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a b s t r a c t 

For the global COVID-19 pandemic it is still not adequately understood how quarantine disobedience and 

change in mobility restrictions influence the pandemic spreading and waves. Here, we propose a new 

metapopulation epidemiological model as a network composed of equal clusters to predict the course of 

the epidemic based on the contiguous spreading between the neighbours, the probability of quarantine 

misbehaviour, and the probability of mobility, which control contacts outside the cluster. We exemplify 

the model by comparing simulation results with real data on COVID-19 pandemic in Croatia. Fitting the 

data over the first and second pandemic waves, when the probability of mobility is set by the stringency 

index, the probability of quarantine misbehaviour is found by a Bayesian optimization yielding a fascinat- 

ing agreement between the daily COVID-19 deaths and model output and efficiently predicting the timing 

of pandemic bursts. A sudden increase in the probability of quarantine misbehaviour alongside the sud- 

den increase in the probability of mobility generate the model third wave in good agreement with daily 

COVID-19 deaths. 

© 2021 Published by Elsevier Ltd. 
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In the history of mankind infectious diseases have killed more 

eople than all the wars together [1] making them the major cause 

f deaths. Over only a few years in the 14th century, the plague 

illed up to 200 million people in Europe and North Africa, while 

fter the First World War the Spanish flu caused up to 100 mil- 

ion deaths worldwide. Nowadays the world is faced again with a 

ew pandemic, called COVID-19, which has drawn the attention of 

o many scientists as probably neither of the previous diseases in 

uman history [2–8] . Managing the scale of pandemics and under- 

tanding their spreading mechanism in social communities is a key 

orld topic due to the immersive impact of pandemics on human 

ociety, public health, and global economy. 

The spread and mortality of infectious diseases depends 

n many factors where the robustness of the healthcare sys- 

em [9] and the patterns of how people contact each other are 

mong the most salient. The knowledge of social mobility patterns 

elps the public health workers identify and isolate individuals 
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ho have been in contact with the diseased and therefore prevent 

he spots of potential outbreaks. 

To control the COVID-19 spread, practically all countries have 

arried out varying healthcare policies such as school and border 

losures, social distancing, self-isolation, wearing masks in pub- 

ic [10] , where some countries have decided to enforce complete 

ock-downs in order to prevent the virus to spread freely and ex- 

onentially [11] that may lead to highly undesirable overburden- 

ng of the healthcare system when it becomes totally inefficient. 

he measures intended to avoid this catastrophic scenario are com- 

only known as flattening the curve [12] . 

However, while measures imposed by governments serve to 

revent the ongoing spread of the virus and mitigate the potential 

atastrophe on both the healthcare system and the entire econ- 

my, once the data on the disease start to accumulate, for varying 

olicies and measures the mathematical models serve to improve 

he effectiveness of intervention strategies in slowing the spread; 

ffering reliable predictions about the number of infected, total 

eaths, or the number of people that need to be vaccinated to cre- 

te herd immunity. During the last decades the seminal work of 

ermack and McKendrick and their SIR model based on ordinary 

https://doi.org/10.1016/j.chaos.2021.111200
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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ifferential equations (ODE) has been largely applied to mimic the 

pread of infectious diseases [13] . To take into account heterogene- 

ty in mixing patterns commonly observed in populations, network 

pidemic models have been heavily employed [14–24] to investi- 

ate sequential partnership patterns [25] , concurrency in relation- 

hips [25] , and the impact of various social biases on the spread of 

pidemics [19,23] , as with many other diseases. 

A large number of papers combine traditional stochastic, and 

IR epidemic models with complex systems approaches in order 

o properly explain COVID-19 spreading. Analysing epidemiological 

ata from China, Chinazzi et al. [26] apply a global metapopulation 

isease transmission model combining a metapopulation network 

pproach with real-world data to conclude that early detection, 

and washing, self-isolation, and household quarantine are more 

ffective in mitigating the pandemic than travel restrictions. Based 

n a novel epidemic spreading model, Zlatic et al. [27] report a bi- 

table phase behavior and demonstrate that before the pandemic 

nters into the giant phase, an early testing procedure in COVID-19 

risis may keep it under control, where even a very small change 

n the rate of testing can increase or decrease the size of the whole

pidemic for various orders of magnitude. Chang et al. [28] in- 

roduce a metapopulation SEIR model to simulate the spread of 

ARS-CoV-2. They analyse cell phone data in 10 of the largest US 

etropolitan areas and create fine-grained, dynamic mobility net- 

orks. By capturing who is infected at which locations the pro- 

osed model can inform more effective and equitable policy re- 

ponses to COVID-19. Chande et al. [29] analyse the effects of large 

vents, indoor gatherings and mask-wearing to the disease spread- 

ng. The main goal of this study is to help individuals and public 

uthorities in making decisions. 

Some studies focus on the robustness of public health systems. 

n a study focused on the capacity of hospitals and healthcare sys- 

em [30] , the authors propose an approach for modeling the num- 

er of COVID-19 and non-COVID-19 patients that may use ICU ca- 

acity. The authors estimate the ICU capacity for non-COVID-19 pa- 

ients. Cinelli et al. [31] focus on a side effect of the COVID-19 epi-

emic i.e. an infodemic of true and false news. The authors try to 

t the information diffusion with epidemic spreading models char- 

cterizing the basic reproduction number. 

Here, applying a new epidemic spreading dynamical network 

odel on pandemic data from Croatia, we demonstrate that the 

odel exhibits a striking agreement with empirical results in pre- 

icting the outbreaks timing during the pandemic. Out of 18 pa- 

ameters in the model, only 2 are free, while the rest are fixed 

o comply with empirical findings. To illustrate how misbehaviour 

nd change in mobility policy affect pandemics, applying Bayesian 

ptimization we demonstrate that once the first and the second 

andemic waves are over a sudden increase in the probability of 

uarantine misbehaviour together with the sudden increase of the 

robability of mobility yield the model third pandemic wave in 

ood agreement with daily COVID-19 deaths registered in Croatia. 

. Model 

The COVID-19 pandemic evolved in sequences of pandemic 

aves where periods of low and high fractions of diseased re- 

eatedly replace each other. We model this ability of a pandemic 

o spontaneously recover using a complex networks framework. 

pecifically, the model is based on a dynamical network charac- 

erised by stochastic contiguous spreading where each node can 

ail (i) independently of other nodes, (ii) contiguously due to fail- 

res of neighboring nodes, but also (iii) spontaneously recover af- 

er an inactive period of time [32,33] . These networks are shown 

o exhibit phase-flipping between two collective network modes, 

active” and “inactive” [32] . 
2 
We define a network composed of M equal, but mutually un- 

inked clusters of size k . Each cluster is a fully connected net- 

ork and represents the fundamental societal unit whose indi- 

iduals are constantly in contact (household, family, close neigh- 

ours etc.). The model assumes that the population mixes homo- 

eneously (some extensions in this regard where also explored, see 

isky group behavioural scenario), i.e. it is equally likely that the 

isease can be transmitted between any two subjects, regardless of 

heir age, gender, and place where they live, at home or at work. 

i) At each time t , each subject (node) can independently get dis- 

eased with COVID-19, with a very small probability q . This in- 

fection, independent of the surrounding, we assign as the node 

i ’s internal infectious state denoted by spin | s i 〉 . In reality this

kind of infection models individuals who got infected outside 

the network (i.e. people who travel from a country to another) 

and it is how the pandemic begins. 

ii) Due to contiguous spreading, every diseased node may affect 

any other individual in its surrounding. Precisely we define that 

every infected neighbour of a healthy node i has a probability 

r of transmitting the disease, if infection occurs the node be- 

comes externally diseased which state is denoted by spin | S i 〉 . 
Node i —described by the two-spin state | s i , S i 〉 —is active only if

all spins are up, i.e, | s i , S i 〉 = | 1 , 1 〉 . 
ii) An individual recovers or dies from COVID-19 after a time τ

since failure. 

v) To account for mobility restrictions, we assume that at each 

time step, each node is randomly chosen with a probability of 

mobility p 1 to establish a contact with what we call, the cen- 

tral unit, representing work, school, shopping place etc. In the 

central unit, each subject has a chance to get COVID-19 infected 

with probability ˆ r . 

v) To account for the level of disobedience among the individu- 

als of the society, we assume that among contacts of COVID-19 

diseased nodes, there is the probability p 2 of not following a 

quarantine restriction or self-isolation. Thus, p 2 measures the 

probability of quarantine misbehaviour or disobedience. 

Different assum ptions (iii)–(v) were also considered where the 

ecovery time τ , the probabilities p 1 and p 2 and the clusters size 

 are not constant but rather come from a distribution (normal or 

xponential), leading to similar results. 

The stochastic infection model considers six stages of COVID- 

9 disease progression: susceptible individuals ( S ), infected with 

ARS-CoV-2, where the infected persons are not aware that they 

ave the disease, but still transmit it to others ( I ), symptomatic in- 

ection with mild symptoms ( M ), infection with severe COVID-19 

ymptoms ( C ), recovery with immunity ( R ) and COVID-19 deaths 

 D ). A stochastic process non related to COVID-19 with a single in- 

ernal spin | s i 〉 was also added, its two stages being: unspecified 

ritical severe disease ( U ) and non-COVID-19 deaths ( N ). Stages C 

nd U represent the intensive care unit (ICU) patients. 

.1. Transition probabilities between different stages 

Fig. 1 identifies six different COVID-19 stages quantified by their 

ransition probabilities ( β , γ , δ, η, ζ , θ ), where only two are free.

arameters related to both COVID-19 and unspecified respiratory 

iseases we obtain from worldwide medical sources [34–45] . β
epends on the network structure, internal and external failures 

nd the transmission probability r which according to recent stud- 

es [35] is in the range 2 . 6% − 17 . 4% ; δ = 1 and the rest of the six

OVID-19 transition parameters have only two degrees of freedom: 

I ζ−→ 

C: A small fraction of those who develop symptoms begin 

o develop more serious conditions. Based on data from more than 

3 countries, the European Centre for Disease Prevention and Con- 

rol [36] (ECDPC) estimates that around 42% of confirmed cases are 
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Fig. 1. Diagram of the epidemic model states. The six stages of COVID-19 disease progression and their transition probabilities: susceptible ( S ), infected ( I ), mild ( M ), critical 

( C ), recovered with immunity ( R ) and died from COVID-19 ( D ). Infected asymptomatic stage ( I) describes the situation when the individual is already contagious, but does 

not show any symptoms. Besides these states the model differentiates between COVID-19 and non-COVID-19 related critical state and death. 
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ospitalised and 2% − 7% are hospitalized in ICU. Similarly, other 

tudies report that the rate of ICU admission among hospitalized 

atients with COVID-19 varies from 3% to 100% of admitted pa- 

ients [37] . 

C θ−→ 

D: Studies showed that the mortality among intensive care 

atients with COVID-19 was very high and ranged from 1% to 86% 

f admitted patients [37] 

The median time for onset of symptoms is 5 − 6 days [38] ( τ1 

nd τ3 ), the median time from onset to clinical recovery for mild 

ases is approximately 2 weeks [38] ( τ2 ) and for patients with se- 

ere or critical disease is more than 3 weeks [38] ( τ4 + τ2 ). The

ime of stay in ICU (which results in death or recovery) is 2–12 

ays [39] ( τ4 and τ5 ). 

.2. Population 

Our model allows to define arbitrarily many categories (types) 

f individuals and their ratios in the network. We modelled the en- 

ire population as two age groups, whose difference is a different 

robability of disease survival. The total population in the simula- 

ions is of N = 10 6 actors. 

.3. Physical distancing strategies 

Physical distancing strategies and social contact-reduction poli- 

ies between the meta-population k -units, we model using an ad- 

itional stochastic process implemented on the network model. 

t each step, each individual has the probability p to establish a 

ontact with the central unit: p = p 1 for those individuals which 

ave no sick ( M or C ) individuals in their fundamental unit and

p = p 1 · p 2 if there is at least one sick individual. For a susceptible

 S ) individual, the probability of becoming infected while in the 

entral unit is 

ˆ 
 = κ · r · b 

n 

, (1) 

here n represents the total number of individuals in the central 

nit, b represents the total number of infected individuals in the 

entral unit, r is the probability of external infection, see (ii), and 

is a free parameter representing the density of the population (in 

ur simulations fixed as κ = 2 . 5 whose simulated R 0 yielded best 

greement with existing sources [40] for COVID-19). We simulated 

wo behavioral scenarios : 

1. Households/basic - The only individuals who are assumed 

to go to the central unit are susceptible ( S ), infected 

( I ) and recovered ( R ). Individuals in symptomatic mild 
3 
( M ) or critical ( C or U ) node state are assumed not to go to

the central unit ( p 1 = 0 ); either they are sick and conscientious 

enough not to spread the disease, or they are ICU patients. 

2. Special/risky groups - A fraction of the individuals will go to 

the central unit less frequently. For these the probabilities are 

p 1 / 10 and p 2 / 10 , where p 1 and p 2 are the parameters for the

rest of the population. These individuals are assumed to be in 

the more risky category, i.e. older than 60 years, (the remaining 

individuals behave as in 1.). 

. Simulations and results 

Before we compare the model’s simulation results with real 

ata on the COVID-19 pandemic in Croatia, we show numerical 

imulations to become familiar with the general model’s prop- 

rties. We start by analyzing the basic behavioural scenario, in 

ig. 2 we present the parameter space of p 1 , p 2 and the size of

he clique/cluster k , the dependent variable is the daily average 

umber of COVID-19 deaths during the pandemic. For two sets 

f model parameters in Fig. 3 (a) and (b) we present two arbitrar- 

ly chosen realisations where we show as in standard SIR models 

he numbers of susceptible individuals, infectious individuals, re- 

overed individuals, and deceased individuals, where the cause of 

eath is either COVID-19 or any other disease. As in the SIR model 

he individuals who have been infected and are capable of infect- 

ng susceptible individuals gradually increase reaching a maximum 

fter which he number starts to diminish. In addition, we also 

how the number of mild individuals and patients in ICU (inten- 

ive care units) either due to COVID-19 or any other disease. 

In (a).3-(b).3 and (a).4-(b).4 we separately point out the ICU pa- 

ients and the dead for both COVID-19 and any other disease. No- 

ice that at the peak of the pandemic the number of non-COVID-19 

CU patients decreases being relatively small in number to COVID- 

9 patients, this phenomenon has been noticed worldwide. As a 

onsequence at the peak of the pandemic the number of non- 

OVID-19 deaths slightly increases because untreated people die. 

To this end in Fig. 4 for three arbitrarily choices of the prob- 

bility of quarantine misbehaviour p 2 , we demonstrate how the 

odel’s peak of pandemic changes with the size of the cluster 

or varying choices of parameter p 1 , which serves as a parame- 

er of restrictions enforced by the government. Here, the lower 

higher) value of p 2 characterises a nation where people more 

less) strictly follow the government rules and suggestions regard- 

ng self-isolation. Similarly, the lower the value of p 1 , the larger 

he government’s restrictions on communications outside the clus- 

er, most commonly representing a family/household. Notice that 
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Fig. 2. Daily average number of COVID-19 deaths during the course of the pandemic for k -clique/cluster sizes 2–10. The black line represents the maximum healthcare 

capacity (expressed in ICU units), left of the line the healthcare system was always functioning, right of it there was at least one simulation in which for at least one day 

the healthcare system was stressed with a too high demand. As expected the safest scenarios are the ones with smaller cluster sizes. 
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i

or a country where its people strictly follow epidemiological and 

uarantine suggestions ( p 2 = 0 . 05 ), for a high level of restrictions

n mobility (p 1 = 0 . 1) even for the largest size of the cluster the

andemic’s spread seems to be insignificant. Generally, comparing 

he (a) low and (b) high levels of p 2 , for any choice of p 1 and

he cluster size, the higher the level of quarantine misbehaviour, 

he pandemic looks more dreadful. Briefly, we vividly demonstrate 

hat the model aims to substantially restrict the spread of the pan- 

emic with both the number of local contacts inside the funda- 

ental cluster and the population mobility – contacts outside the 

luster i.e. in the central unit. 

Our next simulations are related to natural herd immunity and 

ere we test the model by identifying the smallest parameter p 1 
or which at the end of the pandemic, the total number of im- 

une (recovered) people is at least 25% or 75%. In Fig. 5 (a) the

ownmost curve represents a society where its population follows 

 strict non-compliance with self-isolation. Suppose we find the 

arameter value p 1 for a given cluster size for which the govern- 

ent measures yield at least 50% of immune individuals in the en- 

ire population. If the government decides to restrict the number of 

ocal contacts—thus, limiting the cluster size—what should be done 

ith the number of contacts outside the cluster, controlled by the 
m

4 
robability of mobility? As one should expect, reducing the num- 

er of local contacts may be accompanied by relaxing the restric- 

ions on contacts outside the cluster in order to obtain the same 

ercentage of immune individuals in the population. A decreasing 

unctional dependence between the cluster size and the probabil- 

ty of mobility is exactly depicted in Fig. 5 (a)-(b). Moving from the 

ownmost curve to the uppermost curve, the latter representing 

 society whose population follows a strict compliance with self- 

solation, for each cluster size the restrictions in contacts outside 

he cluster can be substantially relaxed in order to achieve the 

ame epidemiological goal. In Fig. 5 (c) we report a similar decaying 

unctional dependence between the cluster size and the probabil- 

ty of quarantine misbehavior p 2 for a varying set of the probability 

f mobility. The higher variance of the level lines in (c) compared 

o (a)-(b) is an evidence that p 1 is the more expressive parameter 

ompared to the quarantine misbehavior p 2 . 

. Scenario comparison 

A very efficient policy whose power is greatly underestimated 

s what we call the special group behavioural scenario. It simply 

eans isolating in small communities (our k -cliques) the elderly or 
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Fig. 3. For two arbitrarily chosen realisations of model parameters we show the numbers of susceptible individuals, infected individuals, recovered individuals, deceased 

individuals, where the cause of death is either COVID-19 or another disease and individuals in ICU. In (a).3 - (b).3 we show the ICU occupancy and in (a).4 - (b).4 the 

deaths per day. It can be seen how during the peak of the pandemic the number of ICU patients non related to COVID-19 is highly reduced (due to the massive number of 

COVID-19 patients) but the deaths non related to COVID-19 are also increased (because untreated sick people die). Both (a).3 and (b).3 visually show two realisations where 

the healthcare system collapses (full capacity is reached). Both realisation are for cluster size = 4, the first having p 1 = 0 . 4 , p 2 = 0 . 65 and the second p 1 = 0 . 7 , p 2 = 0 . 7 . It is 

clear how a higher probability of mobility p 1 results in much more severe daily deaths. 

5 
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Fig. 4. For two arbitrarily choices of the probability of quarantine misbehaviour p 2 , 

we demonstrate how the models’ peak of pandemic changes with the size of the 

cluster for varying choice of parameter p 1 . The model aims to substantially restrict 

the spread of pandemic with both the number of local contacts and contacts out- 

side the cluster. 

Fig. 5. (a)-(b) A decreasing functional dependence between the cluster size and 

the probability of mobility for a varying set of the probability of quarantine misbe- 

haviour (disobedience). (c) A similar decaying functional dependence between the 

cluster size and the probability of quarantine misbehavior for a varying set of the 

probability of mobility. 

6 
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Fig. 6. Daily average number of COVID-19 deaths during the course of the pandemic for k -clique/cluster sizes 2-10, for the risky groups behavioural scenario. Compared to 

Fig. 2 the daily death toll is greatly reduced and even the maximum healthcare capacity (especially for smaller cluster sizes) is reached for a higher combination of p 1 and 

p 2 . 
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he risky parts of the population ( 20% − 30% ) while others still re-

uce their movements from what can be called normal behaviour 

hen there is no pandemic. The key is to analyze the cost and 

enefits of this approach, where it is either just another unsuccess- 

ul way of dealing with disastrous pandemics or it is perhaps the 

ey to reduce greatly the death toll while still allowing a certain 

egree of mobility by closing only the necessary. 

To this end, we compare the daily average number of COVID- 

9 deaths shown in Figs. 2 and 6 where it is clear that the lat-

er presents a more efficient policy which can positively influence 

he relationship between the mobility of the population and the 

ealthcare capacity (note that the area of collapse is smaller in 

ig. 6 meaning that the black line is skewed to the right towards 

igher p 1 values). Figs. 7 and 8 vividly present the beneficial ef- 

ects of the special group behavioural scenarios compared to the 

asic ones: Fig. 7 (a) apparently shows that a higher number of 

eople are expected to die on a daily basis in scenarios where the 

ystem remains functioning but, in fact, the conclusion is quite the 

pposite, indeed Fig. 8 (a) shows that a much higher rate of people 

s exposed to COVID-19 at the end of the pandemic which means 

 much smaller overall death rate for the special group behavioural 

cenario (when adjusted with an average slightly longer pandemic 
7 
f Fig. 9 ). Figs. 7 (b) and 8 (b) show that even when the system

ollapses, the death toll is still more than halved for a compara- 

le level of people exposed to COVID-19 ( 50% less deaths against 

0% − 15% of less exposed people leads to a daily mortality de- 

reased by 40% ). 

Fig. 9 presents the length (in days) of the pandemic simulations 

or the two behavioural scenarios: (b) shows that for collapsed sce- 

arios the lengths are comparable and (a) reveals that for scenar- 

os where the system remains functioning the pandemic tends to 

e longer. The latter claim is even more clear in Fig. 10 where we

resent a complex functional dependence between the length and 

he logarithm of the average COVID-19 deaths per day. Here, (a) 

efers to data for the basic behavioural scenarios while (b) refers 

o special group ones. It is very clear that in both behavioural 

ases the functional dependence is very different for the function- 

ng and collapsed healthcare scenarios showing double clustering 

n (a) and a common decreasing functional dependence in (b). A 

ery important observation is that in (b) all the collapsed health- 

are scenarios tend to be much shorter than the functioning ones 

eaning that the special group behavioural policy is a type of flat- 

ening the curve policy (and therefore a pandemic prolongation 

olicy). 
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Fig. 7. Average COVID-19 deaths per day (per million). Comparison between the basic behavioural scenarios and the special groups ones. (a) simulated data from the region 

of functioning healthcare system, the observed parameter for the two groups has different variance and slightly different median. (b) simulated data from the region of 

collapse, the observed parameter for the two groups has similar variance but significantly different median. Notice how there are more than two order of magnitudes of 

difference in daily deaths between (a) functioning healthcare and (b) collapsed healthcare. It is also interesting to notice in (b) the logarithmic relationship to the cluster 

size. 
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Fig. 11 presents the functional dependence between the mor- 

ality (expressed as a percentage of the maximum expected mor- 

ality) and the number of immune people at the end of the pan- 

emic. (a) is related to data from the basic behavioural scenarios 

nd (b) to special groups, let’s call these functions f an g respec- 

ively. Firstly, we notice that f (x ) < g(x ) for every x confirming

hat special groups behavioural scenarios lead to an inferior overall 

ortality rate. Secondly, the discontinuity of the first kind in the 

rst derivative of f is emblematic and shows a drastic (more than 

ouble) change of slope when the healthcare system collapses. In 

the discontinuity is still present but much less extreme, meaning 

hat the special groups behavioural scenarios have an important 

moothing effect even for collapsed zones; however, after x = 70% 

he slope becomes very steep and g catches up f at around x = 95% 

eaning that isolating the risky groups and the elderly without re- 

ucing the mobility at all is counterproductive. 
8 
. Prediction of epidemic bursts 

Finally, we exemplify our model with real data on the Croat- 

an COVID-19 pandemic. Until now all the simulations and analyses 

here made for a set of fixed values of parameters p 1 , p 2 , and the

luster size k . However, reality is much more complex and while 

t is quite reasonable to assume that the number of people per 

ousehold is constant during a pandemic, since the demographic 

ate is quite moderate in many countries, it is definitely not cor- 

ect to consider the probability of mobility p 1 and the probability 

f quarantine misbehaviour p 2 as constant. 

The level of generalization of our parameter of mobility p 1 is 

ery wide and the best approximation of it is a general movement 

f the population. Among many options one can choose from, for 

he proxy for p 1 we choose the Stringency index developed by the 

niversity of Oxford [46] , where we define the link between the 
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Fig. 8. Total number of immune people (per million) at pandemic end. Comparison between the basic behavioural scenarios and the special groups ones. (a) simulated data 

from the region of functioning healthcare system, the observed parameter has significantly different variance and significantly different median. (b) simulated data from the 

region of collapse, the observed parameter has similar variance but different median. 
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arameter p 1 and the stringency s in a straightforward way: 

p 1 = 1 − s 

100 

(2) 

Fig. 12 shows the temporal changes of p 1 for Croatia as de- 

ned in (2) . The vast majority of the model parameters, including 

he cluster size k = 3 which corresponds to the size of the average

roatian household [47] , are fixed from empirical data. 

The inherently unknown parameters are p 2 which quantifies 

he level of a country’s disobedience and the IFR (infection fatality 

ate) of COVID-19 for which it is assumed to be within the range 

 . 1% − 2% . Using a simplified basic behavioural model where only 

OVID-19 states (without U and N) and fixing p 1 and k as above 

e use a Bayesian optimization (BO) to identify p 2 and IFR which 

ill yield the best fit for the Croatian mortality data. 

Bayesian optimization is a sequential search algorithm designed 

o find the global minimizer or maximizer of an unknown non- 

nalytic or oracle function f whose gradient is also analytically un- 
9 
nown 

 

∗ = arg min 

x 
f (x ) (3) 

O requires two components: a model that approximates f and 

n acquisition function, α(x ) that quantifies the informational 

ain [4 8,4 9] . Here, we use Gaussian process (GP) models as the 

robabilistic models in order to approximate the average number 

f deaths. 

The function f we minimize is the root mean squared error 

MSE between the empirical (14 day moving averaged) COVID-19 

eaths and the simulated ones over the set A , that is a rectangle

ormed by the ranges of IFR and p 2 ( A = [0 . 1 , 2] × [0 , 1] ). 

We use the upper confidence bound (UCB) as the acquisition 

unction with 30 initial random points and 70 descent points. The 

lgorithm successfully converges and the values that best fit the 

ata for the thirteen months period are p 2 = 24 . 6% and IFR =1 . 4% ,

ee Table 1 for more details regarding the parameters. Fig. 13 (b) 
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Fig. 9. Length of pandemic (in days). Comparison between the basic behavioural scenarios and the special groups ones. (a) simulated data from the region of functioning 

healthcare system, the observed parameter has different variance and different median. (b) simulated data from the region of collapse, the observed parameter has similar 

variance and similar median. It is interesting to notice a decreasing functional dependence to the cluster size. 

Table 1 

Parameter values. The table shows the value of each parameter of the model which was fixed to 

comply with empirical findings. The free (unknown) parameters found by the BO algorithm are 

p 2 = 24 . 6% and IFR = 1 . 4% ( ζ = 2 . 8% and γ = 1 − ζ ). 

Croatian model parameters 

Parameter Value Description Source 

p 1 Eqs. (2) and (4) Probability of mobility [46] 

k 3 Cluster size [47] 

κ 2.5 Rate of intensity of contacts in the central unit [40] 

r 10% Probability of disease transmission [35] 

θ 50% Mortality rate for ICU patients [37] 

η 1 − θ Survival rate for ICU patients [37] 

δ ≈ 100% Survival rate for mild cases [36,37] 

τ1 , τ3 5 days Time for onset of symptoms [38] 

τ4 , τ5 10 days Time of stay in ICU [38,39] 

τ2 11 days Time for recovery [39] 

10 



D. Stipic, M. Bradac, T. Lipic et al. Chaos, Solitons and Fractals 150 (2021) 111200 

Fig. 10. Length of pandemic vs. logarithm of Average COVID-19 deaths per day (per 

million). Both graphs exhibit a very peculiar and complex dependence of the two 

variables; (a) presents data from basic behavioural scenarios; two main clusters can 

be observed one from the scenarios with functioning healthcare system (without 

collapse) and the other from the scenarios in collapse. Both the clusters happen 

for very short pandemics but with very different death rates. (b) presents data 

from special groups behavioural scenarios; only one cluster can be observed related 

to the scenarios in collapse while the data related to the functioning healthcare 

system (without collapse) is somehow shifted towards the same functional depen- 

dence of the scenarios in collapse. Another important difference is that in (b) there 

are not scenarios in collapse where the pandemic is longer than 450 days while 

in (a) there are several even above 600 days in length. Meaning that for the spe- 

cial groups behavioural scenarios all the simulations where the pandemic lasts the 

longest (the infection curve is successfully flattened) have never reached healthcare 

collapse. 
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hows the results of the optimization procedure compared to the 

mpirical data on COVID-19 daily deaths for these months, since 

he outbreak in Croatia. We find a fascinating agreement between 

he model and empirical results, where the timing when the pan- 

emic bursts is very accurately predicted. In Fig. 13 (a) we show 

he curves representing the numbers of susceptible, infected, mild, 

OVID-19 dead, ICU COVID-19 patients and recovered individuals 

imulated by the model. 

The sample local-time realisations of parameters p 1 (t) and 

p 2 (t) are different and fluctuate around the population parameters 

p 1 and p 2 . Therefore we perform numerical simulations [32] for 

ur network and analyse how a policy random walker represented 

y a pair (p (t) , p (t)) fluctuates in the phase space. Fig. 14 shows
1 2 

11 
 phase diagram with 2-month period of policy changes in Croa- 

ia: p 1 is fixed according to Eq. (2) and p 2 is obtained from the 

ayesian optimization showed in the context of expected daily 

eaths (similar to Fig. 2 but adjusted for Croatia). The black line 

epresents the healthcare capacity of Croatia in terms of ICU units. 

t is very interesting to notice that starting from the beginning 

f the pandemic from mid-February 2021, whenever the policy 

alker is on the left of the line, the pandemic is controlled. In 

ontrast, when the policy random walker crosses the line the 

andemic starts to grow exponentially. Namely, observing both 

igs. 13 and 14 it is clear that the policy walker was in the catas-

rophe zone between the end of August and mid-November which 

s exactly when the pandemic started to grow again with a peak in 

eaths reached with a delay of around τ = 3 weeks. This approach 

as an obvious predicting power because the policy random walker 

as within the range 10 − 80 with a peak of 100 expected deaths 

er day which is exactly what happened. Note that 100 deaths in 

roatia corresponds to 80 0 0 in the USA. 

While short-term predictions can be almost read from the 

raph, putting f (x ) as the number of predicted daily deaths for a 

iven pair of parameters x = (p 1 , p 2 ) and integrating g ◦ f over the

alking line (for g empirically found and exponential in nature) 

ery accurate long-term predictions are also possible. 

.1. Multiple waves prediction 

Recently Croatia was hit by the third wave of COVID-19 in- 

ection which significantly worsened the epidemiological situation. 

rguably, as time passes by, more and more individuals start to re- 

ist to the policy measures (recovered individuals, individuals eco- 

omically hit or individuals which simply wish to return to nor- 

ality all tend to influence their surroundings to not follow the 

olicies and regulations). As shown, we modelled these changes 

n behaviour through the parameters p 1 and p 2 , more precisely 

n increased misbehaviour is directly represented by an increased 

arameter p 2 , but if the change becomes structural, the relation- 

hip in (2) can change. In other words the stringency s , which is a

epresentation of the strictness of the policy adopted by the gov- 

rnment, and the effective mobility adopted by the individuals p 1 
end to be more disconnected, where a more suitable equation is 

herefore 

p 1 = α
(

1 − s 

100 

)
. (4) 

f 0 < α < 1 it means that the individuals behave even more 

trictly than what is suggested by the government, therefore fur- 

her reducing their mobility. In contrast, if α > 1 the individuals 

end not to follow the government policy and move and behave 

ore freely. The case α = 1 leads back to (2) . In the model we as-

ume that the individuals suddenly and structurally start to move 

ore freely which is in our model reflected in sudden changes of 

arameters p 1 and p 2 . 

Around the middle of February the Croatian daily COVID-19 

ases dropped drastically and this change in the pandemic was fol- 

owed by large demonstrations supporting a return to normality. 

evertheless, a couple of weeks later new cases and new deaths 

tarted to rise again and a third wave was declared by the author- 

ties. Fig. 15 (a) and (b) shows the progress of the Croatian COVID- 

9 daily deaths with an emphasis on the beginning of the third 

ave in March-April. The three curves are obtained by altering the 

arameter p 2 found by the BO algorithm (for the January 2020 - 

ebruary 2021 period). Shown is the curve in green with a 40% 

ncreased parameter that is the most favourable one; shown are 

he curves with p increased by 120% (orange) and 180% (red). All 
2 
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Fig. 11. Total number of immune people vs. total COVID-19 deaths (scaled in percentage with the maximum number of deaths obtained in the simulations). Both graphs 

present an increasing functional dependence between the two variables; (a) presents data from basic behavioural scenarios; the data from scenarios with functioning 

healthcare system (without collapse) and scenarios in collapse lie on two different linear functions with a discontinuity of the first kind in the first derivative which is an 

emblematic representation of the healthcare system collapse (individuals which could be saved start to die). (b) presents data from special groups behavioural scenarios; 

the data from scenarios with functioning healthcare system (without collapse) lie on an even less deadly linear function compared to the one in (a) (the slope of the line 

is smaller). Notice that f (x ) < g(x ) for every x , where f represents the function in (a) and g in (b) reconfirming that the special groups behavioural scenario is expected to 

be significantly less deadly in every possible scenario. It is interesting to notice that g is not linear and a smoothing effect is present, also around x = 70% the slope of the 

mortality increases rapidly (due to the fact that a large portion of risky clusters becomes infected). 

12 
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Fig. 12. Probability of mobility for Croatia as described in Eq. (2) , blue line. The assumed sudden change where Eq. (4) and α = 1 . 4 applies starts around the middle of 

February, red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Empirical and simulated deaths. (a) Curves represent the numbers of susceptible, mild, COVID-19 dead, ICU COVID-19 patients, recovered and infected. (b) Compari- 

son of daily COVID-19 deaths between the model and the empirical results, the timing of the pandemic bursts is in well agreement with the model simulation. 
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hree curves are generated with α = 1 . 4 starting from the middle 

f February (see red line in Fig. 12 ) which suggests the possibility 

f a structural change in the response to the policies by the in- 

ividuals. Adding the parameter α as well as slicing the historical 

ata into regions that allow different p 2 ’s and minimizing with BO 

ach region separately is a straightforward extension with a proven 
13 
apability of predicting and simulating multiple pandemic waves. 

ig. 15 (c) and (d) shows the complete pandemic with all three pan- 

emic waves together with the model output since the COVID-19 

utbreak in Croatia, sudden increases in the probability of quar- 

ntine misbehaviour and the probability of mobility for the third 

ave generate good agreement with daily COVID-19 deaths. 
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Fig. 14. Predicting bursts. The walking line is the local-time 7 day moving averaged realisation of parameters p 1 (t) and p 2 (t) applying eq. (2) for fourteen month period 

(blue line in Fig. 12 ). It represents very plausible changes of the parameters p 1 and p 2 for Croatia for 2-month periods. The background variable is the expected number of 

COVID-19 deaths per day, the model fits very well the empirical data: the pandemic starts to grow exponentially as soon as the walker crosses the black line and enters the 

catastrophe zone; pandemic bursts are successfully predicted and parametrically visualized. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

14 
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Fig. 15. Empirical and simulated deaths. (a)-(b) Comparison of daily COVID-19 deaths between the model and the empirical results between August and April. After February 

three different curves are shown: in the green and least aggressive scenario the parameter p 2 found by the BO algorithm was increased by 40% in the medium scenario 

by 120% and in the red and most aggressive by 180% . All three scenarios are generated with α = 1 . 4 starting from the middle of February suggesting that the individuals 

probably started to follow the policies less strictly. (a) shows daily deaths data. (b) 14 day moving averaged deaths data. (c)-(d) Comparison since the outbreak in Croatia. 

(c) Curves represent the simulated numbers of susceptible, mild, COVID-19 dead, ICU COVID-19 patients, recovered and infected. (d) Comparison of daily COVID-19 deaths 

between the model and the empirical results, after February the middle curve of (a) is added. The timing of all three pandemic waves are in good agreement with the model 

simulation. 
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. Conclusion 

Motivated by the importance of public trust in the government 

nd its institutions during a pandemic, we propose a new dynam- 

cal network model based on mobility restrictions and quarantine 

isobedience, the model has shown the ability to successfully ex- 

ose empirical evidence of COVID-19 pandemic waves. We showed 

hat pandemic waves are driven by both changes in mobility re- 

trictions and quarantine disobedience. 

The application of the model was demonstrated on Croatian 

OVID-19 empirical data by setting the probability of mobility 

arameter according to the Oxford’s Stringency Index while cali- 

rating the probability of quarantine disobedience parameter with 

ayesian optimization in order to obtain the best alignment of 

odel output with real COVID-19 deaths data. We showed in dif- 

erent two months pandemic periods how the optimized parame- 

er for probability of quarantine disobedience changes along with 

tringency Index data enforced probability of mobility. The cali- 

rated model gives good alignment in all three empirically ob- 

erved pandemic waves in Croatia with interesting insights. We 

an interpret that the first two pandemic waves were subject to 

uarantine disobedience while the last was due to a more struc- 

ural change in people’s mobility (quarantine disobedience alone 

eems not enough to explain such surge in cases). 

Applying the model for Croatian COVID-19 pandemic scenario 

which has a rather complex appearance of pandemic waves) it 

as even enough to calibrate the probability of quarantine dis- 

bedience with respect to only new daily deaths data. However, 

xpressiveness of our model also allows that instead of applying 

ayesian optimization with the objective to best fit the predic- 

ion for only dead daily cases, the use of a more complex mul- 

idimensional objective function which alongside the daily deaths 

lso looks for the best fit of the daily hospitalized, ICU patients, 

he growth rate of new cases etc. This approach could be benefi- 

ial for more complex other countries’ pandemic scenarios or used 

or exploring the level of a more generalized global pandemics dy- 

amics. 

Moreover, the interplay between the mobility p 1 and the quar- 

ntine misbehaviour which models the disobedience of the popu- 
15 
ation p 2 could be in addition incorporated in the model by en- 

orcing their functional dependence which can be approximated 

hrough a deeper analysis of country-scale or world-scale empir- 

cal data. For example, p 2 is naturally linked to the general trust in 

he government by the people which is changeable but perhaps re- 

ated to other indexes like the level of corruption or the quality of 

ife. For some future pandemics our study may help policy makers 

nderstand how to suitably identify high disobedience individuals, 

uantify their risk, in order to lower, as much as possible, the eco- 

omic and social losses of pandemics. 
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