension. Obesity, overweight and dyslipidaemia are considered risk factors for BC, especially in post-
menopausal women. However, the mechanisms in which they are involved, and therefore their role in BC devel-
opment and growth, remain controversial probably due to different experimental settings46,47. Clinical studies and 
meta-analyses support a role for obesity, dietary fat intake and cholesterol in the onset and progression of BC, 
while some studies show that high cholesterol levels prior to diagnosis protect against the development of these 
tumors46. In a previous in vitro study LDL subfractions 1 and 5, VLDL, but not HDL, enhanced BC cell viability, 
increased the in vitro tumorigenesis, promoted BC cell migration and invasion and promoted angiogenic activity. 
However, only VLDL promoted metastasis in nude mice47. Moreover, in a previous in-vitro study, VLDL was 
associated with transport capacity of lipids to cancer cells to support breast cancer growth and development48.

Based on the pathway analysis the “phenylalanine, tyrosine and tryptophan biosynthesis” emerged as the most 
important metabolic process showing a differential expression among low- and high-MBD BC cases, that per-
sisted after FDR testing. In a paper from Chen et al.49, tyrosine metabolism emerged as one of the most relevant 
dysfunctional pathways in aggressive cancer cell lines and an interaction between cancer related pathways and 
tyrosine metabolism was reported. Our pathway analyses also showed a possible role of the “pyruvate pathway”. 
Studies investigating the dysfunctional pathways that affect the progression of BC found “pyruvic metabolism” as 
one of the most closely involved. A series of differentially expressed genes such as ALDH2, ACACB and MDH1, 
contained in the “pyruvate metabolism” pathway, were down-regulated in BC samples50,51.

Table 2.   Association between metabolites concentration, lipid main fractions concentration and high-MBD 
BC cases, compared to low-MBD BC cases, in the 87 sets (EPIC Florence, low- vs high-MBD BC case–case 
study). a Odds ratios per standard deviation (SD) increase in metabolite concentration conditioned on age at 
cohort entry (± 5 years), type of mammographic examination (analogical/digital; negative/diagnostic) and 
year of mammographic examination (before/after 2000). Single metabolites and lipid main fractions separately 
added to the regression model. b Odds ratios per standard deviation (SD) increase in metabolite concentration 
conditioned on age at cohort entry (± 5 years), type of mammographic examination (analogical/digital; 
negative/diagnostic) and year of mammographic examination (before/after 2000) and adjusted for age at 
diagnosis, number of full-term pregnancies, breastfeeding (yes/no), menopausal status at baseline, ER status, 
body mass index at baseline. Single metabolites and lipid main fractions separately added to the regression 
model. c p values adjusted for false discovery rate (FDR) at α = 0,05 with Benjamini–Hochberg correction.

Conditional logistic regressiona Adjusted conditional logistic regressionb

Odds ratio (95% CI) for 1 SD p value Odds ratio (95% CI) for 1 SD p value p value FDRc

Metabolite (n = 15)

Creatinine 0.89 (0.65–1.23) 0.490 0.82 (0.51–1.31) 0.408 NS

Alanine 0.59 (0.42–0.83) 0.003 0.61 (0.34–1.09) 0.095 NS

Creatine 0.78 (0.56–1.09) 0.149 0.73 (0.43–1.21) 0.222 NS

Glutamine 1.05 (0.79–1.38) 0.751 0.91 (0.59–1.39) 0.654 NS

Glycine 1.34 (0.98–1.85) 0.071 1.46 (0.91–2.34) 0.113 NS

Histidine 1.02 (0.76–1.37) 0.898 0.63 (0.36–1.08) 0.095 NS

Isoleucine 0.73 (0.52–1.01) 0.056 0.90 (0.56–1.45) 0.669 NS

Leucine 0.71 (0.52–0.98) 0.034 0.86 (0.53–1.39) 0.533 NS

Tyrosine 0.59 (0.42–0.82) 0.002 0.512 (0.27–0.94) 0.031 NS

Valine 0.72 (0.53–0.99) 0.044 0.89 (0.54–1.46) 0.633 NS

Acetic acid 1.67 (1.19–2.35) 0.003 1.47 (0.86–2.50) 0.158 NS

Citric acid 1.33 (0.97–1.83) 0.077 1.25 (0.80–1.94) 0.331 NS

Lactic acid 0.69 (0.49–0.96) 0.026 0.79 (0.46–1.35) 0.385 NS

Pyruvic acid 0.59 (0.41–0.84) 0.003 0.67 (0.39–1.16) 0.155 NS

Glucose 0.83 (0.60–1.14) 0.259 1.19 (0.71–1.97) 0.508 NS

Lipid main fractions (n = 7)

Triglycerides 0.67 (0.48–0.93) 0.018 1.36 (0.77–2.39) 0.286 NS

Cholesterol 0.76 (0.54–1.08) 0.123 1.06 (0.67–1.68) 0.793 NS

LDL cholesterol 0.84 (0.61–1.15) 0.276 1.13 (0.71–1.79 0.608 NS

HDL cholesterol 1.23 (0.91–1.66) 0.173 0.81 (0.52–1.26) 0.348 NS

APO A1 1.05 (0.78–1.40) 0.756 0.85 (0.57–1.26) 0.419 NS

APO A2 0.92 (0.67–1.26) 0.607 0.88 (0.56–1.36) 0.554 NS

APO B100 0.72 (0.51–1.02) 0.068 1.23 (0.75–2.02) 0.405 NS
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Finally, the untargeted supervised analyses performed on the serum metabolomic fingerprint revealed a 
slight but significant separation between BC cases diagnosed in women with high vs low MBD as assessed in a 
period preceding the diagnosis.

The main limitation of the current study is represented by the relatively modest sample size. Moreover, the 
smaller proportion of low-MBD women that were pre-menopausal and with a low BMI precluded the possibility 
to add menopausal status and BMI as criteria in the selection of the matched sets. However, menopausal status 
and BMI were considered as confounding variables in the adjusted models together with other variables strongly 
related to mammographic breast density, such as age at diagnosis, number of full-term pregnancies, breastfeeding 
and ER status. These adjusting variables strongly impacted the significance of the associations and, for some of 
the VLDL subfractions, also the direction of the associations. This strong impact was predictable since these char-
acteristics are strongly related to mammographic breast density but also to the subjects metabolic/lipid profile. 
On the other hand, our study has several strengths. First of all the duration of the pre-diagnostic period between 
the sample collection and the BC diagnosis was very similar between the two matched series and sufficient to 
preclude any severe effect of BC on the metabolic profile of each individual study subject. Blood samples were 
collected and aliquoted according to standard operating procedures and have been stored in a dedicated liquid 
nitrogen biobank thus ensuring a good preservation of the serum samples.

To our knowledge, this is the first study to examine the differences in the metabolomic profile of pre-diag-
nostic samples of BC cases diagnosed in women with high- and low-MBD, through a matched case–case design.

To date, biomarkers identified as differentially expressed in blood of patients of certain types of cancer have 
been mainly used before cancer diagnosis for risk assessment and screening, at diagnosis for classification and 
staging and after diagnosis in monitoring treatments or cancer recurrence52,53. Few of these biomarkers have 
been tested rigorously in pre-diagnostic serum collected from asymptomatic subjects. The utility of available 
biomarkers for diagnosis of early BC is currently unknown54. Few studies have been conducted on large patient 
cohorts using pre-diagnostic blood samples to investigate possible associations between metabolic biomarkers 
and breast cancer risk. A prospective nested case–control study was set up in the SU.VI.MAX cohort, includ-
ing 206 breast cancer cases diagnosed during a 13-year follow-up and 396 matched controls. Untargeted NMR 
metabolomic profiles were established from baseline plasma samples. Women characterized by higher plasma 
levels of valine, lysine, arginine, glutamine, creatine, creatinine and glucose, and lower plasma levels of lipo-
proteins, lipids, glycoproteins, acetone, glycerol-derived compounds and unsaturated lipids had a higher risk of 
developing breast cancer55. On the other hand, many clinical studies, recently included in a systematic review56, 
investigated the metabolomic biomarkers and the pathways related to BC diagnosis. Among 22 studies performed 

Table 3.   Association between lipoprotein subfractions concentration and high-MBD cases, compared to 
low-MBD BC cases, in the 87 sets (EPIC Florence, low- vs high-MBD BC case–case study). a Odds ratios per 
standard deviation (SD) increase in metabolite concentration conditioned on age at cohort entry (± 5 years), 
type of mammographic examination (analogical/digital; negative/diagnostic) and year of mammographic 
examination (before/after 2000). Single lipoprotein subfractions separately added to the regression model. 
b Odds ratios per standard deviation (SD) increase in metabolite concentration conditioned on age at cohort 
entry (± 5 years), type of mammographic examination (analogical/digital; negative/diagnostic) and year 
of mammographic examination (before/after 2000) and adjusted for age at diagnosis, number of full-term 
pregnancies, breastfeeding (yes/no), menopausal status, ER status, body mass index. Single lipoprotein 
subfractions separately added to the regression model. c p values adjusted for false discovery rate (FDR) at 
α = 0.05 with Benjamini–Hochberg correction.

Conditional logistic regressiona Adjusted conditional logistic regression b

Odds ratio (95%CI) for 1 SD p value Odds ratio (95%CI) for 1 SD p value p value FDR c

LipoproteinMainFractionsTrig-
VLDL 0.65 (0.46–0.91) 0.014 1.43 (0.79–2.61) 0.238 NS

LipoproteinMainFractionsCholV-
LDL 0.68 (0.49–0.95) 0.025 1.57 (0.86–2.85) 0.141 NS

LipoprMainFractionsFreeCho-
lVLDL 0.67 (0.47–0.93) 0.018 1.47 (0.82–2.64) 0.201 NS

LipoproteinMainFractionsPhos-
VLDL 0.66 (0.47–0.93) 0.018 1.50 (0.82–2.73) 0.186 NS

LipoproteinMainFractionsApoB-
VLDL 0.56 (0.33–0.96) 0.035 1.47 (0.85–2.53) 0.171 NS

SubfractionsTriglyceridesVLDL1 0.50 (0.31–0.80) 0.004 1.27 (0.63–2.56) 0.511 NS

SubfractionsTriglyceridesVLDL5 0.65 (0.46–0.92) 0.015 0.88 (0.53–1.47) 0.624 NS

SubfractionsCholesterolVLDL1 0.60 (0.42–0.86) 0.005 1.38 (0.75–2.52) 0.304 NS

SubfractionsCholesterolVLDL5 0.57 (0.33–0.98) 0.042 1.05 (0.51–2.16) 0.893 NS

SubfractionsFreeCholesterolVLDL2 1.04 (0.77–1.41) 0.790 2.05 (1.24–3.39) 0.005 NS

SubfractionsFreeCholesterolVLDL3 1.20 (0.87–1.66) 0.256 1.92 (1.08–3.41) 0.026 NS

SubfractionsFreeCholesterolVLDL4 1.04 (0.77–1.40) 0.818 1.72 (1.04–2.83) 0.035 NS

SubfractionsPhospholipidsVLDL1 0.55 (0.36–0.85) 0.006 1.49 (0.75–2.98) 0.259 NS

SubfractionsPhospholipidsVLDL5 0.51 (0.28–0.90) 0.021 1.02 (0.48–2.21) 0.951 NS
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on plasma or serum samples, tyrosine was the most frequently mentioned metabolite related to BC diagnosis 
followed by other metabolites as alanine and glycine. Pathway analyses highlighted the role of alanine, aspartate 
and glutamate metabolism in BC development while pyruvate metabolism emerged among pathways with high, 
although not significant, impact56.

However only few studies, mainly validation studies, used pre-diagnostic blood samples to investigate poten-
tial cancer biomarkers. Despite recent progress in the detection of low level biomarkers in pre-diagnostic BC sam-
ples, the small samples size of studies and the background technical/biological noise still represent a challenge57. 
This reinforces the need to conduct larger exploratory studies in pre-diagnostic samples.

To conclude, in this case–case study aimed to identify metabolites differentially present in pre-diagnostic 
serum samples from high- or low-MBD women developing BC, a possible role for pre-diagnostic level of tyrosine 

Figure 1.   (A) Summary of pathways analysis using MetaboAnalyst (https://​www.​metab​oanal​yst.​ca): (1) 
phenylalanine, tyrosine and tryptophan biosynthesis; (2) pyruvate metabolism. (B) Detailed results of pathway 
analysis. Total Cmpd is the total number of compounds in the pathway; Hits is the actually matched number of 
compounds from the user uploaded data; Raw p is the original p value calculated from the enrichment analysis; 
Holm is the p value adjusted by Holm-Bonferroni method; FDR is the p value adjusted using False Discovery 
Rate; Impact is the pathway impact value calculated from pathway topology analysis (EPIC Florence, low- vs 
high-MBD BC case–case study).

https://www.metaboanalyst.ca
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in modulating the risk of BC in high- versus low-MBD women was suggested and some differences emerged in 
the pre-diagnostic metabolites concentration and in the distribution of the metabolomic fingerprints.

Larger studies are needed to expand these results in order to better understand the metabolic pathways lead-
ing to the development of BC in women with different levels of MBD.

Received: 9 April 2021; Accepted: 11 June 2021
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