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Abstract

Identifying arrhythmia substrates and quantifying their heterogeneity has great potential to provide 

critical guidance for radio frequency ablation. However, quantitative analysis of heterogeneity on 

cardiac optical coherence tomography (OCT) images is lacking. In this paper, we conduct the first 

study on quantifying cardiac tissue heterogeneity from human OCT images. Our proposed method 

applies a dropout-based Monte Carlo sampling technique to measure the model uncertainty. The 

heterogeneity information is extracted by decoupling the intra/inter-tissue heterogeneity and tissue 

boundary uncertainty from the uncertainty measurement. We empirically demonstrate that our 

model can highlight the subtle features from OCT images, and the heterogeneity information 

extracted is positively correlated with the tissue heterogeneity information from corresponding 

histology images.
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1 Introduction

Arrhythmia is a major type of cardiovascular disease that afflicts millions of patients in the 

United States [17]. A standard intervention to treat arrhythmia is radio-frequency ablation 

(RFA), an intra-cardiac procedure that directs a catheter and delivers heat to areas where 

irregular rhythms are observed. Current clinical guidance of RFA is based on low-resolution 

imaging modalities with limited tissue composition information [26]. For many patients, an 

additional procedure is required to achieve a chronic successful termination of the 

arrhythmia. Thus, precise intervention is challenging. Knowledge of patients’ heart structure 

could help to optimize the intervention strategy by identifying arrhythmia substrates and 
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avoiding critical structures. In addition, previous research has suggested that heterogeneity 

within the myocardium, such as fibrosis and adipose, are substrates that are potential 

mechanisms for the generation and maintenance of arrhythmias [1,11,28]. Thus, it is 

important to identify arrhythmia substrates and quantify their heterogeneity.

Optical coherence tomography (OCT) [14] is a depth-resolved imaging modality that can 

provide micron-level-resolution images in real time. It can detect micro-structures within 

cardiac tissues [4,8–10,21] and has great potential for precise guidance of RFA. Some 

forward-viewing OCT catheters have been designed to image cardiac tissues while the 

catheter is in contact with the cardiac surface [5,30]. As an interferometry imaging system 

which highlights the differences of reflective index of adjacent tissues, OCT can depict 

boundaries among tissue layers, opening a great possibility to segment various tissue 

compositions using either conventional machine learning or deep learning methods. 

However, quantitative analysis of heterogeneity within cardiac OCT images is still lacking.

Cardiac tissue heterogeneity refers to intermittent and spatially-varying structural 

distributions within the myocardium [11], or adipose-infiltrated fibrotic myocardium [28]. 

Histology heterogeneity assessment is used as a reference for cardiac fibrosis analysis, 

according to the conventional approach considering histology imaging as the gold standard 

[20]. OCT imaging provides an alternative non-invasive imaging solution, but quantification 

of heterogeneity in cardiac OCT images remains particularly challenging. First, unlike 

histology images, the cellular walls of cardiac muscle cells are not visible in OCT images. 

Second, there are subtle differences in pixel intensity and texture contrasts between normal 

myocardium and fibrotic myocardium. Third, OCT images are in grayscale, which have less 

tissue information than colored histology images. Other imaging modalities have a too low 

spatial resolution to identify cardiac fibrosis heterogeneity. These modalities rely upon 

indirect measures to assess cardiac tissue, such as mechanical deformation, strain, and wall 

thickness [2], which are only proxies to quantify cardiac fibrosis heterogeneity.

In this paper, we propose a novel deep learning framework for cardiac tissue heterogeneity 

measurement. We evaluate our method by comparing the heterogeneity information from 

OCT images with its corresponding histology images heterogeneity. In summary, this paper 

has following contributions:

1. This is the first paper, to the best of our knowledge, that attempts to extract the 

tissue heterogeneity information from OCT images via deep learning-based 

uncertainty measurement.

2. We empirically demonstrate that our model can highlight subtle features from 

OCT images, offering a way to extract the tissue heterogeneity information in a 

non-invasive way for real-time imaging and processing.

2 Methodology

Our goal is to measure the heterogeneity of human cardiac tissue on OCT images. As 

illustrated in Fig. 1, our proposed model consists of three major modules: 1) robust learning 

on region-based labels, 2) uncertainty measurement, and 3) heterogeneity information 
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extraction. In the robust learning module, we use focal loss [19] to robustly learn the 

representative features from the region-based labels. Then, a novel dropout-based Monte 

Carlo sampling technique is applied for uncertainty measurement to get the uncertainty map 

of the prediction. Finally, the tissue heterogeneity information is extracted by decoupling the 

intra/inter-tissue heterogeneity and tissue boundary uncertainty from the uncertainty maps.

2.1 Segmentation Framework

We use the ReLayNet [24] architecture as the base of our network. ReLayNet is an end-to-

end image segmentation framework that achieves state-of-the-art performance. Inspired by 

[16], we add dropout layers in the three inner encoder blocks in the training phase. The 

introduction of dropout addresses the overfitting issue for small datasets and also lays a 

foundation for uncertainty quantification in the next section. The network is jointly 

optimized by the following loss function:

L = w ⋅ DL + FL (1)

where w is a trade-off parameter. FL is the focal loss [19] and DL is the Dice loss defined as:

DL = 1 − 1
K ∑

k = 1

K 2∑x ∈ Ω pk(x)qk(x)
∑x ∈ Ω pk(x) 2 + ∑x ∈ Ω qk(x) 2 (2)

where pk(x) is the predicted probability of class K at the pixel position x ∈ Ω with Ω ⊂ ℤ2, 

qk(x) is the one-hot ground-truth label, and K is the number of classes. Based on Dice 

coefficient, Dice loss evaluates pixel-wise agreement between the prediction and the ground 

truth.

2.2 Uncertainty Measurement

We use dropout [27] based Monte Carlo sampling technique [7,13,26] for uncertainty 

measurement. For each segment, a pixel-wise uncertainty map is generated to present the 

posterior distribution for the tissue prediction map. During the training process, the dropout 

layers are opened to robustly learn the discriminative features. At the test time, as shown in 

Fig. 1, they are turned off to provide a baseline prediction pred. Then, served as proximal 

inference, these layers are turned on again Nit times to get the Monte Carlo sampling maps 

predi
MC, i ∈ {1, 2, …, Nit}. For each pixel position x ∈ Ω, the uncertainty map UM is 

generated as:

UM(x) = 1
Nit

∑
i = 1, …, Nit

1 predMC
i (x) ≠ pred(x) (3)

where 1A is the indicator function of A. The value in the uncertainty map encodes the 

empirical confidence level of the network on its prediction. More specifically, a high 

uncertainty value on a pixel indicates a highly unreliable prediction, which corresponds to a 

low confidence.
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2.3 Heterogeneity Measurement

In cardiac OCT images, the uncertainty of prediction comes from the intra/inter-tissue 

heterogeneity and the boundary effect. The boundary effect is caused by the subtle 

boundaries between two different tissue types. To remove this unwanted boundary effect, we 

generate a purity map by multiplying the uncertainty map with a boundary weight mask. 

This boundary weight mask is generated from the tissue prediction map via assigning 

smaller weights on the boundary. Similar to the weighting map in [24], lower weights are 

assigned to pixels at the boundary and higher weights are assigned to pixels in the central 

region of a tissue. Therefore, this boundary mask highlights the tissue boundary regions, 

decoupling the tissue heterogeneity and the boundary effect from the uncertainty map. 

Hence, the purity map is more informative to evaluate the tissue heterogeneity features. The 

whole process to generate a purity map is presented in Fig. 1.

Our tissue heterogeneity information is measured by homogeneity values [3]. Following 

previous research [3,6,15,29], the homogeneity values of both purity maps and tissue images 

(histology images) are calculated from gray-level co-occurrence matrix (GLCM). In 

particular, we average four directions (0°, 45°, 90° and 135°) to make the descriptor rotation 

invariant [15]. Then, we extract the homogeneity from the GLCM descriptors by using the 

following equation [3,6]:

Homogeneity = ∑
i, j

G(i, j)
1 + |i − j| (4)

where G(i, j) represents the (i, j) value of the GLCM. The homogeneity value can be used to 

measure the closeness of the distribution of pixel intensities in the GLCM [18], representing 

the amount of local variations in an image [3]. We compare the homogeneity values of purity 

maps with those of histology images. A high similarity value, which is positive correlation, 

between values from these two groups indicates that our purity maps can extract the tissue 

heterogeneity information.

3 Experimental Results

3.1 Dataset and Experimental Setup

We acquired an in-vitro cohort of 185 images taken from 15 human atria and ventricles from 

the Thorlabs OCT system. The samples were acquired through an National Disease 

Research Interchange (NDRI) approved protocol from Columbia University [8]. Upon 

imaging, sections of samples were stained with Masson’s Trichrome. We used white-light 

images acquired simultaneously with the OCT images to guarantee that histological slides 

and OCT volumes are from the same regions. This, along with inking, was used to match 

OCT with histology images. Each OCT image is of size 512 × 600 or 512 × 800 pixels with 

a field of view of 2.51 mm × 4 mm. Based on histology and the guidance from a pathologist, 

two investigators labeled the OCT images into the following tissue types: endocardium, 

myocardium, artifacts, adipose & fibrosis, and other tissue types. These investigators were 

blind to our algorithm results.
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In order to fully utilize our dataset, we perform 6-fold cross-validation in evaluation. The 

images are randomized by donors. We have two pre-processing steps: first, we crop each 

OCT image into a depth of 360 pixels (~1.76 mm); next, we partition the images into a set of 

overlapping patches with a size of 360 × 64 pixels for data augmentation.

3.2 Quantitative Results

Learning from Region-Based Labels: We empirically set the epoch = 500, learning 
rate = 0.001, and w = 0.5 (Eq. 1). Then, we use both Dice coefficient (DC) and accuracy 

(AC) to evaluate the segmentation performance of our proposed model. Table. 1 compares 

the experimental results averaged over the 6-fold cross-validation sets with the baseline 

algorithm, RelayNet [24], based on a similar network structure but without dropout and 

focal loss. However, these evaluation metrics cannot fully reflect the segmentation 

performance. The manual labels are region-based, which is not accurate enough for pixel-

wise evaluation. Among six validation sets, the best accuracy is above 0.8. In addition, 

compared with the baseline algorithm, the use of focal loss and dropout layers improves 

both DC and AC. These results demonstrate that our network has the ability to robustly learn 

representative features from region-based labels.

Visual results demonstrate the learning ability of our model on region-based labels. Figure 2 

illustrates the predicted tissue maps, on two myocardium examples with some adipose and 

fibrosis regions. Our algorithm pinpoints isolated fibrosis in Fig. 2(c) and the large adipose 

region in Fig. 2(g). Overall, the prediction results are consistent with both OCT images and 

histology findings.

Uncertainty Measurement: We set Nit to 10, which is the smallest number leading to a 

stable uncertainty map. In Fig. 3, we compare an uncertainty map with its histology to show 

the effectiveness of our uncertainty measurement. In concordance with the results in [16], 

we observe that the uncertainty map has a high value at the tissue boundaries and subtle 

features that are hard to visualize. Therefore, the homogeneous regions appear low 

uncertainty to the model. These results visually demonstrate that our proposed algorithm can 

provide accurate localization of model uncertainty and this uncertainty is related to the tissue 

heterogeneity.

Heterogeneity Measurement: The positive correlation between purity map 

heterogeneity and the tissue heterogeneity can be observed in the scatter diagram. Figure 4 

shows the normalized heterogeneity results on a cross-validation set with 95% confidence 

interval. The homogeneity from the purity map has the strongest correlation relationship 

with tissue homogeneity. The correlation coefficient obtained on these testing images is 

0.7117, which achieves the highest value among other methods (OCT images: 0.3501, 

Uncertainty maps: 0.5959). From the interpreting table in [22,25], the homogeneity values 

obtained from the purity maps have a high positive correlation with the homogeneity values 

obtained from the histology images. Therefore, tissue boundary removal is essential to 

highlight purity map information within tissue regions. In addition, from the results of 95% 

confidence interval, using a purity map for heterogeneity measurement has less outliers. 
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Hence, the purity map highlights the tissue heterogeneity information and it has the ability 

for tissue heterogeneity measurement.

Our algorithm shows good performance on quantifying both inter-tissue heterogeneity and 

intra-tissue heterogeneity. Figure 5 shows two purity maps from different human hearts, 

demonstrating two scenarios of intra/inter-tissue heterogeneity. A high value in the purity 

map indicates a high heterogeneity and a low value indicates a high homogeneity. In Fig. 5 

(a)–(c), the purity map has low values (high homogeneity) all through the homogeneous 

cardiac regions. Meanwhile, it highlights heart fibers that are not well aligned due to the 

dilation of the myocardium. In Fig. 5 (d)–(f), two clusters with high heterogeneity are 

enhanced (arrow and double arrow). The purity map successfully highlights these subtle 

features in the OCT images. This intra/inter-tissue heterogeneity information is entirely 

determined by our purity maps, which cannot be observed directly from the labels since all 

manual labels are region-based.

Cardiac heterogeneity measurement from OCT images is very challenging and complicated. 

Figure 6 shows two representative outlier cases from Fig. 4 (c). In Fig. 6 (a)–(c), the adipose 

regions in the purity map are more heterogeneous than the histology images. It is caused by 

the fixation and dehydration in the histology process. During the histology process, 

scattering changes and tissue architectural distortion are inevitable due to the shrinkage of 

epithelial, muscle, and connective tissue layers [12]. Structural information may get lost 

after the shrinkage, especially in highly heterogeneous regions. Therefore, a lower value of 

heterogeneity is observed, leading to a low correlation value. In addition, stain variation in 

histology could also result in a lower correlation value. In Fig. 6, the loose and dense 

collagen regions in (a)-(c) are purple and blue, while in (d)-(f), they are pink and pale with 

isolated light blue strands. This is due to the concentration of the stains and the timings of 

staining [23]. This issue may be mitigated by improving the histology protocol with better 

control on the amount of stain used in processing.

4 Conclusion

In this paper, we propose the first deep learning framework for cardiac tissue heterogeneity 

measurement on OCT images. Our proposed algorithm consists of three powerful modules: 

robust learning on region-based labels, uncertainty measurement, and heterogeneity 

information extraction. We show that these modules are necessary and benefit from each 

other. Our results indicate that the purity maps can successfully highlight the subtle features 

from the OCT images and they are highly consistent with the corresponding histology 

images. Combining with the tissue prediction map, the purity map could be used for the 

guidance of RFA intervention by identifying regions that have diffusive adipose-fibrosis or 

heterogeneous myofiber alignment. In the future, we will evaluate our method on a larger 

dataset and further improve our model in 3D.
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Fig. 1. 
The framework of our proposed algorithm in testing. For each image, an uncertainty map is 

generated by the comparison of predictions from the network with dropout layers on or off. 

Based on the uncertainty map, a separate purity map is calculated to highlight the tissue 

heterogeneity information.
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Fig. 2. 
Segmentation results from the proposed method on two myocardium regions. (a, e) original 

OCT images; (b, f) manual labels; (c, g) prediction results; (d, h) corresponding histology 

images. Arrows highlight locations of excellent agreement between our tissue prediction 

results and histology images. Scale bar: 500 μm
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Fig. 3. 
An uncertainty map from a human myocardium region. (a) the original OCT image; (b) the 

uncertainty map; (c) the corresponding histology image. The uncertainty map highlights 

heterogeneous regions caused by fibrosis and adipose. Scale bar: 500 μm.
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Fig. 4. 
Scatter diagram for normalized homogeneity values. (a) homogeneity values of OCT images 

vs. histology images; (b) homogeneity values of uncertainty maps vs. histology images; (c) 

homogeneity values of purity maps vs. histology images. Compared with the OCT images 

and uncertainty maps, homogeneity obtained from purity maps has the highest correlation 

with tissue homogeneity.
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Fig. 5. 
Purity maps from human myocardium regions. (a, d) original OCT images; (b, e) purity 

maps; (c, f) corresponding histology images. The purity maps highlight the heterogeneity 

within the human myocardium regions. Scale bar: 500 μm.
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Fig. 6. 
Examples of two outliers from Fig. 4 (c). (a, d) original OCT images; (b, e) purity maps; (c, 

f) corresponding histology images. Scale bar: 500 μm.
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Table 1.

Comparison of segmentation results

Method Accuracy (AC) Dice coefficient (DC)

Proposed method 0.726 ± 0.08 0.605 ± 0.04

RelayNet architecture 0.698 ± 0.10 0.596 ± 0.03
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