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Purpose: To develop a quality assurance (QA) tool that identifies inaccurate organ at risk (OAR)
delineations.
Methods: The QA tool computed volumetric features from prior OAR delineation data from 73 tho-
racic patients to construct a reference database. All volumetric features of the OAR delineation are
computed in three-dimensional space. Volumetric features of a new OAR are compared with respect
to those in the reference database to discern delineation outliers. A multicriteria outlier detection sys-
tem warns users of specific delineation outliers based on combinations of deviant features. Fifteen
independent experimental sets including automatic, propagated, and clinically approved manual
delineation sets were used for verification. The verification OARs included manipulations to mimic
common errors. Three experts reviewed the experimental sets to identify and classify errors, first
without; and then 1 week after with the QA tool.
Results: In the cohort of manual delineations with manual manipulations, the QA tool detected 94%
of the mimicked errors. Overall, it detected 37% of the minor and 85% of the major errors. The QA
tool improved reviewer error detection sensitivity from 61% to 68% for minor errors (P = 0.17), and
from 78% to 87% for major errors (P = 0.02).
Conclusions: The QA tool assists users to detect potential delineation errors. QA tool integration
into clinical procedures may reduce the frequency of inaccurate OAR delineation, and potentially
improve safety and quality of radiation treatment planning. © 2018 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.12835]
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1. INTRODUCTION

Volume delineation is widely regarded as a large source of
systematic uncertainty in radiation therapy.1–3 While tradi-
tional two- and three-dimensional (3D) treatment delivery
depends primarily on target delineation, modern treatment
planning using, for example, intensity-modulated radiother-
apy relies heavily on organ at risk (OAR) objectives to tailor
the dose distribution to maximize the therapeutic ratio. Inac-
curate and inconsistent OAR delineation can mislead the
planning team with respect to the quality of a treatment plan,
resulting in suboptimal treatment delivery with an increased
probability of adverse normal tissue complications. Avoid-
ance of OAR delineation errors and uncertainty are para-
mount for treatments designed to conformally avoid OARs.

The OAR delineation is subject to (a) inherent inter- and
intradelineator variability, in which repeated delineations
result in minor variations in an agreed upon definition of the
anatomic characteristics of the OAR boundary; (b) differ-
ences in the OAR definition in which different observers con-
sider different anatomic characteristics of the OAR boundary;

and (c) errors, in which the OAR mistakenly has additional or
missing components. This work primarily focuses on reduc-
ing occurrences of (b) and (c).

Discrepancy in the anatomic characteristics of an OAR
definition between different delineators can be a result of
unclear instructions and/or insufficient training. Different
approaches have been investigated to reduce this type of vari-
ability in OAR delineation.4 For example, studies have shown
that the introduction of written guidelines reduced interob-
server variability.3,5 Breunig et al. showed that standardized
training with individual feedback mechanism decreased inter-
observer delineation variability.6 Automatic OAR delineation
can potentially improve consistency,7 however, at least some
automatic delineated structures required user intervention.8,9

Delineation error is a result of an unintentional mistake
made by a delineator. Human examination/review is the most
common approach to detect delineation errors, although, due
to various human factors such as fatigue and vigilance,
human examination can leave behind detectable errors.10

Inclusion of quality assurance (QA) programs such as peer
review and consensus meeting within the delineation
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workflow increased the OAR delineation error detection
rate.11,12 However, the inefficiency of peer review limits its
incorporation into most clinical workflows, and when it is
utilized, its effectiveness is prone to the same human factors.
Alternatively, an automated QA tool for OAR delineation can
objectively identify inaccurate delineations, and alert users to
make appropriate modifications. A recent study by Altman
et al. proposed a knowledge-based QA program to assess
contour integrity and reported a 95% sensitivity to detect
“engineered” errors.13 A study by McIntosh et al. also
demonstrated the possibility to apply classification approach
to infer delineation errors.14

In this study, we introduce an automated QA tool for OAR
delineation. The QA algorithm computes volumetric features
of the OAR delineation and uses a statistical anomaly detec-
tion technique15 to detect features which deviate from the his-
toric distribution. In contrast to the approach used in Altman
et al.13 where many features were computed in 2D space, all
volumetric features implemented in our QA algorithm are
computed in 3D space. Furthermore, we developed a multi-
criteria outlier detection system to warn users of specific
delineation outliers, based on combination of deviated fea-
tures. The QA algorithm initially requires only a small
amount of clinical delineation data as reference. The refer-
ence data can be suboptimal with some delineation errors.
With use, the amount of clinical reference data will increase,
and the added data will be specifically reviewed prior to addi-
tion to the reference set. With increased numbers, errors in
the initial reference dataset will be diluted. The QA tool was
tested on OAR structures in the thorax and its ability to detect
delineation errors was assessed.

2. MATERIALS AND METHODS

2.A. OAR delineation QA tool

Figure 1 depicts the flowchart of the generation and oper-
ation of the QA tool. The OAR delineation QA procedure is
as follows: For each OAR, the algorithm computes the 3D
volumetric features of the delineation. Then, it performs a sta-
tistical inference test on the feature with respect to its historic
distribution. Finally, the system reports if a specific delin-
eation outlier is found, based on the combination of features
which deviate from the historic distribution. The delineator
can then adjust the OAR delineation accordingly. A feedback
loop is integrated to update the historic distribution with the
newly approved delineation.

The QA tool was developed using the Pinnacle3 scripting
environment (Philips, Fitchburg, WI, USA) and the
Enthought Python distribution (Enthought, Austin, TX,
USA) and was fully integrated into Pinnacle3 treatment plan-
ning system (tested with v9.10 and 9.14).

To create the historic feature distribution, OAR delin-
eations from prior radiotherapy plans were used as reference
and their 3D volumetric features were computed. Twenty-five
3D volumetric features of the OAR delineation were com-
puted by the QA algorithm. Because organs are 3D objects,

none of the features were computed in 2D space; instead, all
features were computed in 3D space. Table I summarizes the
features used by the QA algorithm. The four computed
tomography (CT) number features (q, rq, qmax, and qmin)
were obtained from Pinnacle3. All other parameters were
computed from the binary OAR structure mask, which was
exported from Pinnacle3 at the resolution of the image data-
set. Computation of the surface area was implemented based
on the Minkowski method with 13 directions.16 The number
of disconnected volumes was calculated via a morphological
label function.17 For computation of relative features V=Vext

and DC
*

A�ext , the volume and centroid coordinate of the
External structure were extracted from only image slices that
contained the corresponding OAR structure.

The distribution of each feature was parameterized to a
best-fit distribution using the allfitdist algorithm.18 From the
parameterized feature distribution, the 95% confidence inter-
val was computed to obtain the statistical bound. If the value
of a feature was outside of its statistical bound, it would be
considered a deviation from normal. Assuming all 25 features
were independent, the probability that at least one normal fea-
ture being outside of the 95% confidence interval would be
1� 0:9525 ¼ 72%. In order to reduce the number of outlier
warnings and to generate relevant warning messages, a multi-
criteria outlier detection system was implemented, in which a
warning message was only issued if an OAR contained a
combination of deviant features. Table II describes the com-
bination of deviant features required to trigger a warning. The
link between outlier and feature combinations was deter-
mined from the reference delineation sets: After the feature
distributions were derived, OARs with deviant features were
identified from the distribution tails. Cross-correlation
between deviant features was then identified. In this study, a
heuristic method was used to identify the correlations
between abnormality from the list of OARs and deviant fea-
tures. Assume the deviant features associated with the outlier
were independent, the probability, P, that at least n of them
being outside of the 95% confidence interval would be:

P ¼
XNa

k¼n

Na

k

� �
0:95Na�k0:05k;

where Na is the number of deviant features associated with

the outlier and
n
k

� �
is the binomial coefficient. From this,

we derived the minimum number of combinations of deviant
features required to prompt a warning for 5% or less of the
OARs examined. The heuristic method was sufficient to
obtain the feature combinations required to prompt a warning
for less than 5% due of the cases; statistical methods could
alternatively have been used.

2.B. Tool evaluation

The QA algorithm was tested using a historic reference
built from prior radiation therapy treatment plans from 73 lung
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cancer patients (exempted from institutional review board).
CT datasets acquired on a Brilliance CT big bore simulator
(Philips, Cleveland, OH, USA) were used for the study. The
reconstruction in-plane matrix size was 512 9 512 in
60 9 60 cm2 field-of-view, slice thickness was 3 mm. Nine
OARs were selected: BrachialPlexus_L, BrachialPlexus_R,
Carina, Esophagus, Heart, Lung_L, Lung_R, SpinalCord, and
Trachea.19 Not all datasets had all nine structures delineated.
Thoracic volume was used because the definition of thoracic
OAR structure was well understood within our clinic. The his-
torical OAR structures were delineated by a medical resident
or an experienced dosimetrist and approved by attending
physician as a part of routine clinical treatment planning.
Structures were delineated on Velocity (Varian Medical Sys-
tems, Palo Alto, CA, USA) and Pinnacle3. Structures delin-
eated on Velocity were subsequently imported to Pinnacle3.
The reference set was based purely on clinically utilized histor-
ical OAR delineations, without any modifications.

The QA tool was evaluated utilizing OARs from three dif-
ferent sources. These experimental OARs were from 15 inde-
pendent CT datasets not in the reference population. The first
cohort consisted of nine clinically approved manually delin-
eated structure sets which contained 71 OAR delineations in
total. To ensure common delineation errors existed in this
cohort, we simulated errors by applying 34 manipulations to
these OARs (some structures received two manipulations).
The resultant OAR structures had an added ditzel (four total,
at least 0.6 cm2 in single slice), a missing slice (seven total),
expansion/contraction (12 total, at most 0.5 cm in each direc-
tion), extra segment (four total, lung delineation extended to
contralateral side in a slice), and structure mislabeling errors
(seven total, three pairs of swapped OAR names and one
structure with empty delineation). The nonmanipulated struc-
tures served as control of the sensitivity study. The second
cohort consisted of three structure sets generated by the
Auto-Segmentation routine in Pinnacle3, and contained 18
OAR delineations in total. The third cohort of three structure

sets consisted of 18 OAR delineations obtained by propagat-
ing the delineations by deformable mapping. Deformable reg-
istration was done between two CT datasets acquired at
different time points for the same patient. Both registration
and delineation propagation were performed on Velocity.
Delineations from the second and third cohorts were not
manually modified. The name and color of the OAR struc-
tures were standardized for consistency.

For the experiment, three experienced radiation oncology
residents reviewed the experimental structure sets and identi-
fied delineation errors in two sessions. During the first ses-
sion, the reviewers examined the delineations and identified
errors without the QA tool. The second session was con-
ducted at least 1 week after the initial session, in which the
reviewers examined and identified errors in the same experi-
mental sets (scrambled order) with the aid of the QA tool.
For each delineation, they identified if they thought error(s)
existed and categorized the type(s) of error. In addition, they
classified their findings as minor or major errors based on
their opinion of the presumed impacts on treatment planning
and dosimetry. For analysis, a reviewer identified error was
considered a true (consensus) error if two or more individuals
identified the same error during either session. Classification
of the error severity followed the same majority rule. If an
error was consensually identified as major error in one ses-
sion and minor error in the other, it was identified as a major
error. During the experiment, reviewers did not make correc-
tions on the delineations and the feedback feature of the QA
tool was not used to update the reference OAR set.

3. RESULTS

Overall, there were 11 boundary and 17 volume outlier
warnings, six outlier warnings of rough boundary, 14 shape,
17 disconnection, 18 position outlier warnings. Some of these
outlier warnings appear together for a single delineation, for
example, volume and boundary warnings appeared together

  Reference
OAR Test  Features  Parametric

 distribution

 New
 OAR  Features  Statistical

  inference test
Outlier

 detection

   OAR delineation QA tool

 Outlier
 Criteria

Normal
 Abnormal

U
pd
at
e

A
dj
us
t

FIG. 1. Flow of the OAR delineation QA tool. The open arrowhead (⇾) represents preparation and generation of the QA tool, the solid arrowhead (?) represents
the QA procedure of a new OAR delineation. The reference OAR set is initialized with historic OAR delineations. A parameterized distribution of each volumet-
ric feature is used to establish the statistical inference test. The multicriteria outlier detection system is developed from the parametric distributions in the initial
reference. The QA procedure starts with calculation of the volumetric features, followed by the inference test to identify deviated features. The outlier detection
system reports delineation abnormalities if detected. After finalizing, the newly approved OAR delineation will be included in the OAR reference for future QA
procedures. [Color figure can be viewed at wileyonlinelibrary.com]
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in eight delineations. In general, the occurrences of deviant
features were directly correlated with the occurrences of the
outlier warnings according to Table II. Table III shows the
top three features and their appearance rates of each warning
for the experimental delineations. From the table, new associ-
ations between a deviant feature and the associated outlier
warning can be seen, for example, A=m appeared the most for
a boundary outlier warning, even though it is not one of the
required deviant features.

Table IV summarizes the (consensus) errors identified by
the reviewers. During analysis, multiple errors on the same
OAR were considered as multiple errors. Of the 34 manipula-
tions, reviewer consensus identified eight as minor and 23 as
major errors based on the predefined criteria. The remaining
three manipulations (two ditzels and one contraction) were

TABLE I. Summary of the volumetric features calculated for the OAR
delineation.

Features Symbols Descriptions

Volume, surface area, mass and density

Voxel volume (cm3) V As titled

Surface area (cm2) A As titled

Mass (g) m q� V

Mean CT number q. As titled

Standard deviation CT
number

rq As titled

Max CT number qmax As titled

Min CT number qmin As titled

Area to volume ratio
(cm�1)

A=V As titled

Specific surface area
(cm2 g�1)

A/m As titled

Ellipsoid features

For each of major axis a*, equatorial major axis b
*

, and equatorial minor
axis c*

-distance (cm) ja*j; jb*j; jc*j Distances between boundary,
along the three axes

-directional unit vector ba; bb;bc Orthogonal unit vectors of the
three axes (evaluate by dot
product to statistical unit
vector)

Meridional eccentricity eme Eccentricity of conic section
formed by equatorial minor
distance to major distance:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jc*j2
.
ja*j2

r
Equatorial eccentricity eeq Eccentricity of conic section

formed by equatorial minor
distance to equatorial major

distance:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jc*j2

.
jb*j

2
r

Relative features

Relative volume to
External

V=Vext Ratio of OAR volume to
External volume

Relative centroid
displacement vector to
External (cm)

DC
*

A�ext Centroid of OARA minus
centroid of External (three
dimensions are treated
independently)

Relative centroid
displacement vector
between A and B (cm)

DC
*

A�B Centroid of OARA minus
centroid of OARB (three
dimensions are treated
independently)

Others

Number of disconnected
volumes

NV As titled

TABLE II. Summary of delineation outlier, the associated deviant features as
defined in Table I, and the minimum number of deviated features to trigger
warning. + indicates value of feature above statistical upper bound, �indi-
cates value of feature below statistical lower bound.

Outliers Relevant OARs Deviant features
N to

Trigger

Large volume All OARs þV , þA, þm, �A=V ,
�A=m, þja*j, þjb*j,
þjc*j, V/Vext

3

Small volume All OARs �V , �A, �m, þA=V ,
þA=m, �ja*j, �jb*j,
�jc*j, �V=Vext

3

Overextended
boundary

Soft tissue OARs:
for example, Heart

�q, þrq, �qmin, þqmax 2

Retracted
boundary

Soft tissue OARs:
for example, Heart

þq, �rq, þqmin, �qmax 2

Overextended
boundary

Air bearing OARs:
for example, Lung

þq, þrq, þqmax, þm 2

Retracted
boundary

Air bearing OARs:
for example, Lung

�q, �rq, �qmax, �m 2

Rough boundary All OARs þA=V , þA=m 2

Shape (usually
extra segment)

All OARs þA=V , þA=m, þja*j,
þjb*j, þjc*j, �ba;�bb;�bc,
�eme, �eeq

3

Position (x, y, z) All OARs �DC
*

A�ext , �DC
*

A�B

(must be same sign)
3

Disconnection
(missing slice,
ditzels)

All OARs þNV 1

Unknown All OARs Not the above
combination

4

TABLE III. Outlier warnings and their top three most appearing correspond-
ing deviant features.

Warning
(total number)

Most appearing
feature (rate)

Second most
appearing

feature (rate)

Third most
appearing

feature (rate)

Boundary (11) A/m (82%) �q, qmax, m (73%) rq(64%)

Volume (17) m (88%) A=m (82%) A=V (76%)

Roughness (6) A=V, A=m
(100%)

rq, V=Vext (67%) jb*j; jc*j, �q, m
(50%)

Shape (14) eeq (71%) bc (57%) bb, eme (43%)

Disconnection (17) NV (100%) eeq (29%) Dx*A�B (24%)

Position (18) Dz*A�B (61%) Dx*A�B (56%) jb*j; jc*j, Dz*A�ext ,
Dx*A�ext , Dy

*

A�B

(33%)

No warning (51) ba (16%) bb, Dz*A�ext ,
Dx*A�B (8%)

bc, Dy*A�ext ,
Dz*A�B (6%)

Dx* is centroid displacement along x direction, and so forth.
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not defined as errors based on the majority rule. It was ini-
tially expected that the control group of clinically approved
manual delineation would contain no major error. However,
reviewers also identified 10 minor and two major errors in
this control group. Over all cohorts, reviewers identified 43
no errors, 38 minor errors and 34 major errors, corresponding
with 115 decisions from the 107 OAR delineations (eight
OARs had two errors). Figure 2 presents some examples of
delineations with identified errors.

When used alone (without human review), the QA tool
error detection sensitivity was 37% (14 of 38) for minor
errors and 85% (29 of 34) for major errors. Table V–VII
summarize the reviewers and QA tool error detection rate in
different categories. Of the 31 manual manipulations identi-
fied as errors, the QA tool detected 29 of 31 (94%) of them,
with 6 of 8 (75%) of them minor and 23 of 23 (100%) of
them major errors. The QA tool also detected outliers in the
three manipulated delineations that were not identified as
errors using the reviewer consensus criteria. Over all error
categories, the QA tool identified 22 of 22 (100%) of mistake
type errors (ditzel, extra segment, missing slice and misla-
bel), but only 21 of 50 (42%) of the boundary type errors
(transverse boundary and slice extent). The QA tool was par-
ticularly poor in identifying boundary errors in the propa-
gated delineation sets (e.g., Fig 2c), finding 0 of 14 (0%)
minor errors and 1 of 4 (25%) major errors in this cohort.
This is because the volumetric features of the propagated

delineation always remained similar to those of the original
delineation. Therefore, reasonably propagated delineations
would likely pass the QA algorithm. The QA tool also had
difficulty identifying some of the major errors in Heart and
Esophagus delineations. These five cases that the QA tool
missed (false negative) were all transverse boundary or slice
extent type errors (one automatic, one manual, three propa-
gated). Major boundary errors for these delineations may be
more difficult to detect because delineations of the Heart and
Esophagus contain tissues in a wide range of CT numbers
both within and among patients. As a result, boundary errors
perceived by the reviewers might not be able to drive the cor-
responding features out of their 5% threshold.

Overall, with the help of the QA tool, reviewers improved
their error detection sensitivity from 61% (70 of 114) to 68%
(78 of 114) for minor errors, and from 78% (80 of 102) to
87% (89 of 102) for major errors. Using the asymptotic
McNemar’s test, the improvement in error detection was
insignificant for minor errors (P = 0.17) and was significant
for major errors (P = 0.02).

Among the OARs with no errors (based on majority rule),
there were cases in which a single reviewer identified an error
within an OAR in either or both experiment sessions. Overall,
one of the three reviewers identified an error in 23 of 43
(53%) of the no error OARs in the first experiment session,
and 20 of 43 (47%) in the second experiment session. The
QA tool identified outliers in 11 of 43 (26%) of the OARs in
this cohort. The most frequent warnings in this cohort were
position outlier and disconnection, both occurred three times.
With respect to organ type, five Lung_L delineations trig-
gered warnings in this cohort (three disconnections, one
shape, one position). While disconnection warnings were dit-
zels in which reviewers failed to identify as an error, the other
identified outliers were most likely unusual patient ana-
tomies, for example: the QA tool found that the size of one
patient’s heart was much larger than normal.

Between the two experiment sessions, the three reviewers
changed their decisions 124 of 345 (36%) of time (33 from
no to minor, 28 from minor to no, 19 from no to major, 9
from major to no, 28 from minor to major, and 7 from major
to minor). Among the identifications that changed between
minor and no error and vice versa, 34 of 61 (56%) of them
aligned with and 27 of 61 (44%) of them contradicted the QA
tool outlier/nonoutlier suggestions. Among the identifications
that changed between major and no error and vice versa, 23
of 28 (82%) of them aligned with vs 5 of 28 (18%) of them
contradicted the QA tool outlier/nonoutlier suggestions. Out
of the 57 changed identifications that aligned with the QA
tool suggestions, 13 were changed from no to minor error, 21
were changed from minor to no errors, 17 were changed from
no to major error, and six were changed from major to no
error.

4. DISCUSSION

The OAR delineation QA tool is easy to implement.
The algorithm uses a reasonable set of volumetric features

TABLE IV. Summary of identified errors. A majority rule was used to classify
if an error existed and the error severity. During review, images were
ungrouped and scrambled.

Minor
errors

Major
errors

No
errors

Error categories

Boundary in transverse plane 27 11 -

Slice extent 7 5 -

Ditzel 2 0 -

Extra segment 0 4 -

Missing slice 2 7 -

Mislabel 0 7 -

Delineation groups

Manipulated manual delineation 8 23 3

Control manual delineation 10 2 33

Automatic delineation 6 5 7

Propagated delineation 14 4 0

OARs

Brachial Plexuses 3 3 4

Carina 6 2 4

Esophagus 3 3 6

Heart 4 6 5

Lungs 7 11 18

SpinalCord 8 6 2

Trachea 7 3 4

Total

38 34 43
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and detects their outliers by observing the feature probabil-
ity distributions. These features are easy to compute or
basic features inherent to any 3D structure; thus in princi-
pal, the features would be applicable to any OAR delin-
eation. No attempt was made to find the optimized set of
features, either globally, or for an individual OAR struc-
ture. Additional features (perhaps even 2D features) can be
added to the tool with little penalty. If one of our utilized
features, or an added feature, is a poor discriminator for
structure R, the feature’s probability distribution for struc-
ture R would be wide, therefore the feature would have a
negligible role in the outlier selection decision. The impor-
tant features for an individual structure are thus auto-iden-
tified. Analyzing the entire feature set for each structure
improves the likelihood of finding a discriminatory feature
combination for an arbitrary structure.

Intuitively, one might expect that hundreds of datasets are
required to develop a reliable statistical model for anomaly
detection; and thus might consider the use of a 73-patient

cohort insufficient. However, this study and some prior stud-
ies13,20 have shown that, inspite of using a limited dataset to
derive the statistical reference, the resultant models improved
detection of delineation errors. This suggests that the benefits
of statistical anomaly detection can be extended to mid to
small clinics with limited resources. In addition, no pre-
reviewing or correction of the reference datasets is necessary.
This approach eliminated the extensive amount of time
required to pre-review the delineations, and it eliminated the
bias generated by the pre-reviewers. For this study, we found
that the initial reference delineations from the 73 patient
cohort contained major errors such as missing slice and extra
segment during the process of developing the outlier detec-
tion system. These errors were not corrected; instead, their
features were included in the reference distribution. These
erroneous delineations might expand the 95% confidence
interval of the feature as we expected that most errors would
be outliers in the statistical model. As the subsequent

(a) (b) (c)

FIG. 2. Examples of erroneous delineations from the experimental data. (a) Delineation of left lung from the manual delineation group with simulated error. An
extra segment (arrowed) was extended to the contralateral side and was classified as major error. The OAR QA tool issued a shape warning for this delineation.
(b) Delineation of trachea from the automatic delineation group. The automatic algorithm failed to include the tracheal cartilage within the delineation. As a
result, it was classified as major boundary error in the transverse plane. The OAR QA tool issued a retracted boundary warning for this delineation. (c) Delin-
eation of esophagus from the propagated delineation group. A minor boundary error in the transverse plane was classified because part of lung was included in
the delineation (arrowed). The OAR QA tool did not issue any warning for this delineation. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE V. Error detection rate by the QA tool and reviewers, categorized into
the different error types.

QA tool

Reviewers
– first session
w/o QA tool

Reviewers
– second session

w/QA tool

Minor
errors

Major
errors

Minor
errors

Major
errors

Minor
errors

Major
errors

Boundary in
transverse plane

10/27 8/11 50/81 32/33 56/81 30/33

Slice extent 0/7 3/5 14/21 13/15 15/21 14/15

Ditzel 2/2 - 4/6 - 2/6 -

Extra segment - 4/4 - 12/12 - 12/12

Missing slice 2/2 7/7 2/6 14/21 6/6 15/21

Mislabel - 7/7 - 9/21 - 17/21

TABLE VI. Error detection rate by the QA tool and reviewers, categorized by
the delineation cohorts.

QA tool

Reviewers
– first session
w/o QA tool

Reviewers – second
session w/QA tool

Minor
errors

Major
errors

Minor
errors

Major
errors

Minor
errors

Major
errors

Manipulated
manual
delineation

6/8 23/23 14/24 49/69 16/24 60/69

Control
manual
delineation

4/10 1/2 10/30 5/6 19/30 4/6

Automatic
delineation

4/6 4/5 12/28 14/15 16/18 14/15

Propagated
delineation

0/14 1/4 34/42 12/12 27/42 11/12
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experiment showed, the statistical approach was robust
enough to maintain high sensitivity in major error detection
inspite of known errors in the reference distribution.
Although not tested, removal of the erroneous reference
delineations would likely improve the error detection sensitiv-
ity. Similarly, continued QA tool use, with reference set
updating enabled, will likely reduce the frequency of major
errors in the reference data, thereby also improve the sensitiv-
ity of error detection. As the reference delineations become
more accurate, one might consider increasing the confidence
interval to, for example, 99% for deviant feature warning if
the number of false positive warning becomes tiresome.

The sensitivity for a QA algorithm to detect delineation
error depends on the OAR dataset, and types and severity of
the error. Therefore, it is difficult to assess the effectiveness
of the QA algorithm by sensitivity alone. Instead, our experi-
ment used a two-session approach to assess how much the
QA tool can improve user sensitivity in detecting delineation
error. From our experiment, the error detection sensitivity of
the QA algorithm was 37% and 85% for minor and major
errors, respectively. The number is lower than some other
QA algorithms reported by previous literatures: 95% from
Altman et al.13 and 95% from Chen et al..20 However, the
aforementioned studies used strictly datasets with simulated
errors. If only simulated errors were accounted in the analy-
sis, the QA algorithm would have picked up 29 of 31 (94%)
of errors, where three manipulations were not counted due to
the majority rule. Nevertheless, comparison among different
studies would not be meaningful unless the exact same data-
set were to be used for the analysis.

There were only a small number of major errors in the
control group of manual nonmanipulated structures because
these structures were clinically utilized, therefore had previ-
ously been reviewed. This control group was expected to
have no major errors. However, within this cohort, review-
ers identified two major errors: a missing slice error which
the QA tool detected and a boundary error which the QA
tool did not detect. During the first session, two of three
reviewers identified the missing slice error, and all three

reviewers identified the boundary error. During the second
session, still only two of three reviewers identified the
missing slice error even though the QA tool warned them
that this error existed. The boundary error detection
decreased, being identified by only two of three reviewers.
The apparent reduced detectability with the QA tool for the
manual nonmanipulated cohort was due to a singular deci-
sion on an error in which the decision tool made no recom-
mendation. This reduced detectability was likely an artifact
of the few errors in the clinical data.

In our experiment, 89% of the minor errors were identi-
fied as transverse planes boundary errors or incorrect slice
extent. The QA tool was insensitive in detecting these
minor errors. This is due in part to the fact that the volu-
metric features are mostly shape related and are not cur-
rently equipped to analyze contrast features within the
OAR or near the OAR boundary. Another reason for the
low sensitivity was the inconsistency in minor error classi-
fication, as reviewers identified no error in one session and
minor error in another 18% of the time among all deci-
sions. Furthermore, 26% of the identified minor boundary
or slice extent errors came from unperturbed clinical OAR
delineations, which were previously approved by physician
for patient treatment. This highlights the subjectivity of
error definition, particularly for minor errors. For the minor
boundary type errors, it is likely that many of them fell in
the “inherent inter-and intra-delineator variability” and
“OAR definition discrepancy between different delineators”
categories. As the reference data also contain this inherent
variability, it would be difficult for the QA tool to identify
these boundary variations as outliers.

The current group of features was not very effective to
detect errors in deformable registered delineations, which
were found to be mostly boundary-type errors. Boundary-
related error detection could potentially be improved by using
intensity-based features. Image-based features are generally
more complex and take longer to process compared with vol-
umetric features. The volume-based features used here pro-
vide potential clinical benefit and are simple to calculate. The
identification of such features and resultant detectability
improvements is left for future study.

In the current experiment, there was virtually no difference
in reviewing time between the two experiment sessions. This
is because reviewers were instructed to look for all possible
errors. As a result, they kept looking for additional errors
even after they found the errors suggested by the QA tool. A
different study design resembling to common clinical work-
flow is needed to determine the time advantage of using the
QA tool.

The reviewers were informed of the types of manipula-
tions that were introduced, and that the manipulations mim-
icked common clinical delineation errors. The instructions
ensured that all reviewers had a common understanding of
their role in the study. The reviewers, however, were not
informed of the frequency in which the manipulations hap-
pened. Therefore, the explicit instruction did not differ from
the standard instruction that would be implicitly understood

TABLE VII. Error detection rate by the QA tool and reviewers, categorized
into different OARs.

QA tool

Reviewers – first
session

w/o QA tool
Reviewers – second
session w/QA tool

Minor
errors

Major
errors

Minor
errors

Major
errors

Minor
errors

Major
errors

Brachial
Plexuses

1/3 3/3 5/9 5/9 2/9 7/9

Carina 6/6 2/2 11/18 5/6 11/18 6/6

Esophagus 0/3 1/3 4/9 7/9 6/9 7/9

Heart 2/4 3/6 7/12 16/18 8/12 16/18

Lungs 0/7 11/11 18/21 24/33 14/21 28/33

SpinalCord 1/8 6/6 11/24 16/18 18/24 17/18

Trachea 4/7 3/3 14/21 7/9 19/21 8/9
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for clinical delineation review. The instructions provided
might introduce minor systematic bias. However, without
instruction, the definition of an error by the reviewers could
become even more arbitrary and subjective.

One weakness of this and any delineation error experiment
is the subjectivity of error identification. To achieve fairness
in error definition, we used the majority rule approach to
identify and classify error. However, the majority rule
approach can be affected by reviewer’s vigilance and could
potentially misidentify even objective errors like OAR misla-
beling. The reviewer’s performance in our experiment was
satisfactory, as only two ditzels and one contraction from the
34 manipulations were not classified as errors based on the
majority rule.

Another weakness of our experiment was that the QA tool
might skew a reviewer’s perception of error. We found that
decisions that changed between minor and no error and vice
versa were 56%–44% in favor of the QA tool outlier/nonout-
lier suggestions, but 82% of decisions that changed between
major and no error and vice versa aligned with the QA tool
outlier/non-outlier suggestions. This suggests that decisions
involving a minor error may be more subjective in nature.
These decisions may be slightly skewed by the QA tool, but
the reviewers went against the suggestions almost as often as
with them. The decisions involving a major error, however,
may involve more objective assessment in which reviewers
was less likely to disagree after inspection. Intuitively, the
order of the experiment sessions might give an advantage to
the QA tool, however, the reverse order might bias against it
by tipping reviewers off to specific findings in the images. The
1-week interval and the scrambled data order should reduce
reviewer’s memory of specific errors, hence reduce the bias.

The results presented intentionally omitted the notion of
specificity due to limitations of the experimental design. The
majority rule for error identification guaranteed that the
reviewer’s “specificity” to be always more than 66% in both
experiment sessions. Therefore, reviewer specificity might
not be appropriate. As for the QA tool, it was designed to
detect delineation outliers statistically. This includes both
delineation errors and anatomic abnormalities. Since detec-
tion of an anatomical abnormality could potentially assist in
clinical decision-making, we would not consider its identifi-
cation as false positive.

5. CONCLUSIONS

This work developed an automated OAR delineation QA
tool to assist reviewers in the identification of inaccurate
OAR delineations and demonstrated its effectiveness in
detecting delineation errors. Unlike previous methods, our
QA algorithm uses features that are strictly volumetric.
Another unique feature is the multicriteria outlier detection
system to help identify specific type of delineation outlier.
The tool is fully integrated into Pinnacle3 treatment planning
system. Our experiment showed that the QA tool detected
major delineation errors effectively, and it significantly
improved user’s ability to detect these errors.

CONFLICT OF INTEREST

Jeffrey V. Siebers has a research agreement with Varian
Medical Systems regarding EPID-based dosimetry.

a)Author to whom correspondence should be addressed. Electronic mail:
jsiebers@virginia.edu; Telephone: +1 (434) 924 5421.

REFERENCES

1. Jameson MG, Holloway LC, Vial PJ, Vinod SK, Metcalfe PE. A review
of methods of analysis in contouring studies for radiation oncology.
J Med Imaging Radiat Oncol. 2010;54:401–410.

2. Vinod SK, Jameson MG, Min M, Holloway LC. Uncertainties in vol-
ume delineation in radiation oncology: a systematic review and recom-
mendations for future studies. Radiother Oncol. 2016;121:169–179.

3. Mukesh M, Benson R, Jena R, et al. Interobserver variation in clinical tar-
get volume and organs at risk segmentation in post-parotidectomy radio-
therapy: can segmentation protocols help? Br J Radiol. 1016;2012:16–20.

4. Vinod SK, Min M, Jameson MG, Holloway LC. A review of interven-
tions to reduce inter-observer variability in volume delineation in radia-
tion oncology. J Med Imaging Radiat Oncol. 2016;60:393–406.

5. Lorenzen EL, Taylor CW, Maraldo M, et al. Inter-observer variation in
delineation of the heart and left anterior descending coronary artery in
radiotherapy for breast cancer: a multi-centre study from Denmark and
the UK. Radiother Oncol. 2013;108:254–258.

6. Breunig J, Hernandez S, Lin J, et al. A system for continual quality
improvement of normal tissue delineation for radiation therapy treat-
ment planning. Int J Radiat Oncol Biol Phys. 2012;83:e703–e708.

7. Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20: perspectives on
automated image segmentation for radiotherapy. Med Phys.
2014;41:50902.

8. Walker GV, Awan M, Tao R, et al. Prospective randomized double-blind
study of atlas-based organ-at-risk autosegmentation-assisted radiation
planning in head and neck cancer. Radiother Oncol. 2014;112:321–325.

9. Nourzadeh H, Watkins WT, Ahmed M, Hui C, Schlesinger D, Siebers
JV. Clinical adequacy assessment of autocontours for prostate IMRT
with meaningful endpoints.Med Phys. 2017;44:1525–1537.

10. Lo AC, Liu M, Chan E, et al. The impact of peer review of volume
delineation in stereotactic body radiation therapy planning for primary
lung cancer: a multicenter quality assurance study. J Thorac Oncol.
2014;9:527–533.

11. Cox BW, Kapur A, Sharma A, et al. Prospective contouring rounds: a
novel, high-impact tool for optimizing quality assurance. Pract Radiat
Oncol. 2015;5:e431–e436.

12. Marks LB, Adams RD, Pawlicki T, et al. Enhancing the role of case-
oriented peer review to improve quality and safety in radiation oncology:
executive summary. Pract Radiat Oncol. 2013;3:149–156.

13. Altman MB, Kavanaugh JA, Wooten HO, et al. A framework for auto-
mated contour quality assurance in radiation therapy including adaptive
techniques. Phys Med Biol. 2015;60:5199–5209.

14. McIntosh C, Svistoun I, Purdie TG. Groupwise conditional random for-
ests for automatic shape classification and contour quality assessment in
radiotherapy planning. IEEE Trans Med Imaging. 2013;32:1043–1057.

15. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM
Comput Surv. 2009;41:15.
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