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Abstract

The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for 

maintaining genome stability and cellular lifespan. This process requires coordination between 

telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric 

DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible 

telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA 

tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, 

which causes human diseases including bone marrow failure, premature ageing and cancer. Recent 

studies provide new insights into telomerase-related interactions (the ‘telomere replisome’) and 

reveal new challenges for future telomere structural biology endeavours owing to the dynamic 

nature of telomere architecture and the great number of structures that telomeres form. In this 

Review, we discuss recently determined structures of the shelterin and CTC1–STN1–TEN1 (CST) 

complexes, how they may participate in the regulation of telomere replication and chromosome 

end-capping, and how disease-causing mutations in their encoding genes may affect specific 

functions. Major outstanding questions in the field include how all of the telomere components 

assemble relative to each other and how the switching between different telomere structures is 

achieved.

Unlike circular chromosomes, linear chromosomes require a special mechanism to preserve 

their genetic material during DNA replication and also to prevent false recognition of the 

chromosome ends as DNA breakage sites. The telomere, which is composed of repetitive 

DNA sequences and specialized proteins, serves this purpose by providing a protective cap 

to chromosome ends. In humans, the telomeric DNA sequence is (TTAGGG)n (REF.1) and is 

evolutionarily conserved across vertebrates2. In addition to its repetitive DNA property, the 

telomere has an uncommon DNA architecture comprising two structures: a double-stranded 
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DNA (dsDNA) region several kilobases long, ending with a single-stranded 3′ tail known as 

the G-overhang3 (FIG. 1). The length of telomeres is highly heterogeneous4, even within a 

single cell, and serves as a ‘molecular clock’ of the proliferative lifespan of primary cells as, 

in the absence of extension, telomere length is progressively shortened in every cell 

division5–7. Critically short telomeres can trigger cell entry to cellular senescence8, also 

known as the Hayflick limit of proliferative lifespan. The initial length of telomeres in 

somatic cells is derived from germline cells, in which telomere length is actively maintained. 

Hence, telomere length maintenance has an important role in cell biology, and its 

deregulation can lead to premature ageing and cancer9–12.

G-overhang

A telomeric single-stranded DNA 3′ tail consisting of TTAGGG repeats, which is the 

substrate of telomerase.

Shelterin (also called telosome) is a protein complex comprising up to six different proteins; 

the composition of the complex may vary depending on the chromosomal context. Shelterin 

binds both the single-stranded DNA (ssDNA) and dsDNA regions of telomeres13–16, and is 

crucial for both telomere protection and telomerase regulation. Because of its unique DNA-

binding nature, the shelterin complex can organize telomeres into various protein–DNA 

structures, such as the end-capped telomere17,18 or the telomere loop (T-loop)19–22, which 

effectively hides (and thus protects) the telomeric tail through strand invasion into the 

double-stranded region (FIG. 1). Owing to the repetitive nature of telomeric DNA, the 

association of multiple shelterin and other telomeric protein complexes with the telomere 

has implications for how cells sense and respond to telomere length changes23,24. It seems 

likely that the telomere higher-order architecture must be unravelled for the telomeric tail to 

be rendered accessible to telomerase.

Telomerase uses its intrinsic RNA template to synthesize telomeric DNA repeats25,26 and 

adds ~60 nucleotides per telomere per cell cycle in a processive manner27 (for reviews of 

telomerase, see REFS28–30). In most cases in humans, there is a major difference in the 

expression of telomerase between somatic cells and germline cells: telomerase is more 

abundant in germline cells31, which helps maintain telomere length, and is absent or less 

abundant in somatic cells11. Not surprisingly, immortalized cells and cancer cells often have 

high telomerase activity12. Telomerase recruitment to telomeres is mediated by the shelterin 

complex32–34. The timely termination of the telomere extension process is mediated by 

another telomeric protein complex, the heterotrimeric CTC1–STN1–TEN1 (CST) 

complex35–38. CST is also required for the recruitment of DNA polymerase α-primase (pol 

α-primase) to the newly synthesized telomeric tail for C-strand fill-in (conversion of part of 

the extended tail to dsDNA)39. Another macromolecular component of telomeres is the long 

non-coding RNA, telomeric repeat-containing RNA (TERRA)40. Collectively, telomere 

maintenance is a complex process regulated by large-scale chromatin architectural 

modulations and dynamic molecular interactions.

Recent developments in our understanding of the structural aspects of telomere maintenance 

and its dynamics prompt a timely evaluation of current models of telomere biology. In this 
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Review, we discuss human telomere structure and replication in the telomerase-mediated 

pathway, including the latest structural information on two major telomeric protein 

complexes (shelterin and CST) and the dynamics of telomerase and telomeric proteins at 

telomeres. We propose an updated overview of various telomere regulation models, with the 

goal of reassessing long-standing questions and exploring new models for telomere 

maintenance.

Telomerase

A ribonucleoprotein that uses its RNA as a template to synthesize TTAGGG repeats, 

thereby extending telomeres.

Processive

The ability of an enzyme to perform multiple catalytic reactions without releasing its 

substrate.

Telomeric repeat-containing RNA

(TERRA). A long non-coding RNA involved in regulating telomerase activity at 

telomeres.

Sheltering the chromosome end

The chief guardian of the chromosome ends is the six-member shelterin complex — 

comprising RAP1, telomeric repeat-binding factor 1 (TRF1), TRF2, TERF1-interacting 

nuclear factor 2 (TIN2), TPP1 and protection of telomeres protein 1 (POT1). Shelterin binds 

telomeric DNA in the context of nucleosomes, a constraint that is discussed below (see 

Other human telomere proteins). In addition to its end-protection function41, shelterin also 

provides a sensing mechanism of telomere length and controls the activity of telomerase at 

the telomere17,42–47. TRF1 and TRF2 are homodimers that bind telomeric dsDNA48–51, 

whereas the POT1–TPP1 heterodimer binds and caps the telomeric 3′ tail17,18,52. TIN2 

connects TRF1 and TRF2 dimers with POT1–TPP1 to form the shelterin complex14,15,53 

(FIG. 2a). RAP1 is an accessory subunit of TRF2 that contributes to telomere 

protection54,55, specifically at critically short telomeres56.

Organization and DNA-binding properties

The majority of shelterin subunits interact minimally with other subunits of the complex, 

with each subunit having a domain that interacts with adjacent subunit(s) to form a branched 

structure (FIG. 2a). The telomeric ssDNA-binding domain of shelterin lies mainly in the 

amino-terminal OB1 and OB2 domains of POT1 (REF.18) (FIG. 2b), and the addition of 

TPP1 increases the affinity of POT1 for DNA tenfold57,58. (An OB domain or OB-fold 

domain is a small oligonucleotide-binding or oligosaccharide-binding structural motif found 

in many proteins.) Both POT1 by itself and POT1–TPP1 have a preference for capping the 

telomeric 3′ end, but they also bind to internal sites of telomeric ssDNA59. POT1 interacts 
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with amino acids 266–320 of TPP1 (TPP1266–320) through two structured domains (across 

POT1 OB3 and Holliday junction resolvase-like (HJR) domains)60,61, with no known 

interactions with other shelterin subunits. The discovery of an HJR domain in POT1 

(REFS60,61), which is structurally adjacent to its telomeric ssDNA-binding domain (FIG. 

2c), is intriguing given the possibility that a T-loop can progress to become a telomeric 

Holliday junction62. The TPP1 N-terminal OB domain contains the TPP1 glutamate (E) and 

leucine (L)-rich patch (TEL patch), which recruits telo merase to telomeres32–34, whereas its 

carboxy terminus (TPP1510–544)15,46,53 interacts with the TIN2 N terminus63,64 (TIN2N). 

TIN2, which is effectively the hub of shelterin assembly, links TPP1 with TRF1 and TRF2 

homodimers. The TIN2N domain, which structurally resembles the TRF homology (TRFH) 

domains of TRF1 and TRF2, interacts with both TPP1 and TRF2350–366 (REF.63). In 

addition, another region of TIN2 (TIN2256–276) interacts with the TRF2 TRFH domain65. 

Interestingly, whereas the TRF1 and TRF2 TRFH domains are structurally similar66, they do 

not share a similar level of interaction with TIN2 (REFS43,65): the TRFH domain of TRF1 

binds TIN2256–276 20-fold tighter than the TRFH domain of TRF2 (REF.65).

Holliday junction

A branched DNA structure comprising four double-stranded arms.

TEL patch

(TPP1 glutamate (E) and leucine (L)-rich patch).

A small group of amino acids on the surface of the shelterin protein TPP1. The TEL 

patch directly recruits telomerase to telomeres and then stimulates its activity.

Both TRF1 and TRF2 homodimers have a Myb DNA-binding domain at their C terminus for 

sequence-specific binding of telomeric dsDNA (YTAGGGTTR; Y = C or T, R = A or 

G)48,49,51,67–70. The TRFH domain is connected to the Myb domain by a long polypeptide 

chain (~100 amino acids in TRF1 and ~200 amino acids in TRF2), which has no apparent 

structural features; this flexibility allows each Myb domain of a TRF1 homodimer or of a 

TRF2 homodimer to bind telomeric DNA with various distances and orientations with 

regards to the other Myb domain20,67,71 (FIG. 2c). This flexibility may be crucial for TRF1 

and TRF2 binding chromatin comprising nucleosomes with short linker DNAs, as discussed 

below (see Other human telomere proteins).

TRF1 and TRF2 differ in their N termini. TRF11–67 is acidic (Asp–Glu-rich), whereas 

TRF21–45 is basic (Arg-rich). This difference translates to differences in how TRF1 and 

TRF2 interact with DNA or mediate the formation of special DNA architectures. The TRF1 

N-terminal acidic domain has been implicated in the recruitment of the poly(ADP-ribose) 

polymerase tankyrase 1 (REF.72) and inhibition of telomeric DNA condensation73. The N-

terminal basic domain of TRF2, which is better studied, is involved in the protection74 and 

regulation75,76 of T-loops, interaction with histones77 and inhibition of DNA double-strand 

break repair by non-homologous DNA end-joining in conjunction with RAP1 (REF.54). 

Given its positive charge, one might suggest that the basic domain participates in the 
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interaction of TRF2 with canonical dsDNA such as telomeric DNA. However, the TRF2 N-

terminal basic domain does not directly participate in TRF2 recruitment to telomeres but is 

instead involved in engaging non-canonical DNA structures such as T-loops78, Holliday 

junctions79 and G-quadruplexes (G4s)80–82. The proposed ability of RAP1 to tune the 

specificity of TRF2 for telomeric dsDNA by neutralizing the basic domain83 suggests that 

RAP1 has other roles in regulating the affinity of TRF2 to these non-canonical DNA 

structures.

Shelterin possesses the special ability to engage both telomeric ssDNA and dsDNA. 

Consequently, mammalian shelterin complexes consisting of POT1 with either TRF1 or 

TRF2 exhibit high affinity to telomeric DNA comprising both ssDNA and dsDNA 

regions53,84,85, and the minimal reconstituted human shelterin complex (shelterincore, 

consisting of TRF2–TIN2–TPP1–POT1) binds ssDNA–dsDNA junctions with nanomolar 

affinity53. Shelterincore binding to telomeric ssDNA–dsDNA junctions is not easily 

competed by telomeric ssDNA or dsDNA53. This provides the biochemical basis for how the 

shelterin complex could specifically target various telomeric DNA structures that present 

both ssDNA and dsDNA regions and provides insights into how shelterin recruits telomerase 

to the telomeric tail (for a detailed discussion, see Telomerase inhibition and stimulation).

G-quadruplexes

(G4s). Tertiary structures in which groups of four guanines in single-stranded DNA form 

tetrads through hydrogen bonds.

Architecture of the shelterin complex

Although the atomic structures of several shelterin protein domains have been 

solved18,57,60,61,63,66,68,86,87, the overall architecture of mammalian shelterin as a complex 

remains unknown. Furthermore, two fundamental questions remain: which shelterin 

complexes and subcomplexes are functional in vivo, with what subunit stoichiometry; and 

with which telomeric DNA structures does each of them interact?

Functions and stoichiometry of shelterin complexes in vivo.—Shelterin has often 

been illustrated or described as a six-member protein complex; however, a minimum of four 

different shelterin complexes would be required to account for the uneven stoichiometry of 

chromatin-bound shelterin subunits in cells88. The most abundant of these complexes would 

contain two TRF2 subunits (that is, one dimer), two RAP1 subunits and one TIN2 subunit. 

The next most abundant is the complex of two TRF2 subunits, two RAP1 subunits, two 

TRF1 subunits and one TIN2 subunit. Finally, only about 10% of these dsDNA-binding 

complexes are associated with TPP1–POT1. Thus, the six-member complex comprises 

perhaps 5% of the shelterin complexes. The five-member shelterin complex missing only 

TRF1 has been reconstituted and purified, which allowed its molecular stoichiometry to be 

measured: two TRF2 subunits, two RAP1 subunits and one each of TIN2, TPP1 and POT1 

subunits (REF.53). Moreover, the above discussion of different shelterin complexes 

underestimates the actual number, as it disregards the diversity provided by protein 

isoforms89–91 and post-translational modifications92,93. In any case, ‘shelterin’ is a 
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population of related complexes, not a single molecular entity. These complexes may very 

well function differently in space (for example, position along the telomere) and time (for 

example, phase of the cell cycle).

Furthermore, the compositions of shelterin complexes are not static but dynamic. The 

dynamic aspect of human shelterin assembly has been shown with the ability of TRF1 to 

replace TRF2 in association with TIN2 and the conformational changes conferred by TPP1 

incorporation, which lead to simultaneous accommodation of both TRF1 and TRF2 in a 

single shelterin complex13,94,95. The dynamic nature of shelterin is also consistent with the 

relatively weak (micromolar-range) affinity of interactions between shelterin 

proteins61,63,65,83, suggesting that the assembly of shelterin is likely dynamic and synergistic 

and that its composition is determined by contextual telomeric DNA structures and/or 

additional protein partners. The above considerations highlight the importance of directing 

future research to investigate shelterin functions and dynamics in the context of complexes 

rather than individual proteins.

Perhaps underappreciated features of shelterin are the several long flexible regions 

connecting the structured domains (FIG. 2b,c). In TPP1, between the TIN2-binding site and 

the POT1-binding site, there is a Ser/Thr-rich region that contains several highly conserved 

Ser/Thr phosphorylation motifs96. The function of the Ser/Thr-rich region of TPP1 is still 

unclear, but given that it bridges TIN2 and POT1, its potential phosphorylation states might 

yet have implications for shelterin architecture or telomere organization. Its length of ~150 

amino acids with no apparent secondary structures (from in silico prediction) suggests that 

the Ser/Thr-rich region behaves like a long flexible peptide chain that would effectively 

segregate TPP1 and POT1 from the rest of the shelterin proteins (FIG. 2c). We refer to the 

TRF1–TRF2–RAP1–TIN2 and TPP1–POT1 subcomplexes as the ‘telomere architecture’ 

module and the ‘telomerase regulation’ module, respectively, based on their functions. As 

already mentioned, both TRF1 and TRF2 also have a long unstructured region that connects 

their TRFH and Myb domains, which confers further conformational flexibility and 

adaptability to how shelterin assembles itself on telomeric DNA. It is thus highly possible 

that shelterin leverages this flexibility to exhibit degenerate affinity to various telomeric 

DNA structures such as the T-loop or Holliday junctions, or the telomeric ssDNA–dsDNA 

junction at the very end of the chromosome.

With which telomeric DNA structures do various shelterin complexes interact.
—Early biochemical studies focused on mammalian telomere proteins binding to linear 

telomeric DNA, either dsDNA in the case of TRF1 and TRF2 or ssDNA in the case of 

POT1–TPP1. However, considering the flexibility of the complexes and their functional 

interactions with diverse telomeric DNA structures, it is important to investigate and 

compare shelterin complex affinities with multiple DNA structures. The simplest of these is 

a linear dsDNA with a 3′ ssDNA tail53,84,85, as had been studied earlier with ciliate telomere 

junctions97. A more complex structure is the displacement loop (D-loop) at the base of the 

T-loop (FIG. 1), in which the invading telomeric single strand (red) displaces an equivalent 

portion of the G-rich strand, thereby presenting both telomeric ssDNA and dsDNA in close 

proximity. It is thus often proposed and illustrated that an assembled shelterin complex 

(containing TRFs and POT1 proteins) would help stabilize or mediate D-loop formation98. It 
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has been shown in vivo that TRF2 is the dominant factor driving T-loop (or D-loop) 

formation22,99, and, consistent with that observation, TRF2 is sufficient to drive T-loop 

formation in vitro20. However, it will be important to understand how shelterin complexes 

compare with TRF2 in regulating T-loop formation. For example, there remains a possible 

cooperative effect of POT1 (in the context of a shelterin complex) in stabilizing T-loops. 

Also, TPP1 association with POT1 can elevate the ssDNA binding affinity of POT1 (REF.57) 

and RAP1 association with TRF2 affects TRF2 binding to dsDNA83, both studies suggesting 

that higher-order assembly of shelterin complexes is accompanied by allosteric changes that 

modulate their affinities to telomeric DNA. Hence, it will be important for future research to 

investigate how the various components of shelterin interact with telomeric D-loops (T-

loops)100, Holliday junctions76 and linear telomeres of various geometries.

High-resolution structures of assembled shelterin complexes, either free or bound to key 

telomeric DNA substrates, remain elusive. Cryo-electron microscopy (cryo-EM) has 

revolutionized structural biology101,102 and seems likely to provide the breakthrough 

needed. The structural biology of telomerase has greatly benefited from the electron 

microscopy reconstruction approach103,104 whereas shelterin cryo-EM has not seen much 

progress. This could be owing to the intrinsic conformational flexibility and dynamic 

assembly of shelterin complexes. However, given that many structured domains of shelterin 

have been solved by X-ray crystallography18,57,60,61,63,66,68,86,87, a medium-resolution cryo-

EM structure of a mammalian shelterin complex should allow docking of these solved 

structures into the overall envelope; this would yield many insights into shelterin 

architecture and organization, as shown by the human telomerase cryo-EM structure104. 

Future development of cryo-EM software that is able to accommodate samples with high 

conformational heterogeneity will be an important step towards progressing shelterin 

structural biology.

Telomerase inhibition and stimulation

Shelterin has multiple roles in regulating telomerase activity at telomeres. On the one hand, 

shelterin can mediate T-loop formation20,22 or end-cap the telomeric 3′ tail17,47,52,59 to 

restrict telomerase access. On the other hand, it can recruit telomerase to the telomere32–34 

and drive telomerase processivity53,57. The recruitment of telomerase to the telomere by 

shelterin is mediated directly by the TEL patch on the TPP1 OB domain32–34. The 

recruitment process occurs in the S phase of the cell cycle, is highly dynamic and involves 

multiple kinetically distinct stages. Single-molecule live-cell imaging of human telomerase 

reverse transcriptase (hTERT; the catalytic protein component of telomerase) in cells 

revealed that telomerase samples telomeres multiple times using a 3D diffusive search 

mechanism, before stably engaging the telomeric tail through base pairing with the template 

region of the telomerase RNA (hTR) component105,106; both the probing interactions and 

stable binding require interaction with the TEL patch. Similar experiments with hTR 

corroborated the hTERT observations and also revealed early stages of hTR biogenesis and 

telomerase assembly107.

Although the direct role of TPP1 in telomerase recruitment is starting to be understood, its 

own recruitment to telomeres and assembly with the other components of shelterin are less 
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clear. In vitro studies show mouse shelterin complexes sampling the DNA in a 3D search 

before stably engaging telomeric sequences85. Another study has shown that human TRF1 

and TRF2 exhibit slower diffusive behaviour on relatively short regions of telomeric 

DNA108. Clearly, the mobility of shelterin on telomeric DNA and on telomeric chromatin, 

including sliding and hopping, are important questions for the future. For example, given the 

repetitive sequence of the telomere, how does TPP1 help telomerase find the telomeric tail 

instead of ‘distracting’ it to internal sites? The DNA sequence might be the same but the 

structure at the end of the telomere is unique, where both telomeric ssDNA and dsDNA exist 

(FIG. 1). Hence, the answer might lie in the necessity of an assembled shelterin complex 

consisting of TRF1 and/or TRF2, and POT1, which would direct the complex to search for 

the telomeric ssDNA–dsDNA junction based on the virtue of highest binding affinity53 and 

eventually directing telomerase to the telomeric end.

Interestingly, despite its high affinity to telomeric ssDNA, POT1 localization to telomeres in 

vivo depends on its association with TPP1 (REFS45,46,52), indicating that TPP1–POT1 likely 

exists as a heterodimer during its recruitment to telomeres. Nonetheless, the recruitment of 

TPP1 to the very end of the telomere may involve multiple stages. For example, as an initial 

step, TPP1–POT1 could transiently associate with TIN2–TRF1–TRF2 complexes that are 

bound along telomeric dsDNA regions, sliding or hopping along the telomeres until it finds 

the telomeric ssDNA–dsDNA junction; it would then form a particularly stable protein–

DNA complex, in which TPP1–POT1 is bound to the ssDNA and the TRFs are bound to the 

dsDNA. Whether TPP1–POT1 located at the ssDNA–dsDNA junction is close enough to the 

DNA 3′ end to load telomerase remains to be determined.

A particular conundrum is how shelterin switches between its inhibitory and stimulatory 

roles in regulating telomerase activity at telomeres. Insights might come from the dynamic 

multiple activities of POT1: it is essential for telomeric ssDNA protection by preventing 

aberrant accumulation of replication protein A (RPA)109,110; it participates in cell-cycle 

coordinated RPA removal through TERRA and heterogeneous nuclear ribonucleoprotein A1 

(hnRNPA1)111; and it associates with TPP1 to stimulate telomerase processivity57. POT1 

function depends on its positioning on telomeric ssDNA. For example, POT1 binding to 

internal telomeric ssDNA allows telomerase to bind to the DNA 3′ end, whereas POT1 

binding to the 3′ end of telomeric ssDNA excludes telomerase59. The 3′ end binding by 

POT1–TPP1 gives telomere protection, whereas the internal binding allows telomerase 

recruitment and stimulation.

However, the role of POT1 extends beyond just positioning, as it is also able to disrupt G4 

formation by telomeric ssDNA112,113, which otherwise can exclude telomerase 

binding113,114. The DNA-binding behaviour of POT1 is further changed upon association 

with TPP1, causing POT1 (together with TPP1) to slide back and forth along the ssDNA to 

iron out G4 structures115. But is G4 always an inhibitory structure to telomerase? 

Apparently not. Recent studies have shown that a G4 is formed in nascent telomeric ssDNA 

synthesized by telomerase and can aid telomerase processivity116,117. It was further 

proposed that TPP1–POT1 interaction with this G4 can facilitate the fidelity of telomerase 

translocation and nascent DNA protection116, which would contribute to TPP1–POT1 

stimulation of telomerase processivity118. The intermediate-resolution model of human 
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telomerase104 already suggests the existence of a cavity to house this G4 (REF.116). More 

recently, single-molecule fluorescence studies have shown that the telomerase RNA template 

can directly interact with parallel-stranded G4 structures and facilitate G4 disruption upon 

telomerase translocation119. A high-resolution structure of telomerase in conjunction with 

shelterin complexes would provide more insights into these complex processes.

Replication protein A

(RPA). A eukaryotic single-stranded DNA-binding protein complex involved in DNA 

replication and repair.

Telomeric C-strand

The telomeric DNA strand consisting of CCCTAA repeats, which pair with the 

telomerase-synthesized TTAGGG repeats.

Switching to synthesis of the C-strand

Mammalian CST heterotrimeric complex (FIG. 3a,b) was identified as a telomeric 

component based on homology to the yeast CST complex (Cdc13–Stn1–Ten1)36; both 

complexes possess similarity to the RPA heterotrimer in their OB domain predictions and 

ssDNA-binding properties37,38. Like yeast CST, mammalian CST participates in the 

replication and maintenance of telomeres. The depletion of CTC1 or STN1 results in 

telomeric tail (G-overhang) lengthening38,120,121. This is owing to failure of the telomeric C-

strand fill-in process, which depends on the recruitment and action of pol α-primase to 

convert a portion of the newly synthesized telomeric tail to dsDNA form. Because of its 

ssDNA-binding property37, CST can compete with TPP1–POT1 for binding the telomeric 3′ 
tail and also sequester telomerase from telomeric tail engagement35. This ssDNA-binding 

property allows CST to terminate the extension of the telomere by telomerase during the late 

S/G2 cell cycle phase35 and then facilitate C-strand fill-in. Emerging roles of CST have 

expanded its territory beyond telomeres, including aiding replisome assembly genome-

wide122, resolving stalled DNA replication forks123,124 and facilitating recovery from DNA 

damage125–127.

Replisome

A multisubunit protein complex that carries out replication of DNA.

Promiscuity of human CST ssDNA binding

ssDNA-binding proteins such as RPA and its bacterial homologue SSB have multiple 

ssDNA-binding modes128,129. Thus, it is perhaps not surprising that CST, which possesses 

multiple OB domains, exhibits similar ssDNA-binding behaviour37,38,130–132, giving it the 

ability to engage a plethora of DNA sequences and structures35,37,133,134. A peculiar finding 

is that CST binds preferentially to ssDNA–dsDNA junctions, which may explain how CST 

recognizes specialized DNA structures at DNA replication and breakage sites133. CST binds 

Lim and Cech Page 9

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2021 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



short ssDNA (<30 nucleotides) with specificity for G-rich sequences, such as telomeric 

sequences35,134. It can also engage non-telomeric DNA sequences37,133 within longer 

ssDNA (>30 nucleotides). One model to explain the promiscuous DNA-binding properties 

of CST postulates that CST has a core site that binds tightly to G-rich ssDNA and also has 

one or more secondary sites that can accommodate longer ssDNA with less sequence 

specificity. Indeed, the recent cryo-EM structure of human CST revealed a single telomeric 

ssDNA-binding site in OB-F and OB-G of the CTC1 subunit, and the presence of five 

additional OB domains132 (FIG. 3a,b). This model would also explain how CST can engage 

ssDNA both at telomeres and genome-wide. Other than binding to extended ssDNA 

structures, CST is also able to directly engage and unfold G4 DNA structures133. This 

function is crucial for the ability of CST to restore stalled replication forks at telomeres (and 

genome-wide), presumably by removing the obstacles formed by G4 at the lagging 

strand124.

Although each subunit of CST has OB domains (which individually interact with ssDNA to 

some extent), its functional ssDNA-binding capacity depends on its heterotrimeric 

assembly35,135,136. This could be a functional manifestation of CTC1 topology, whereby 

STN1–TEN1 stabilizes the CTC1 C-terminus region that contains the core ssDNA-binding 

site of CST132 (FIG. 3b). This is consistent with previous experiments showing TEN1 

stabilizing CTC1–STN1 ssDNA binding137. It is also possible that CST achieves functional 

ssDNA binding by leveraging multiple cooperative binding sites across the three subunits, 

similar to RPA138. The current cryo-EM structure of the full CST complex only reveals four 

nucleotides bound by CTC1, despite the presence of a longer, 18-nucleotide telomeric 

ssDNA132. CST needs more than four nucleotides to stably engage telomeric ssDNA35, and 

thus it will be important to determine how and where else CST interacts with ssDNA and 

how ssDNA wraps around CST. This will not only provide insights into how the 

heterotrimeric assembly enhances CST affinity for ssDNA37,131 but also how CST can 

mediate its functions at telomeres and genome-wide at sites of DNA replication and DNA 

damage repair.

Upon binding to telomeric ssDNA, human CST forms a ring-like decameric DNA–protein 

supercomplex (FIG. 3b), in which telomeric ssDNA facilitates formation of CST dimers 

(key building blocks of the decamer)132. Whether the known functions of CST are 

accomplished by this supercomplex or by CST heterotrimers is currently unknown. 

However, given the intricate assembly pathway of the decamer and its potential to bury and 

compact a substantial length of ssDNA, we suggest that decamerization may be involved in 

DNA protection and in pol α-primase recruitment by CST. For example, a decameric form 

of CST could recruit multiple pol α-primase proteins (FIG. 3c) to a single telomeric ssDNA 

site, which would initiate several concurrent and coordinated C-strand fill-in processes, 

leading to a rapid fill-in of telomeric ssDNA. Loading of multiple DNA polymerases has 

been observed in the T4 replisome, whereby two DNA polymerases play tag to facilitate a 

smoother turnover for the lagging-strand DNA synthesis process139. Interestingly, yeast CST 

also forms a ring-like protein complex, albeit as a dimer, but it is unclear whether ssDNA 

binding is needed for yeast CST dimerization140.

Lim and Cech Page 10

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2021 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CST relationship to RPA-like complexes

The human CTC1 subunit has seven OB domains and interacts with STN1 and TEN1 

subunits in a 1:1:1 stoichiometry in the heterotrimeric complex132 (FIG. 3b). The 

stoichiometry is similar to that of human RPA and Tetrahymena thermophila and budding 

yeast CST103,128,140,141, but not to Candida glabrata CST142. The architecture of human 

CST indicates that the C-terminal half of CTC1 serves as a structural scaffold for STN1 and 

TEN1, in which STN1 serves as an adapter between TEN1 and CTC1 (REF.132) (FIG. 3b). 

Two peculiar findings are that the N-terminal and C-terminal domains of STN1 (STN1n and 

STN1c, respectively) separately interact with CTC1 and that STN1c can switch between two 

separate docking sites on CTC1, which is presumably decided by CST binding of ssDNA132. 

This is the first structural insight into a complete RPA-like complex, and it will be important 

to determine whether other STN1 homologues (for example, RPA32 or T. thermophila P45) 

possess this unique architectural assembly, especially as they have very similar structural 

topology131,141,143.

Unlike STN1–TEN1, CTC1 (the largest subunit in the heterotrimeric complex) is more 

structurally diverse among RPA-like complexes across species131,132,140,141,144, suggesting 

that CTC1 has evolved to accommodate various distinct functions. Based on telomere 

functionality, the budding yeast Cdc13 has often been described as a potential structural 

homologue of mammalian CTC1, despite the lack of sequence similarity145. The cryo-EM 

structure of human CTC1 now shows that it resembles the topology of RPA70 more than 

that of Cdc13 (REFS132,140,144), suggesting that human CTC1 and RPA share a similar 

evolutionary origin distinct from that of Cdc13. Human CTC1 also contains a conserved 

zinc ribbon motif in its OB-G domain (FIG. 3a)132, which is similar to that found in RPA 

and T. thermophila Teb1 (RPA70 homologue). This motif structurally participates in the 

stimulation of T. thermophila telomerase processivity, although it does not directly bind 

telomeric ssDNA146. The function of the zinc ribbon motif in CST, as in the case of RPA128, 

is currently unknown but may involve stimulation of pol α-primase processivity. More 

studies will be needed to explore the function(s) of the CST zinc ribbon motif, particularly 

its roles in pol α-primase recruitment and stimulation39,147.

Terminating telomerase activity by CST

A proposed mechanism of termination of telomerase activity is competition between 

telomerase–TPP1–POT1 and CST for telomeric ssDNA, with CST effectively displacing 

telomerase from its substrate35 (FIG. 3d). Supporting this model, in vivo studies revealed 

that a CST disease mutation elevates telomerase recruitment to telomeres136 and that CST 

recruitment to telomeres coincides with telomerase shut-off at the late S/G2 phase35. As 

every telomere is likely extended by telomerase only once per cell cycle105,148, it is 

premature to say whether CST reduces telomerase activity by preventing re-engagement of 

telomerase to telomeres or by disrupting an elongating telomerase complex. In addition, it is 

interesting to note that mouse and human use different shelterin-mediated pathways to 

recruit CST to telomeres: mouse uses POT1b (REF.149) whereas human uses TPP1 (REF.
150).
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Given that G4 formation at a nascent telomeric tail can aid telomerase processivity116, an 

interesting question is whether CST unfolding of G4 has any role in the termination of 

telomerase activity. How CST differs from TPP1–POT1, which can passively disrupt G4 

(REF.115), to achieve opposite regulatory effects on telomerase activity is unclear (FIG. 3d). 

One possibility could be that the actions of TPP1–POT1 and CST are applied at different 

stages of the telomerase catalytic process. In addition, direct interactions between CST and 

shelterin35 may also have a role. Further insights might come from understanding how CST 

and POT1 engage and unfold G4 structures. To reveal such details, it would be important to 

probe the dynamic interplay between CST, shelterin and telomerase on a single telomeric 

substrate.

Insights into how human CST interacts with telomerase may come from T. thermophila, 

where CST is surprisingly an integral part of the telomerase RNP103,145. Furthermore, T. 
thermophila P50 (a putative TPP1 homologue151) is also part of the telomerase 

holoenzyme103 and directly interacts with CST (similarly to human TPP1 (REF.35)). Thus, if 

interactions occurring within a single T. thermophila telomerase holoenzyme are occurring 

intermolecularly in human telomeres, several insights are revealed. First, analogous CST–

TPP1 interactions may contribute to human telomere length regulation35,150,152. Second, the 

human CST ssDNA-binding site would face towards the 3′ end of the ssDNA, as proposed 

in the T. thermophila telomerase holoenzyme model103, where it could plausibly bind the 

product of telomerase extension. In addition, human and T. thermophila CST both have a 

flexible STN1c domain, which, based on the proposed human CST decamer assembly 

pathway132, could have a regulatory role in CST interactions with telomeric ssDNA and 

telomerase. Structures of mammalian telomerase with CST and shelterin bound to a single 

piece of telomeric ssDNA would test these speculations.

CST coordination of C-strand fill-in

It is often proposed that CST participates in the recruitment of pol α-primase to telomeres, 

presumably through CST interactions with shelterin or telomeric ssDNA35,120,137,152,153, 

although this has been challenged121. Even though co-immunoprecipitation studies have 

pointed to STN1, shelterin proteins and telomerase as potential candidates to recruit pol α-

primase to telomeres154, it remains unclear whether these are direct protein–protein 

interactions or mediated by telomeric DNA associations. A clearer picture exists for pol α-

primase recruitment to DNA replication origins, where the replication initiation factors 

MCM10 and AND-1 mediate its recruitment155,156. Interestingly, recent studies have 

implicated CST in the assembly of AND-1 and pol α-primase at replication origins, by 

forming direct interactions with the MCM complex, AND-1 and pol α122. In addition, CST 

also participates in recruiting pol α-primase to DNA double-strand break sites by interacting 

with the shieldin complex126,127. All of the above findings support the hypothesis that CST 

has a direct role in recruiting pol α-primase to telomeres.

Pol α-primase serves two primary functions: the primase catalytic subunit first synthesizes 

an RNA primer, which is then used by the polymerase catalytic subunit for DNA 

polymerization. Protein recruitment aside, CST is also involved in stimulating the pol α-

primase switch from RNA to DNA synthesis39,157,158. This represents only part of the C-
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strand fill-in process, the entire mechanism of which remains unclear. Some key questions 

about C-strand fill-in include how many copies of CST and pol α-primase are present at a 

single telomeric site, how CST helps primase to initiate RNA synthesis and then switch to 

DNA synthesis, and whether a G4 formed along the internal telomeric ssDNA will be an 

obstacle for DNA polymerization by pol α-primase. Answers to these questions would come 

from structural and biochemical studies of larger assemblies involving CST, pol α-primase, 

telomerase and shelterin.

Some insights are obtained when CTC1 residues that are involved in the pol α-primase 

interaction135 are mapped onto its structure, revealing that CST associates with pol α-

primase across at least two separate sites132. Interestingly, eukaryotic pol α-primase has a 

flexible bilobal architecture159, which leads us to speculate that CST could serve as a 

scaffold to support pol α-primase’s architecture and, possibly, also provide a mechanism to 

regulate the transfer of RNA primers by modulating the distance between the catalytic and 

primase subunits of pol α-primase39,158,159.

Disease relevance of shelterin and CST

Shelterin proteins are directly involved in telomere protection and telomerase regulation, and 

any deviation in their function can lead to abnormal telomere length. Mutations in either 

telomerase components9 or telomere components160,161 can result in failure to maintain 

tissues that require constant regeneration, such as skin and bone marrow (see REFS162,163 

for selected recent reviews). Furthermore, abnormally short telomeres cause genome 

instability, which tends to promote cancer. Dyskeratosis congenita is a rare genetic disorder 

strongly associated with dysfunctional telomere maintenance. More common diseases such 

as idiopathic pulmonary fibrosis and aplastic anaemia have multiple aetiologies, including 

telomerase or telomere dysfunction. A comprehensive list164 of telomerase and telomere 

disease mutations can be found in the Telomerase Database (see Related links). In TABLE 1, 

we have mapped some of the known disease mutations that reside in structural domains of 

shelterin proteins and have the possibility to disrupt complex assembly, DNA binding or 

telomerase recruitment.

An area of extensive structure–function relationship studies is the recruitment of telomerase 

by the TEL patch of the OB domain of TPP1 (REFS32–34). These findings have been used to 

relate a mutation (ΔK170) in the TEL patch, associated with an inherited bone marrow 

failure, to a telomerase recruitment defect165. Further studies have revealed that the TPP1 

ΔK170 mutation results in a major restructuring of the TEL patch region, causing the loss of 

interaction between TPP1 and telomerase166.

The conserved CST complex participates in multiple processes that are crucial for genome 

stability. CST dysfunction can lead to the deregulation of telomere length, replication fork 

stalling and deregulation of DNA damage repair, all of which lead to genome instability. The 

common manifestations of CST dysfunction are Coats plus syndrome and dyskeratosis 

RELATED LINKS
Human Gene Mutation Database: http://www.hgmd.cf.ac.uk/
Telomerase Database: http://telomerase.asu.edu
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congenita167,168. These diseases stem from mutations in CTC1 and STN1 (REFS167–169) 

that cause various loss-of-function consequences in CST complex assembly, ssDNA binding 

and pol α-primase association135,170,171. Known disease mutations are mapped onto the 

structural domains of human CST in TABLE 1.

Now that most of the key interactions involved in shelterin, CST and telomerase assembly 

have been determined, we expect future state-of-the-art multi-omics analyses to reveal 

additional relationships between deregulation of telomeric structure and human disease.

Other human telomere proteins

In this Review, we focus on the shelterin and CST complexes, because there have been 

recent breakthroughs in understanding their structure–function relationships. In this section, 

we briefly discuss a few of the many other proteins that bind directly to telomeric DNA. We 

do not cover the signalling complexes that act at telomeres, as these have been recently 

reviewed172.

The other prominent telomeric dsDNA-binding proteins are nucleosomal histone proteins. 

The nucleosomal architecture of mammalian telomeric chromatin was shown early to consist 

of highly organized nucleosome arrays with very short (10-bp) linkers between 

nucleosomes21,173–175. A simple model would posit that these nucleosome arrays occupy the 

inner portions of telomeres and that the shelterin complexes coat nucleosome-free DNA 

closer to the ssDNA tail, but this is not the case. Instead, the ordered nucleosome arrays 

continue all the way to the tail175. Furthermore, TRF1 can bind to the DNA gyre of 

nucleosomes176. By contrast, TRF2 binding is inhibited by nucleosomes (and vice versa177), 

so the linker DNA may be particularly important for TRF2 binding. Perhaps the more 

dynamic and thermodynamically less stable nucleosomes formed with TTAGGG repeat 

sequences178,179 facilitate TRF2 binding. In the future, structures of telomeric nucleosome–

shelterin complexes should provide insight into how shelterin and nucleosomes cohabit at 

telomeres.

The heterochromatin nature of mammalian telomeres was presaged by cytological studies in 

fruit flies180 and by analysis of the telomere position effect (epigenetic repression of 

transcription) in yeast181. Human telomeric chromatin is enriched in histone H3 

trimethylated at Lys9 (H3K9me3), which is a mark of constitutive heterochromatin. 

H3K9me3 is bound by heterochromatin protein 1 (HP1), and HP1 dysfunction leads to 

abnormal telomere elongation182 and deregulation of TERRA transcription183. 

Unexpectedly, H3K27me3 of facultative heterochromatin coexists with H3K9me3 at 

telomeres183. Loss of these repressive histone modifications has consequences for telomere 

length maintenance, likely owing to the deregulation of protein accessibility to telomeres 

caused by chromatin structural changes184.

Unbiased proteomic analyses of telomeric proteins revealed about 200 proteins185,186. In 

addition to the canonical histones, the histone variants macroH2A and testis-specific H2B 

were prominent at telomeres185. Unanticipated members of the telomere proteome included 

all subunits of the THO complex186. THO counteracts telomeric R-loops formed by invasion 
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of TERRA RNA into telomeric DNA, thereby facilitating telomere replication and length 

maintenance187.

The Ku heterodimer is required for the repair of DNA double-strand breaks by non-

homologous DNA end-joining. Thus, it is paradoxical that Ku is found at telomeres, which 

must not undergo end-joining. It has been proposed that the ability of Ku to initiate non-

homologous DNA end-joining at telomeric DNA ends is blocked by its interaction with 

TRF2 (REF.188). Telomeric functions of Ku have been most extensively studied in yeast189, 

and it is not clear how many of these functions occur in mammals. One function of 

mammalian Ku is to protect telomeres from homologous recombination190.

Telomeric zinc finger-associated protein (TZAP) binds preferentially to telomeric sequences 

in competition with TRF1 and TRF2 (REF.24). Because TZAP binds preferentially to long 

telomeres and initiates telomere trimming, it appears to help control the upper limit of 

telomere length. How TZAP coordinates its function with shelterin and their respective 

distributions along telomeres of various lengths remain open questions.

Considering proteins with affinity to ssDNA, hnRNP proteins, including hnRNPA1 and 

hnRNPA2/B1, have specificity for the telomeric sequence. Although these hnRNP proteins 

bind with higher affinity to RNA than to DNA, they are highly abundant in nuclei and 

therefore bind to telomeric ssDNA as well191,192. Mouse cells depleted of hnRNPA1 have 

short telomeres193. hnRNPA1 also displaces RPA, but not POT1, from telomeric ssDNA, an 

activity that is suppressed during telomere replication through sequestration of hnRNPA1 by 

TERRA111.

The structure of an entire telomere?

Like snowflakes, no two telomeres are identical. But how can we make such a bold claim? 

First, even within a single nucleus, telomeres differ in length, so they cannot have the same 

structure in detail. Second, even two telomeres of identical length are highly unlikely to have 

their sequence-specific DNA-binding proteins residing at the same telomeric repeat 

positions; this would require unprecedented and almost inconceivable regulatory processes 

to achieve such uniformity, with doubtful selective advantage. Absence of uniformity is seen 

also at T-loops, where the loop size varies from small to encompassing, essentially, the entire 

telomeric DNA19; a single telomere with exactly 12 kb of dsDNA (2,000 telomeric repeats) 

can presumably form almost 2,000 different lengths of T-loops, with very small loops being 

disfavoured by the inherent stiffness of dsDNA. Finally, telomere binding by proteins and 

RNPs is dynamic, so any given telomere structure will change rapidly over time.

Thus, when we speak of ‘telomere structure’, we are always speaking of an ensemble of 

related structures. One can view telomere regulation at two different scales (FIG. 4a): the 

higher-order chromatin architecture that affects telomere accessibility and the hive of 

localized telomerase-related interactions at the telomere 3′ tail (the ‘telomere replisome’). 

For both of these regimes, we strive to know the atomic-resolution structures of their 

elemental units, including shelterin with and without the nucleosome, CST and telomerase, 

and to know how these units are arrayed along the telomere, for example, how far from the 
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dsDNA–ssDNA junction shelterin complexes are located, whether there is some order to 

their distribution or they are randomly spaced and how the array changes with T-loop 

formation or cell cycle progression. We also need to determine how the switches between 

different structural states of telomeres are orchestrated and regulated (FIG. 4b), and the 

dynamics of key binding events and functional interactions. At the same time, we need to 

address the assembly mechanism (FIG. 4c), for example, whether shelterin components slide 

or hop along the DNA or partake in a 3D diffusional search.

Experiments addressing these questions are challenged by the repetitive sequence of the 

telomere. Thus, techniques that are powerful for studying unique sequences, such as 

chromatin immunoprecipitation (ChIP) and ChIP followed by sequencing (ChIP–seq), can 

reveal that a protein is telomeric but not where along a telomere it is located. To illustrate the 

primitive state of our current knowledge, we have not yet determined whether entire 

telomeres are highly ordered or randomly organized (FIG. 4d), or represent something in 

between.

Conclusions and future perspective

Recent years have seen telomere biology research greatly benefitting from applications of 

cutting-edge techniques. Individual endogenous telomerase RNPs can be tracked in living 

human cells and their interactions with telomeres can be interrogated105–107. It is now 

important to extend similar approaches to other telomeric protein complexes, such as 

shelterin, CST and TZAP, which would be especially informative in combination with 

multicolour single-molecule imaging. Before the cryo-EM revolution, telomere structural 

biology had been relatively stagnant for a period of time. Because telomerase and telomeres 

are large and some-what flexible protein–nucleic acid complexes, numerous years of effort 

by X-ray crystallography and nuclear magnetic resonance approaches had been restricted to 

analysis of stable domains. Now, cryo-EM analysis has allowed the elucidation of the 

elusive architectures of T. thermophila and human telomerases103,104 and the atomic 

structure of human CST132. As the technology of cryo-EM analysis improves and becomes 

amenable to more flexible macromolecular structures, determining the architectures of 

several important telomeric protein–nucleic acid complexes — mammalian shelterin with 

telomeric DNA, or telomerase with shelterin and/or CST, or CST–pol α-primase — will be 

of high priority.

Thus, the next key steps to understanding the molecular details of elemental telomeric 

components are reasonably clear. However, a grander goal exists. As discussed above, 

determining the structure of an entire telomere is not straightforward and likely presents a 

more complicated pathway forging forward. This is because new technology will be needed 

to breach the repetitive nature of telomeric DNA sequences, ideally one that would allow us 

to harness our current familiarity with next-generation sequencing techniques and 

bioinformatics analysis. Emerging techniques in super-resolution 3D and 4D chromatin 

imaging or in cryo-electron tomography could also help unveil native telomere structures in 

cells. Thus, with a clever combination of techniques, we may well reveal the heterogeneous 

landscape of telomere flora and fauna across both space and time.
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Fig. 1 |. Telomere DNA structures at chromosome ends.
Telomeres are DNA–protein structures at the ends of linear chromosomes. Depicted are the 

essential telomeric protein complexes shelterin and CTC1–STN1–TEN1 (CST), as well the 

telomerase RNA–protein complex. The telomeric DNA consists of both double-stranded 

DNA and single-stranded DNA, comprising in vertebrates the repeat sequence TTAGGG. 

This duality allows the single-stranded 3′ tail (red) to invade the double-stranded DNA 

region to form a displacement loop (D-loop) and a telomere loop (T-loop). T-loop formation 

is regulated by shelterin complexes and can restrict telomerase access to the 3′ tail. Once the 

telomere is opened up — presumably during the S phase of the cell cycle — telomerase can 

bind to the 3′ tail through its RNA template (orange) and add telomeric repeats. CST then 

inhibits telomerase activity, thereby preventing excessive telomere extension. POT1, 

protection of telomeres protein 1; TIN2, TERF1-interacting nuclear factor 2; TRF1, 

telomeric repeat-binding factor 1.
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Fig. 2 |. Molecular architecture of the human shelterin complex.
a | The human shelterin complex consists of six proteins: telomeric repeat-binding factor 1 

(TRF1), TRF2, RAP1, TERF1-interacting nuclear factor 2 (TIN2), TPP1 and protection of 

telomeres protein 1 (POT1). Shelterin engages both double-stranded DNA (dsDNA) and 

single-stranded DNA (ssDNA) regions of a telomere. TRF1 and TRF2 are protein 

homodimers that bind telomeric dsDNA, whereas POT1 binds telomeric ssDNA. b | Map of 

interactions of shelterin subunits, with binding and structured domains illustrated as boxes. 

Each polypeptide is displayed from the amino terminus (left) to the carboxy terminus (right) 

and their stoichiometry is indicated by the number of copies. c | Possible organization of an 

assembled shelterin complex (excluding RAP1). Unstructured regions are illustrated as 

coloured lines, depicting the large flexible regions of TRF1 and TRF2 (between their TRF 

homology (TRFH) domains and Myb domains) and of TPP1 (the C-terminal region after its 

oligonucleotide/oligosaccharide-binding (OB) domain). The fully assembled shelterin 

complex comprises two structurally separated modules, which we term the telomere 

architecture module (TRF1–TIN2–TRF2–RAP1) and the telomerase regulation module 

(TPP1–POT1). A single TIN2 (TIN2256–276) can interact with the TRFH domain of either 

TRF1 or TRF2 (dashed arm), whereas the TIN2 N-terminal domain (TIN2N) interacts solely 

with TRF2. BRCT, BRCA1 carboxy terminal; HJR, Holliday junction resolvase-like; RCT, 

RAP1 carboxy terminal; TEL patch, TPP1 glutamate (E) and leucine (L)-rich patch.
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Fig. 3 |. CST and pol α-primase coordination of telomere C-strand fill-in.
a | Interaction map of human CTC1–STN1–TEN1 (CST) complex subunits and their 

functional sites. b | Atomic structure of CST, derived from cryo-electron microscopy studies 

(PDB: 6W6W). The magenta halos on the front view indicate two spatially separated groups 

of residues known to mediate the interactions of CST with the DNA polymerase α-primase 

(pol α-primase) complex. CST interaction with telomeric single-stranded DNA (ssDNA) can 

mediate decamerization of CST. c | CST complex decamerization might enable protection of 

the telomeric G-overhang tail and loading of multiple pol α-primase proteins at a single G-

overhang for facilitation of C-strand fill-in. d | Termination of telomerase activity and C-

strand fill-in by shelterin, CST and pol α-primase. The shelterin complex recruits telomerase 

to telomeres and also stimulates extension of the G-overhang by telomerase. Formation of 

DNA G-quadruplex (G4) structures could prevent telomerase from engaging the tail, but 

once telomerase has initiated extension, the G4 structure can aid telomerase translocation. 
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The CST complex might prevent telomerase from engaging the G-overhang through 

competitive binding, or it might disrupt an ongoing extension process by resolving the G4 

structure needed for optimal telomerase translocation. Once the extension process is 

completed, CST can recruit pol α-primase for lagging strand synthesis of the telomeric C-

strand to convert the newly synthesized G-overhang into double-stranded DNA. This process 

is known as telomere C-strand fill-in. OB, oligonucleotide/oligosaccharide binding; STN1c, 

STN1 carboxy terminal; STN1n, STN1 amino terminal; POT1, protection of telomeres 

protein 1; TIN2, TERF1-interacting nuclear factor 2; TRF1, telomeric repeat-binding factor 

1; wHTH, winged helix–turn–helix motif.
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Fig. 4 |. Assembling the telomeres.
a | Telomere maintenance is regulated at two genomic scales: modulation of higher-order 

DNA–protein architecture across the telomere (gold cloud) and regulation of telomerase 

activity at the G-overhang (the ‘telomere replisome’; blue cloud). b | The telomeric 3′ tail 

can be made accessible (green cloud) or reclusive (red clouds) by telomeric protein 

complexes. The shelterin complex facilitates telomere loop (T-loop) formation, which 

restricts telomerase access by burying the 3′ tail in double-stranded telomeric DNA. A T-

loop can unravel to a linear form to allow telomerase access, which can be further regulated 

through end-capping by telomeric proteins. c | How TPP1–protection of telomeres protein 1 

(POT1) might find the G-overhang among multiple similar binding sites once the tail is 

made accessible. For simplicity, nucleosomes and other telomeric proteins are omitted from 

the cartoon. Possible mechanisms of TPP1–POT1 delivery to the G-overhang include 3D 

diffusion, sliding or hopping along telomeres. Solid and dashed lines indicate stable and 
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transient interactions, respectively. d | Illustrations of two possible and polar opposite 

outcomes of telomere organization driven by shelterin complexes. A highly ordered shelterin 

array could result in a zipper-like folding of the telomere. On the other hand, a random 

deposition of shelterin would result in a disordered telomere architecture. Either possibility 

restricts access to the telomere 3′ tail and also leads to higher-order telomere organization. 

CST, CTC1–STN1–TEN1; dsDNA, double-stranded DNA; ssDNA, single-stranded DNA; 

TIN2, TERF1-interacting nuclear factor 2; TRF1, telomeric repeat-binding factor 1.
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