Table 3.
Accuracy and macro-averaged metrics of the proposed deep neural network classifiers for 41 hand movements.
| Accuracy | Macro-precision | Macro-recall | Macro-F1 | ||
|---|---|---|---|---|---|
| DB5—8 channels : intact participants | |||||
| 100 ms | 74.00 ± 2.10 | 42.79 ± 4.40 | 36.14 ± 4.80 | 38.68 ± 4.70 | |
| 200 ms | 77.97 ± 2.09 | 51.58 ± 4.73 | 46.13 ± 4.56 | 47.95 ± 4.69 | |
| 400 ms | 80.88 ± 1.99 | 56.44 ± 4.12 | 52.48 ± 4.55 | 53.85 ± 4.49 | |
| 800 ms | 87.04 ± 1.83 | 68.88 ± 4.08 | 67.56 ± 4.01 | 68.00 ± 4.06 | |
| 1,000 ms | 89.00 ± 2.05 | 73.32 ± 4.11 | 71.78 ± 4.67 | 72.35 ± 4.54 | |
| DB5—16 channels : intact participants | |||||
| 100 ms | 81.37 ± 2.17 | 59.43 ± 5.13 | 55.10 ± 5.00 | 56.90 ± 5.03 | |
| 200 ms | 84.25 ± 2.02 | 65.21 ± 4.48 | 62.07 ± 4.56 | 63.38 ± 4.57 | |
| 400 ms | 87.21 ± 1.86 | 71.69 ± 3.68 | 68.54 ± 4.43 | 69.70 ± 4.31 | |
| 800 ms | 90.72 ± 1.62 | 77.45 ± 3.34 | 76.88 ± 3.84 | 76.88 ± 3.75 | |
| 1,000 ms | 93.87 ± 1.49 | 85.57 ± 2.46 | 84.00 ± 3.40 | 84.67 ± 3.20 | |
| DB7—12 channels : intact participants | |||||
| 100 ms | 82.83 ± 4.90 | 73.96 ± 3.21 | 66.73 ± 4.89 | 69.78 ± 4.05 | |
| 200 ms | 85.08 ± 4.83 | 78.83 ± 2.88 | 70.67 ± 5.47 | 74.18 ± 4.38 | |
| 400 ms | 87.74 ± 4.94 | 81.81 ± 3.29 | 76.56 ± 5.31 | 78.90 ± 4.47 | |
| 800 ms | 90.61 ± 4.73 | 85.48 ± 3.55 | 82.30 ± 5.10 | 83.77 ± 4.50 | |
| 1,000 ms | 91.69 ± 4.68 | 87.03 ± 4.06 | 84.66 ± 4.78 | 85.74 ± 4.55 | |
| DB7—12 channels : amputee #1 | |||||
| 100 ms | 74.64 | 55.27 | 48.20 | 50.18 | |
| 200 ms | 78.23 | 63.91 | 53.79 | 56.05 | |
| 400 ms | 79.16 | 64.55 | 57.56 | 58.44 | |
| 800 ms | 81.54 | 69.97 | 62.02 | 63.08 | |
| 1000 ms | 82.42 | 72.84 | 65.10 | 65.66 | |
| DB7—12 channels : amputee #2 | |||||
| 100 ms | 87.49 | 63.62 | 59.23 | 60.26 | |
| 200 ms | 89.68 | 69.20 | 65.33 | 66.23 | |
| 400 ms | 89.01 | 64.25 | 62.39 | 61.66 | |
| 800 ms | 93.41 | 76.39 | 74.87 | 74.35 | |
| 1,000 ms | 94.07 | 75.78 | 76.55 | 74.90 | |