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Neutrophil extracellular traps (NETs) are considered part of the innate human immune system because
they are involved in host defense during bacterial infections. NETs are formed by activated neutrophils
and consist of a DNA backbone combined with proteins with different biological functions. The activity
of NETs can be significantly reduced by a Staphylococcus aureus DNase, which degrades the DNA backbone
and enables the liberation of bacteria from NETs, and by Eap, a secreted protein which binds and aggre-
gates linearized DNA, suppressing the formation of NETs. Furthermore, the pathogen can resist NET-
mediated killing by expressing the surface protein FnBPB, which neutralizes the bactericidal activity of
histones. Finally, the anti-staphylococcal activity of NETs is counteracted and blocked by S. aureus biofilm.
Staphylococcal cells and several virulence factors such as protein A and phenol-soluble modulins can also
elicit the formation of NETs which in turn can cause tissue injury, enhancing bacterial performance in
host colonization. The identification of additional virulence factors involved in NET formation/neutraliza-
tion could provide the basis for therapeutic interventions against this formidable pathogen.
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1. Introduction

The main mechanisms used by neutrophils to clear pathogens
include a) phagocytosis, b) release of antimicrobial peptides, c)
production of antimicrobial reactive oxygen and nitrogen species,
and d) production of neutrophil extracellular traps (NETs) [1]. NETs
are fragile structures composed of a branching network of extracel-
lular DNA filaments decorated with cytoskeletal proteins and pro-
teases mainly involved in host defense during bacterial, fungal and
viral infections [2]. NETs not only contribute to pathogen elimina-
tion but in parallel can cause damage to bystander cells. In sepsis, a
systemic acute infective disease with high morbidity and mortal-
ity, NETs may promote patient survival [3], although as the disease
progresses, they may accumulate in organs and cause detrimental
tissue damage [4,5]. Platelets and NETs cooperate to promote
intravascular coagulation during sepsis in mice [6] and platelet-
neutrophil interactions induce the release of intravascular NETs
that in turn ensnare bacteria from the bloodstream and cause liver
damage [7]. Moreover, as revealed by intravital imaging, during a
bloodstream infection with methicillin-resistant S. aureus, neu-
trophils infiltrate the liver and release NETs into the vasculature.
The NETs remain anchored to the vascular wall via von Willebrand
factor and produce profound hepatic injury [8] (Fig. 1).

Importantly, NET formation can also occur in noninfectious
chronic inflammation such as autoimmunity (for example, sys-
temic lupus erythematosus and rheumatoid arthritis) [9], vasculitis
[10,11], cancer [12,13], and atherosclerosis [14,15]. Moreover,
NETs play an important role in thrombosis [16] and induce platelet
Fig. 1. Schematic representation of NET involvement in infectious and noninfectious di
tissue damage and enhance bacterial permeation of deeper structures in the body. NET
erythematosus and rheumatoid arthritis), atherosclerosis, vasculitis, and cancer.

Fig. 2. Representation of the S. aureus surface and secreted virulence factors. S. aureus i
most known surface proteins are the cell wall-anchored proteins that promote adhesio
virulence factors include toxins, autolysins, and modulators of the complement pathwa
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activation, coagulation, and thrombus formation [17,18] (Fig. 1).
Hence, due to the combination of various proteases, cytotoxic pro-
teins, and enzymes bound to the NETs, the NETs can be a double-
edged sword.

In the face of this potentially harmful arsenal of weapons asso-
ciated with NETs, microorganisms are endowed with a variety of
virulence factors that effectively contrast the action of these host
structures.

Staphylococcus aureus is the etiological agent of diseases ranging
from mild infections to severe diseases such as sepsis, pneumonia,
endocarditis, and medical device-associated infections [19].
Among the variety of virulence factors to combat host defenses
[20,21], S. aureus has evolved pathogenetic activities to escape
NETs or induce NET formation to facilitate bacterial performance
in the colonized host (Fig. 2). In this mini-review, we discuss the
mechanisms of NET induction and formation by S. aureus, as well
as the S. aureus virulence factors and the role they may have in
counteracting the bactericidal activities of NETs.

2. NET formation

NET formation or NETosis can occur by two mechanisms:

2.1. Lytic or suicidal mechanism

Stimulation of neutrophils with phorbol myristate acetate
(PMA), autoantibodies, and cholesterol crystals results in the
activation of NADPH oxidase, via PKC and RAF-MEK-ERK
seases. NET formation induced by staphylococcal bacteremia and sepsis can cause
osis also has a role in noninfectious disease such as autoimmunity (systemic lupus

s endowed with a number of surface-expressed and secreted virulence factors. The
n to extracellular matrix proteins and are involved in biofilm formation. Secreted
ys.



Fig. 3. Lytic NET formation. Different stimuli activate neutrophils via the activation of NADPH oxidase and induce consequent ROS formation. Then, PAD4 is activated and
citrullinates histones in the nucleus, causing chromatin decondensation. At same time, myeloperoxidase and elastase translocate from cytosol to the nucleus where they
contribute to further unfolding of chromatin. Elastase also activates gasdermin D, which forms pores in the nuclear and plasma membranes. Consequently, chromatin is
released in the cytosol and mixed with cytosolic proteins forming NETs. After the secretion of NETs, neutrophils die.
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signaling pathways and the consequent generation of reactive
oxygen species (ROS). This activates peptidyl arginine deiminase
(PAD4), which induces the conversion of arginine to citrulline
(citrullination) in histones. Through citrullination, PAD4 modu-
lates the conversion of positively charged arginine side chains
into uncharged side chains of histones causing chromatin
decondensation. The hydrogen peroxide is in turn consumed
by MPO to produce hypochlorous acid and other oxidants and
the generation of oxidants liberates neutrophil elastase from
azurophilic granules, allowing it to translocate to the nucleus
where it promotes the further unfolding of chromatin and
nuclear membrane disruption. After nuclear membrane disinte-
gration, chromatin is released into the cytosol where it associ-
ates with granular and cytosolic proteins [22,23]. NE also
cleaves gasdermin D (GSDMD) in the cytosol to its active form
(GSDMD-NT), which forms pores in the plasma membrane and
granular membranes. Finally, NETs are released into the extra-
cellular space and neutrophils die [24] (Fig. 3).

2.2. Nonlytic or vital NET release mechanism

Nonlytic NET formation is a rapid process induced by the recog-
nition of stimuli through complement receptors and does not
depend on NADPH activation. Vital NET formation is induced by
S. aureus through both complement receptors and TLR-2 ligands,
or by Escherichia coli directly via TLR-4 or indirectly via TLR-4 acti-
vated platelets. As reported for lytic NET formation, during nonlytic
NET formation PAD4 and elastase are activated and translocate to
the nucleus where they promote chromatin decondensation. The
unfolded chromatin is released into the cytosol, becomes deco-
rated with cytosolic proteins and is finally expelled via vesicular
export into the extracellular environment [25]. Importantly, after
the release of NETs, this pathway preserves the integrity of neu-
trophils’ plasma membranes and the anucleated neutrophils
named cytoplasts remain alive and retain the capacity to migrate
and phagocytose [26,27] (Fig. 4).
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3. NET composition, structure, and bactericidal function

The composition of NETs is critical for their pathological impact.
Due to its structure and charge, DNA represents the structural unit
around which the other components of NETs are assembled. The
DNA backbone in NETs is coated with at least 20–30 different pro-
teins including nuclear proteins (histones), granule proteins (NE
(neutrophyl elastase), MPO (myeloperoxidase), lactoferrin, cathep-
sin G, proteinase-3) and cytosolic proteins (S100 calcium-binding
proteins A8, A9, A12, as well as actin, a-actinin and calprotectin),
which are attached to DNA by electrostatic forces [28–30].

The mechanisms by which NETs contrast and eventually kill
microbial invaders remain controversial. Menegazzi et al showed
that when captured by NETs, microorganisms such as S. aureus
and Candida albicans are trapped but not killed by these structures
[31]. On the other hand, several reports state that NETs efficiently
kill bacteria. According to Halverson et al, DNA possesses a rapid
bactericidal activity due to its ability to sequester surface bound
cations, disrupt membrane integrity and lyse bacterial cells [32].
The cationic antimicrobial peptides such as cathelicidin LL-37 can
protect neutrophil-derived DNA from bacterial nuclease degrada-
tion [33]. The antimicrobial function of NETs has also been attrib-
uted to NET-bound proteins including histones [34,35], the
zinc-chelating protein calprotectin [30], and the granular serine
protease cathepsin G [36]. Moreover, MPO associated with NETs
exhibits a bactericidal activity needed to kill the pathogen in the
presence of hydrogen peroxide [37]. The molecular details by
which the different components of NETs interfere with the viability
of the microorganisms remain to be elucidated.
4. S. aureus and its arsenal of virulence factors

The explanation for the high pathogenetic potential of S. aureus
lies in the ability of the bacterium to express a large number of vir-
ulence factors and the capacity to colonize and infect host tissues



Fig. 4. Nonlytic NET formation promoted by S. aureus and S. aureus virulence factors. S. aureus cells activate complement receptor or TLR2 on neutrophils. Afterwards, PAD4 is
activated and along with elastase translocates to the nucleus where they induce chromatin decondensation. Chromatin decorated with cytosolic proteins is expelled via
vesicles without plasma membrane disruption. Loss of the nucleus does not compromise processes such as phagocytosis, chemotaxis and release of cytotoxic molecules.
Paradoxically, S. aureus virulence factors such as nuclease, Eap, and FnBPB can interact with specific components of NETs and block their anti-bacterial activity.
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and organs. The virulence factors are mostly surface-associated or
secreted proteinaceous products. A significant number of cell wall-
anchored (CWA) proteins act as receptors for extracellular matrix
components (fibronectin, fibrinogen, collagen) and play additional
roles in biofilm formation [38]. Biofilms are multicellular microbial
communities formed on either biological or inorganic surfaces that
are encased within a self-produced matrix. Fibronectin-binding
proteins FnBPA and FnBPB and clumping factor A (ClfA) are the
most relevant adhesins that bind to fibrinogen. Furthermore, as a
result of their fibronectin-binding activity, FnBPA and FnBPB medi-
ate S. aureus colonization of fibronectin rich-tissues and
fibronectin-mediated host cell invasion. Protein A (SpA), another
important CWA protein, binds to the Fc domain of IgG in an incor-
rect orientation which results in the protection of staphylococci
from opsonophagocytosis and killing. SpA also binds to the Fab
region of surface IgM located on B lymphocytes, triggering the pro-
liferation and apoptotic collapse of adaptive immune responses
[39–41] (Fig. 2).

S. aureus expresses more than 60 surface-exposed lipoproteins
(Lpp), which are involved in a number of metabolic processes such
as nutrient uptake (ion, sugar, and amino acids and oligopeptide
transporters), enzymes and foldases [42].

S. aureus has also evolved a series of secreted proteins/peptides
that functionally interfere with complement C3 and C5 convertase
activities and reduce the chemotactic activity of neutrophils. For
example, the extracellular adherence protein Eap specifically inhi-
bits both the classical and lectin pathways, disrupting the forma-
tion of C4bC2 proconvertase. This results in the inhibition of C3b
formation and consequent reduction of S. aureus phagocytosis
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and killing by neutrophils. Moreover, S. aureus secretes a peptide
named CHIPS (Chemotaxis Inhibitory Protein of S. aureus) that
binds to formyl peptides and C5a receptors and this reduces neu-
trophil activation and migration to the site of infection [21]. To fur-
ther contribute to pathogenesis, S. aureus secretes a vast group of
cytotoxins, among them Hla, leukocidins and phenol-soluble mod-
ulins (PSMs). After binding to the host receptor ADAM-10, the Hla
monomer oligomerizes to form heptameric pores in host cell mem-
branes, causing the lysis and death of many cell types. Leukocidins
are composed of two monomers, termed S- and F-subunits. The S-
subunit recognizes a specific receptor on the plasma membrane
and then dimerizes with the F-subunit. This is followed by
oligomerization of three additional dimers to form a complete
octameric pore in the plasma membrane of leukocytes. PSMs are
cytotoxins belonging to a family of amphipathic peptides (20–25
amino acid residues) that have a variety of roles in S. aureus patho-
genesis such as cell lysis, immune modulation and biofilm forma-
tion [43] (Fig. 2).
5. S. aureus induces NET formation by specific, secreted
virulence factors

Nonlytic NET formation is caused primarily by intact cells of S.
aureus (Fig. 2). NET formation is also promoted by released staphy-
lococcal products. PVL (Panton-Valentine Leukocidin), but not the
structurally similar leukotoxin gamma hemolysin CB (HlgCB),
was reported as the dominant inducer of lytic NET formation
[25,44]. There have been recent insights concerning the
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mechanism of PVL-promoted NET formation [25]. The mechanism
starts with PVL binding to its specific receptor, which in turn leads
to its endocytosis by neutrophils. In parallel, cytosolic intracellular
Ca2+ is rapidly mobilized from endoplasmic reticulum and a direct
interaction of PVL with mitochondrial membranes occurs. The
increase of intracellular calcium triggers the activation of small
conductance potassium channels, SK and PVL binding to neutrophil
mitochondria induces an increase of reactive oxygen species (ROS)
and triggers the enzymatic activity of MPO. Finally, PVL promotes
PAD4 activation and the consequent formation of citrullinated his-
tone 3.

Importantly, PVL is also a potent cytotoxic factor and can induce
rapid death in human and rabbit neutrophils [44]. We can hypoth-
esize that the differential effects of the PVL action in the studies
reported above (cell lysis and NETosis in one case and cell death
in the second) may be explained, in part, by the experimental con-
ditions used. Specifically, under a critical threshold of PVL concen-
tration, NET formation and release might favorably prepare the
host to resist infection.

Aside from PVL, other staphylococcal molecules contribute to
NET formation. For example, leukotoxin LukGH (also named
LukAB) promotes the release of NETs which, in turn, ensnare but
do not kill S. aureus cells. It has been proposed that the ability of
LukAB to promote the formation of NETs contributes to the inflam-
matory response and host defense against S. aureus infection [45].
Notably, LukAB released by staphylococcal biofilm contributes to
the neutralization of NETs (see below) [46].

Moreover, phenol-soluble modulin a (PSMa) induces rapid for-
mation of NETs through a ROS-independent pathway [47]. Finally,
staphylococcal SpA has been shown to be involved in NET forma-
tion [48]. NET formation by S. aureus is facilitated by the catheli-
cidin LL37 released by epithelial cells and phagocytes upon
infection [49] (Fig. 4).

It must be kept in mind that the biological activity of these
staphylococcal virulence factors has been determined in vitro and
in environmental conditions of pH and ionic strength that may dif-
fer from in vivo operational conditions. Moreover, it is not known
whether the expression of each of the above factors is expressed
in bloodstream and host tissues in sufficient amounts to induce
NET formation. Therefore, to validate the supposed role of these
NET inducers, more studies with animal models and the use of
specific deletion mutants will be needed.
6. NET neutralization by S. Aureus

6.1. Degradation of NETs by staphylococcal nuclease

Several Gram-positive bacteria including S. aureus express 50-
nucleotidases (50-NTs), enzymes that catalyze the hydrolysis of
nucleoside monophosphates to produce nucleosides and phos-
phate [50]. In a study performed to examine the potential role of
S. aureus nuclease in NET degradation and virulence in a murine
respiratory tract infection model, Berends et al showed that an iso-
genic deficient-nuclease mutant lacked the ability to degrade NETs
compared with the parental strain and consequently appeared to
be more susceptible to extracellular killing by activated neu-
trophils. On the contrary, nuclease expression by S. aureus
enhanced the escape of bacteria from NETs in an in vivo mouse
model of S. aureus respiratory tract injection [51]. In a more
detailed study Thammavongsa and colleagues found that S. aureus
escapes host defenses by converting DNA in NETs to deoxyadeno-
sine (dAdo) through the concerted action of two enzymes, nuclease
and adenosine synthase (AdsA). dAdo in turn kills macrophages,
preventing their infiltration into S. aureus-induced abscesses and
thereby reducing their antimicrobial action [52]. Moreover, data
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produced by Herzog et al demonstrates that high nuclease activity
of S. aureus isolates correlates with long-term persistence and sur-
vival within the airways of cystic fibrosis patients due to the pro-
tection against NET-mediated killing [53] (Fig. 4). In summary, S.
aureus nuclease exhibits a critical role in NET degradation in vivo.
However, due to the presence of a number of DNase inhibitors in
serum (for example, C1q of the complement system), it remains
to be determined whether S. aureus nuclease keeps its activity
intact in body fluids.

6.2. Eap protein and its effect on the bactericidal activity of NETs

The Extracellular Adherence Protein Eap blocks NETs formation
and activities. By using atomic force microscopy, evidence has been
provided that Eap can bind and aggregate linearized DNA. Consis-
tent with this, Eap interferes with the formation of NETs, suggest-
ing that it may protect bacteria from being trapped by structures
such as microthrombi (Fig. 1) [54]. Notably, Eap and its homo-
logues Ehp1 and Ehp2 potently inhibit the neutrophil serine pro-
teases (NSPs) elastase (NE), proteinase 3, and cathepsin G [55].
Thus, Eap proteins could potentially block the enzymatic activities
of NET proteases. However, considering that the NET-bound NSP
could be inactivated by high concentrations of NSP inhibitors such
as alpha1-proteinase inhibitor in serum [56], it is unclear whether
the serine-protease inhibitory activity of Eap proteins plays an
effective role in blocking the anti-bacterial activity of NETs (Fig. 4).

6.3. FnBPB confers resistance to bactericidal activity of NETs

As reported by several authors, histones are expressed and
extruded in NETs in abundant amounts, estimated at 2.5 lg/106

neutrophils, such that histones comprise more than two thirds of
the total protein content within the NET structure. In a recent
study it was discovered that fibronectin-binding protein B (FnBPB)
is the main histone receptor and that histone H3 displays the high-
est affinity. Importantly, an FnBPB-deletion mutant bound less H3
and was more susceptible to histone bactericidal activity, whereas
a mutant overexpressing FnBPB bound more H3 and was more
resistant to killing by histone. This information raised the question
whether inhibition by FnBPB of histone-mediated bacterial killing
is biologically significant. As a matter of fact, in a bactericidal assay
promoted by NETs it was shown that FnBPB protected staphylo-
cocci from killing by NETs, demonstrating that FnBPB-mediated
resistance is important when histones are present in a biological
relevant milieu [57] (Fig. 4). The histone-neutralizing activity of
FnBPB is reminiscent of the behavior of the M1 protein, a classical
Streptococcus pyogenes surface virulence factor, which also protects
bacteria against released extracellular histones in NETs [58]
(Fig. 4).

6.4. S. aureus biofilm induces NETosis and blocks their anti-microbial
activity

When they encounter neutrophils, S. aureus biofilms release the
leukocidins PVL and HlgAB and produce NETs and cytoplasts. The
generated anuclear neutrophils, although still capable of permeat-
ing the biofilm structure and phagocytosing bacteria, were not
effective at clearing the biofilms. Likewise, the induced NETs were
not sufficient for clearing S. aureus biofilms. The inefficiency of
these structures is attributed to the leukocidin LukAB, a toxin
which promotes S. aureus survival during phagocytosis [46]. The
persistence of biofilm bacteria trapped in NETs is also facilitated
by S. aureus nuclease-mediated degradation of DNA in NETs, result-
ing in the dispersal of bacteria and persistence of the chronic
infection [59].
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7. Conclusions

Virulence factors of S. aureus and the role they play in the for-
mation and destruction of NETs were examined here. Up to now,
at least three staphylococcal factors have been identified which
interfere with the anti-microbial activity of NETs: a) a nuclease
that degrades DNA in NETs; b) the Eap protein that forms com-
plexes with linear DNA and, possibly, stabilizes the DNA structure
and protects the molecule from enzymatic attack; 3) FnBPB, a
staphylococcal surface protein that neutralizes the antimicrobial
activity of histones (Fig. 2). Due to the complexity of the structure
of NETs, other staphylococcal factors may target constituents of
NETs. Scl-1, a streptococcal collagen-like protein in M1T1 group
A Streptococcus, interferes with MPO activity and mediates bacte-
rial survival in NETs [60]. Additionally, the M1 protein allows the
survival of S. pyogenes in phagocytic extracellular traps through
LL-37 inhibition [61]. Thus, we speculate that unidentified surface
or secreted factors of S. aureus can further neutralize the function
of enzymes, antimicrobial peptides, or ion chelating agents of
NETs.

S. aureus cells can also induce the formation of NETs
(Fig. 2) [44]. Specific S. aureus factors such as SpA [62], PVL
[25], LukAB [45] and PSMa [49] directly elicit NET formation.
The induction of NETosis is promoted by the alpha enolase
and pneumolysin from Streptococcus pneumoniae [49,63], by
gingipains of Porphyromonas gingivalis [64], and by hydrogen
peroxide produced by Streptococcus sanguinis [65]. Therefore,
NET formation induced by bacterial species is a common event.
How can we solve the apparent paradox that virulence factors
produced to protect bacteria from the host defense mecha-
nisms also promote the formation of anti-bacterial structures?
As reported above, NETs may either induce bacterial killing
or mediate tissue damage both during acute and chronic
inflammation [9,66,67]. Thus, it is possible that under specific
pathological circumstances, S. aureus (and other bacterial spe-
cies) benefit more from inducing the formation of NETs and
using these structures to damage host tissues than from block-
ing the antibacterial activity of NETs. This strategy could allow
bacteria to have better access to metabolic resources, favor the
colonization of deeper tissues and definitively ensure safer and
optimal survival in the host.

A better understanding of the biochemical details of these alter-
native strategies and a clearer definition of the role played by new
staphylococcal factors in NET formation and destruction in vivo is
key for the development of novel therapeutic approaches to con-
trol and combat this formidable pathogen.
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