Table 4.
Accuracy and macro-averaged metrics of the proposed deep neural network classifiers for SHAP prehensile patterns.
| Accuracy | Macro-precision | Macro-recall | Macro-F1 | ||
|---|---|---|---|---|---|
| DB5—8 channels : intact participants | |||||
| 100 ms | 92.49 ± 1.26 | 69.16 ± 4.13 | 61.21 ± 6.18 | 64.71 ± 5.00 | |
| 200 ms | 93.71 ± 1.11 | 72.81 ± 4.26 | 68.59 ± 5.72 | 70.52 ± 4.79 | |
| 400 ms | 95.53 ± 1.24 | 80.56 ± 5.58 | 77.42 ± 6.24 | 78.76 ± 5.91 | |
| 800 ms | 97.29 ± 0.86 | 87.17 ± 2.90 | 86.27 ± 4.69 | 86.61 ± 3.94 | |
| 1,000 ms | 97.78 ± 0.75 | 89.14 ± 3.58 | 88.61 ± 3.95 | 88.93 ± 3.48 | |
| DB5—16 channels : intact participants | |||||
| 100 ms | 94.66 ± 1.05 | 79.40 ± 3.23 | 74.14 ± 5.50 | 76.63 ± 4.22 | |
| 200 ms | 95.86 ± 0.89 | 82.74 ± 2.78 | 80.96 ± 4.37 | 81.79 ± 3.55 | |
| 400 ms | 97.28 ± 0.81 | 89.49 ± 2.34 | 87.10 ± 4.01 | 88.19 ± 3.05 | |
| 800 ms | 98.38 ± 0.84 | 93.17 ± 3.59 | 92.10 ± 3.95 | 92.60 ± 3.80 | |
| 1,000 ms | 98.82 ± 0.58 | 94.93 ± 1.91 | 94.48 ± 2.55 | 94.67 ± 2.18 | |
| DB7—12 channels : intact participants | |||||
| 100 ms | 92.69 ± 4.19 | 86.42 ± 3.96 | 74.08 ± 9.32 | 79.40 ± 7.32 | |
| 200 ms | 93.34 ± 4.41 | 88.01 ± 4.02 | 76.81 ± 10.05 | 81.66 ± 7.86 | |
| 400 ms | 94.22 ± 4.03 | 88.90 ± 4.00 | 79.92 ± 8.91 | 83.77 ± 7.28 | |
| 800 ms | 95.46 ± 4.16 | 90.30 ± 4.38 | 85.18 ± 8.90 | 87.59 ± 7.03 | |
| 1,000 ms | 95.78 ± 3.99 | 90.94 ± 3.90 | 86.00 ± 8.35 | 88.31 ± 6.79 | |
| DB7—12 channels : amputee #1 | |||||
| 100 ms | 88.29 | 68.02 | 56.73 | 59.82 | |
| 200 ms | 88.88 | 69.94 | 56.66 | 58.09 | |
| 400 ms | 90.20 | 76.42 | 63.87 | 65.71 | |
| 800 ms | 91.14 | 77.48 | 67.39 | 69.22 | |
| 1,000 ms | 92.53 | 83.22 | 71.71 | 74.97 | |
| DB7—12 channels : amputee #2 | |||||
| 100 ms | 97.13 | 87.43 | 80.08 | 81.83 | |
| 200 ms | 97.55 | 87.11 | 83.99 | 83.38 | |
| 400 ms | 98.04 | 91.95 | 84.44 | 85.47 | |
| 800 ms | 98.66 | 94.93 | 88.92 | 89.92 | |
| 1,000 ms | 99.00 | 96.24 | 91.27 | 93.11 | |