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Abstract

Falls are a significant problem for persons with multiple sclerosis (PwMS). Yet fall prevention 

interventions are not often prescribed until after a fall has been reported to a healthcare provider. 

While still nascent, objective fall risk assessments could help in prescribing preventative 

interventions. To this end, retrospective fall status classification commonly serves as an 

intermediate step in developing prospective fall risk assessments. Previous research has identified 

measures of gait biomechanics that differ between PwMS who have fallen and those who have not, 

but these biomechanical indices have not yet been leveraged to detect PwMS who have fallen. 

Moreover, they require the use of laboratory-based measurement technologies, which prevent 

clinical deployment. Here we demonstrate that a bidirectional long short-term (BiLSTM) memory 

deep neural network was able to identify PwMS who have recently fallen with good performance 

(AUC of 0.88) based on accelerometer data recorded from two wearable sensors during a one-

minute walking task. These results provide substantial improvements over machine learning 

models trained on spatiotemporal gait parameters (21% improvement in AUC), statistical features 

from the wearable sensor data (16%), and patient-reported (19%) and neurologist-administered 

(24%) measures in this sample. The success and simplicity (two wearable sensors, only one-

minute of walking) of this approach indicates the promise of inexpensive wearable sensors for 

capturing fall risk in PwMS.

Index Terms—

Wearables; Fall Risk; Digital Health; Machine Learning

I. INTRODUCTION

More than half of the 2.3 million persons with multiple sclerosis (PwMS) experience a fall 

in any given three-month period [1]. Up to half of these falls result in an injury requiring 

medical attention, which increases fear of falling and decreases quality of life [2]. MS is a 

chronic condition [3], suggesting that these injurious falls pose a significant long-term 
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burden to the healthcare system. The time required to recover from fall-related injuries can 

worsen mobility problems and reduce independence in this population.

The progressive demyelination and axonal damage throughout the central nervous system 

[4], [5] caused by MS results in symptoms including debilitating fatigue and impaired 

coordination, muscle strength, and sensation [4]. Collectively, these symptoms lead to 

problems with balance and postural control, especially during dynamic activities [6]. Falls 

most often occur during balance-challenging daily activities such as position transfers, 

changes of direction, and walking [7]. Compared to healthy adults, PwMS fall more often 

and are more likely to be injured by a fall [8].

Fall history is one of the most important predictors of fall risk in PwMS [9], but only 51% of 

falls are self-reported [10]. In clinical practice, fall prevention interventions are not often 

prescribed until after a fall has been reported to a healthcare provider. An objective method 

of characterizing fall risk may enhance our ability to prescribe preventative interventions. 

However, quantitative measures of fall risk in PwMS remain nascent. While patient report 

measures [11], [12] and in-clinic functional assessments have been associated with risk of 

falling [13], [14], these approaches have poor performance when identifying fall risk [15]. 

Retrospective fall status classification commonly serves as an intermediate step in the 

development of prospective fall risk predictions [16]–[21] as it helps to identify biomarkers 

that have sufficient sensitivity to discriminate people who have fallen from those who have 

not. However, previous studies have not considered PwMS [16], [19]–[21], require 

expensive lab equipment [17], [18], and often leave room for improvement in classification 

performance [16].

Recent work has focused on capturing the differences in gait biomechanics between PwMS 

who have experienced a fall (fallers) and those who have not (non-fallers), and between 

PwMS and healthy controls [13], [22]–[24]. Fallers have less predictable trunk accelerations 

[22], slower gait speed [25], limited lower extremity joint angle excursion and range of 

motion [26], increased variability in spatiotemporal gait characteristics [13], [22], [24], and 

reduced margin of stability [22] compared to non-fallers with MS and/or healthy controls. 

These variables could provide objective indicators, or biomarkers, of fall risk that could be 

used to inform interventions. However, existing studies rely on data captured in constrained 

settings by technologies (e.g. optical motion capture, electronic walkway) that do not 

translate to clinical environments, limiting their utility.

Wearable inertial measurement units may provide an opportunity to quickly and 

unobtrusively capture the fall-related biomechanics of PwMS, and in clinical environments 

[27], [28]. To this end, several recent studies have demonstrated the ability of body worn 

sensors to capture biomechanical measures associated with fall risk in PwMS (e.g., walking 

speed [25], stride time variability [23]), and demonstrate correlations with clinical 

assessments [17]. However, these previous approaches fall short of developing a way to 

identify PwMS who are at high risk of falls, motivating the need for an objective risk 

measurement based on their biomechanics [29]. While machine learning techniques have 

been used to classify fall risk based on fall history using data from wearable sensors during 

gait (e.g., elderly [30], dementia [31]), these studies have not considered PwMS. 
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Importantly, gait biomechanics in PwMS differ significantly from the populations 

considered in previous work [22], [32], [33]. This indicates that statistical models for 

classifying fall risk may not generalize to PwMS.

Recent advances in machine learning, and particularly in artificial neural networks, have 

enabled learning of high-level outcomes directly from low-level raw sensory data streams. 

These deep learning models may be particularly well suited for developing statistical models 

for classifying fall risk as they automatically extract the most informative intermediate latent 
features for solving a given task (e.g. classification) and thus do not require the manual 

engineering of features from the wearable sensor data [34], [35]. Deep learning methods 

have been shown to provide superior results for time series classification tasks such as gait 

event detection from accelerometer data when compared to more classical machine learning 

techniques that rely on predetermined and manually-constructed features [36]. In fact, they 

have been used for several fall related tasks in other populations, including identifying fall 

status [20], [37], predicting fall risk [38], detecting falls [39]–[43], and predicting falls [44]. 

However, these approaches have not yet been applied to PwMS.

The primary objective of this work was to determine if a machine learning based analysis of 

wearable sensor data recorded during gait can be used to identify PwMS who have recently 

fallen. In contrast to fall event detection, this work aims to identify PwMS with elevated fall 

risk in hopes of prescribing preventative interventions. Future studies will be required to 

validate these methods prospectively. In addressing this objective, we explore the impact of 

different wearable sensor locations, model types, and feature sets on classification 

performance. Finally, we also examine the ability of clinically-accepted patient-reported 

measures and neurologist-administered assessments for detecting fallers using machine-

learning based techniques.

II. Methodology

A. Subjects and Protocol

A sample of PwMS were recruited from the Multiple Sclerosis Center at University of 

Vermont Medical Center (inclusion: no major health conditions other than MS, no acute 

exacerbations within the previous three-months, ambulatory without the use of assistive 

devices). PwMS who have fallen within the previous six-months are identified as fallers, 

those who have not are considered non-fallers. Herein we consider data from 37 PwMS 

(18:19 fallers:non-fallers; 11:26 Male:Female, mean ± standard deviation age 51 ± 12 y/o; 

mean ± standard deviation Expanded Disability Status Scale (EDSS) 2.99 ± 1.47).

On the day of testing, subjects provided written informed consent to participate in the study. 

A neurologist with subspecialty expertise in MS completed the EDSS for each subject. 

Subjects were asked to complete the Fall Trips and Slips 6-month Survey, Activities-specific 

Balance Confidence Scale (ABC) [46], Modified Fatigue Impact Scale (MFIS) [47], 

Neurological Sleep Index (NSI) [48], and Twelve Item MS Walking Scale (MSWS) [49].

Subjects were instrumented with MC10 BioStamp and APDM Opal wearable sensors at 

various body locations as part of a larger study. In this study, we consider tri-axial 
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accelerometer data (31.25 Hz, ±16G) sampled by BioStamp sensors secured to the sternum 

just below the clavicle and the anterior aspect of the right thigh as well as accelerometer and 

angular rate gyro data from Opal sensors secured to the lower sternum, lower back at the belt 

line, and anterior right and left shanks. Data from these sensors were recorded during a 

variety of simulated daily activities and several standard functional assessments. Here we 

consider data from a one-minute trial during which the subject walked at their self-selected 

pace in a hallway. All subjects completed these activities in the same order and controlled 

environment. The fall status of each patient was determined based on the Falls Trips and 

Slips 6-month survey. This protocol was approved by the University of Vermont’s 

Institutional Review Board (CHRMS 18-0285).

B. Gait Classification Pipeline

Data from this protocol were used to develop statistical classification models for identifying 

PwMS who have recently fallen. A high-level summary of our deep learning approach is 

provided in Fig. 1. Beginning with wearable sensor data from the chest and thigh, gait bouts 

were identified using statistical classification models and partitioned into individual strides 

using a simple state machine. These methods have been described previously [50], [51] and 

were leveraged herein to identify and analyze the 1-minute walking test completed by each 

subject. This method of walking extracting was employed to allow this method to be applied 

to un-supervised at-home monitoring in future work. Stride data from identified walking 

bouts were used to train and establish the performance of statistical models for classifying 

fall status using supervised machine learning techniques. We explore different modeling 

approaches for performing fall status classification including deep learning and traditional 

machine learning methods.

C. Deep Learning Approaches

Deep learning methods, as applied here via a Recurrent Neural Network (RNN), do not 

require features to be manually calculated from sensor data prior to performing a statistical 

classification task, unlike traditional machine learning methods. Instead, models can be 

trained to take raw data as input, extract features and perform the classification. This 

approach has yielded performance improvements in a number of sensor-based classification 

tasks [36], [38], [52]. Long Short Term Memory (LSTM) networks, which are a particular 

type of RNN, explicitly model which aspects of a retained memory to remember and forget 

at each timestep by modeling dedicated gating functions for each; this behavior lends to the 

model’s excellent ability to forecast and classify timeseries [35]. One version of this model 

employs two LSTM layers stacked sequentially (LSTM LSTM) such that the first extracts 

features and the second makes the classification [53]. An alternative to the LSTM LSTM 

arrangement, the Bi-Directional LSTM (BiLSTM) has two hidden states that allow the 

model to consider information from the past and the future, of each input, which has been 

shown to improve performance for some classification tasks [54].

Accelerometer data from each sensor were first calibrated to yield time series approximately 

aligned with the cranial-caudal, medio-lateral, and anterior-posterior directions (see [50], 

[51]). Herein, we train LSTM LSTM and BiLSTM models using calibrated and z-score 

normalized accelerometer data from the chest and thigh sampled from between one and five 
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sequential strides (hereafter referred to as Raw features). This processing framework is 

depicted in Figure 1, in which the deep learning models are represented in the ‘Determine 

Fall Risk’ segment. A total of 1422 stride combination observations were extracted from the 

37 participants. All deep learning models were trained using the Adam optimizer, a 

minibatch size of 200 and with a maximum of 100 epochs. The LSTM LSTM models used 

the following architecture listed in order of layers: sequence input, LSTM layer with 215 

hidden units, 30% dropout layer, LSTM layer with 125 hidden units, 40% dropout layer, 

fully connected layer with output size of 2, softmax layer, and classification layer. The 

BiLSTM models used the following architecture listed in order of layers: sequence input, 

BiLSTM layer with 215 hidden units, 40% dropout layer, fully connected layer of output 

size 2, softmax layer, and classification layer. All deep learning models were developed 

using MATLAB 2019a Deep Network Designer.

To explore the effect of sensor placement, models were also trained and evaluated using data 

from the chest and thigh sensors, individually.

D. Traditional Machine Learning Approaches

In order to compare to the deep learning methods, traditional machine learning methods 

were employed with several feature sets outlined below. Unlike deep learning methods, 

where raw data can serve as the input, traditional machine learning methods utilize metrics 

extracted from signals and other values to inform the statistical classification models. The 

remainder of this section will outline the stride, spatiotemporal, and patient-reported metric 

feature sets. Details on model training and feature selection are provided in Section II E.

Wearable sensor data from each stride identified for each subject were used to compute a 

single vector of time and frequency domain features (hereafter referred to as Stride features). 

This method varies from the framework in Figure 1 only after strides were extracted from 

the identified walking bouts. Accelerometer data from each sensor were first calibrated and 

following time and frequency domain features were computed from each of the resulting six 

time series: mean, standard deviation (std), root-mean-square (rms), maximum, minimum, 

distance between peaks, rms between peaks, skewness, kurtosis, sample entropy, power 

between 0.25 and 0.5 Hz, power between 0.5 and 1 Hz, power spectral densities, cross 

correlation of thigh and chest, ratio of thigh and chest rms, ratio of thigh and chest mean raw 

acceleration, and sample entropy. Additionally, the time derivative of each accelerometer 

time series was taken yielding a measure of jerk used to inform calculation of the following 

time and frequency domain features: mean, maximum, minimum, std, rms, power between 

0.25 and 0.5 Hz, power between 0.5 and 1 Hz, and distance between peaks. Finally, stride 

time and duty cycle for the given stride were also included yielding a 403-element feature 

vector for each stride and 1422 observations across the 37 participants.

We also explored models trained on features developed by extracting spatiotemporal 

measures of gait, as these have been associated with fall risk [55]. These measures are 

reported by the Opal system, which has previously been validated in PwMS [56], during the 

1-minute walking test completed by each subject (hereafter referred to as Spatiotemporal 

features). Notably, these features do not follow the processing methodology outlined in Fig. 

1. The Spatiotemporal features were the mean, maximum, minimum, and standard deviation 
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of gait speed, cadence, double support time, elevation at mid-swing, gait cycle duration, 

lateral step deviation, lateral step variability, lateral swing max acceleration, maximum pitch, 

pitch at initial contact, pitch at mid-swing, pitch at toe off, single limb support time, stance 

time, step duration, stride length, swing time, mean toe out angle, maximum toe out angle, 

and minimum toe out angle. This yields one 81-element feature vector for each of the 37 

participants.

To provide context for results from these sensing approaches, we also explored statistical 

models trained on a standard neurologist-administered assessment and patient reported 

measures (PRMs) in this sample. These models provide a baseline for the best results that 

could reasonably be expected from today’s standard of care. Specifically, models were 

developed based on neurologist-administered EDSS (four EDSS features: EDSS Total, 

EDSS Sensory, EDSS Pyramidal, EDSS Cerebellar) and patient reported MFIS (4 features: 

MFIS Physical, MFIS Cognitive, MFIS Psychosocial, MFIS Total), ABC (one feature ABC 

Total), MSWS (one feature: MSWS Total), and NSI (one feature: NSI Total) (hereafter 

referred to as PRM features). The preceding PRMs were selected due to their relation to fall 

risk [9], [14], [57]. We explored the following combinations of possible model inputs: EDSS 

only, PRM only, and PRM with EDSS. These features were observed from each of the 37 

participants.

E. Model Performance Assessment and Analysis

Classifier performance was established using leave-one-subject-out cross validation (LOSO-

CV). In this approach, data from all but one participant (N = 36) were partitioned into a 

training dataset while data from the remaining subject was used for testing. This process was 

repeated until data from each subject had been included in the test set. The LOSO-CV 

approach ensures the model was tested on subjects it has not previously seen, which 

provides a realistic estimate of how the model would perform during real-world use. The 

normalized posterior probability assigned to each observation were combined to calculate an 

overall model performance by considering the area under the receiver operating 

characteristic curve (AUC). Additionally, accuracy, sensitivity, specificity, and F1-score 

were calculated. Where appropriate, models were assessed based on their individual input 

performance, referring to 1–5 strides, as well as their aggregate performance after taking the 

median decision score of the individual inputs across the entire one-minute walking test for 

each participant.

Models were trained on each of the feature sets described above (Stride, Spatiotemporal, 

Raw, EDSS, PRM). Features were normalized using z-scores then reduced using Davies-

Bouldin index [58] based feature selection follow by principal components analysis (PCA) 

within each iteration of the LOSO-CV. The Stride features were reduced on average from 

403 to 17 features using a DB threshold of 3.5. A DB threshold of 6 was used to reduce the 

Spatiotemporal features from 80 to an average of 12.67 features per evaluation. A DB 

threshold of 1.5 was used for both EDSS only and PRMS with EDSS, reducing on average 

from 4 to 2 features and from 12 to 3.5 features, respectively. The PRMs only used a DB 

threshold of 2.5 to reduce from 8 features to 4 on average. The principal components that 

explained 95% of the variance of these reduced feature sets were then extracted and used to 
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train Logistic Regression (LR) [59], Support Vector Machine (SVM) [60], Decision Tree 

[61], K-Nearest Neighbors (KNN) [62], and Ensemble (ENS) [61] binary statistical 

classification models to discriminate fallers from non-fallers. Model hyperparameters were 

optimized for each input feature set to provide the highest classification performance, this 

information has been provided in Table IV in the appendix. Deep learning models, the 

LSTM LSTM and BiLSTM, were trained to discriminate fallers from non-fallers based on 

data from the Raw feature set.

III. Results

The BiLSTM deep learning model trained on four sequential strides with thigh and chest 

acceleration provided the best performance in discriminating PwMS who had previously 

fallen from those who had not, achieving an AUC of 0.80, accuracy of 73%, specificity of 

76%, sensitivity of 69%, and F1-score of 0.70 (see Table I). The discriminative ability of this 

model improved considerably when considering the median decision score reported across 

the entire one-minute walking test for each subject, to an AUC of 0.88, accuracy of 86%, 

specificity of 83%, sensitivity of 88%, and F1-score of 0.86 (see Fig. 2). The 4-stride 

BiLSTM using aggregation provided the best AUC, accuracy, sensitivity, and F1-score.

Deep learning BiLSTM models trained on data from the chest and thigh (AUC of 0.88) 

outperformed models trained on data from the thigh (AUC of 0.55) or chest (AUC of 0.71) 

alone (see Fig. 3). For models trained on data from the chest and thigh, performance 

increased with each additional stride considered up until four strides (AUC 0.65 to 0.88) at 

which point it began to decrease (AUC 0.88 to 0.79, see Table I). This may indicate that 

additional data are needed to accommodate the variance added by considering five strides. 

Interestingly, the LSTM LSTM models performed better when considering one and two 

strides as input while the BiLSTM performed better for between three and five strides (see 

Table I). This difference may be related to the LSTM LSTM model providing the necessary 

power to learn the variance for a fewer number strides, however a lack of data likely 

prevented this method from effectively learning the variance seen in a greater number of 

consecutive strides. The performance of the models generally increases with the number of 

strides used as input. We suspect that this is because considering data from more strides 

provides a better measure of gait variability which has been shown to be indicative of fall 

risk in PwMS [23]. In all cases, classification performance improved when the median 

decision score from the entire one-minute walking test was used for the classification (AUC 

increase 4–10%, Table I).

These results compare favorably to models trained on the Stride, Spatiotemporal, EDSS, and 

PRM feature sets (see Table II). The best performing feature-based models are listed in 

Table II, see the Appendix for details on the performance of all models tested. Models 

trained on the Stride feature set showed the lowest performance, when considering AUC, 

with an AUC of 0.69. However, this feature set demonstrated significant improvement when 

considering the median decision score across the entire one-minute walking test with an 

AUC of 0.76. Models trained on the EDSS feature set showed the next lowest performance 

when considering AUC and lowest F1-score, achieving an AUC of 0.71 and F1-score of 

0.46. This reflects previous work demonstrating the poor sensitivity of the EDSS for 
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capturing fall risk [63]. The model trained on the Spatiotemporal feature set achieved the 

highest specificity of 89%, however, this model was less impressive in other metrics. Models 

trained on the PRM feature set provided reasonable performance, however they did not stand 

out in any performance metric. The best feature-based performance, when considering AUC, 

was achieved by models trained on a combination of the EDSS and PRM feature sets with 

an AUC of 0.79. As demonstrated by the results in Table II, it is clear that models trained on 

the Stride, Spatiotemporal, EDSS, and PRM features sets have lower performance across all 

metrics when compared to the deep learning-based approach (Table I).

Analysis of the features selected as part of the feature reduction process can provide an 

indication of the measures most important for identifying PwMS at elevated fall risk. For 

example the reduced PRM and EDSS feature set typically contained EDSS Pyramidal, 

EDSS Cerebellar, ABC, and MSWS, removing the MFIS and NSI PRMs. Similarly, for the 

EDSS feature set, the features used for classification were EDSS Cerebellar and EDSS 

Pyramidal. For the PRM only feature set, all PRM features were selected except for NSI. For 

the spatiotemporal feature set, a large number of features were selected in each LOSO fold 

prior to PCA (44 on average), however there were a consistent top five features observed. 

These were minimum elevation at mid swing, maximum elevation at mid swing, mean toe-

out angle, minimum toe-out angle standard deviation, and minimum toe out angle mean.

IV. Discussion

In this paper, we demonstrated the identification of PwMS who have recently fallen based on 

only one minute of walking through deep neural network-analysis of accelerometer data. We 

show that this approach improves classification performance relative to more traditional 

machine learning approaches that consider wearable sensor data (both time and frequency 

domain features as well as spatiotemporal gait parameters), neurologist-administered 

assessments, and/or patient reported measures. We further discuss these results, identify 

potential reasons why these particular deep learning architectures may be improving 

performance, place the results in the context of the literature, and discuss their implications 

for preventing falls in PwMS.

The deep learning approaches used in this study have shown promise in other biomedical 

sensor-based classification and prediction tasks [20], [37]–[44], [52]. In line with a recent 

review [64], we chose these approaches here so that the memory of the network and time 

series input could capture gait variability, which has been shown to indicate fall risk in 

PwMS [23]. This approach yielded a substantial improvement in model performance 

(increase in F1-score of more than 28%), relative to the best performing traditional wearable 

sensor and machine learning based approach (F1-score of 0.86 vs. 0.67, see Tables I and II).

Sensitivity is a key parameter to consider in developing risk screening technologies as it is a 

direct measure of how many people with elevated risk the instrument is able to correctly 

detect. Our proposed deep learning approach improves the sensitivity for detecting PwMS 

with elevated fall risk by 44% relative to neurologist and patient report measures (88% for 4-

stride, BiLSTM, median vs. 61% for PRM + EDSS, see Tables I and II).
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The BiLSTM methods used in this study provide higher levels of performance than other 

studies classifying fall risk in PwMS [18] as well as many studies performed on healthy 

older adults [21], [65], [66], albeit with a smaller sample size in some cases. A recent study 

in neurological disorders (other than MS) was able to achieve a slightly higher AUC of 0.94 

(vs. 0.88 here) for a similar task of classifying fall risk from a larger dataset (n=76) using 

similar LSTM-based methods [20]. Studies conducted in healthy older adults have achieved 

AUC for models trained on walking data of 0.73–0.79 [30]. While it is difficult to compare 

results across studies, the relative performance of the methods described herein indicate the 

promise of this approach for identifying PwMS who have recently fallen and encourage 

future work to explore the use of this method for identifying fallers prospectively in this 

population in both lab and home environments.

The proposed deep learning approach for detecting PwMS who have fallen provides results 

faster than traditional PRMs or clinical assessments. For comparison, the one-minute 

walking test and associated BiLSTM model used for making a fall risk classification could 

be deployed in under 90 seconds, while the PRMs needed for the PRM + EDSS trained 

model take about 25 minutes to complete, and the EDSS requires 15 minutes of a certified 

neurologist’s time to administer. Given the typical 30-minute neurological visit, these times 

suggest that this wearable sensor approach may provide a more feasible solution for 

objectively quantifying fall risk in PwMS in the clinical environment than existing clinical 

assessments or PRMs.

As seen in Fig. 3, when studying the effect of sensor location, the thigh and chest together 

provided greater performance than data from either sensor individually. This suggests that 

the relationship between the sensors is being leveraged to better classify fallers. 

Interestingly, the relative motion of the torso and legs directly impacts dynamic margin of 

stability which has previously been related to fall risk in PwMS [22]. These results point to 

the need for further refining the sensor locations which provide the best data for identifying 

PwMS who have fallen, but these results suggest that locations on both the upper and lower 

body may be critical.

Due to the minimal sensor configuration, level of performance achieved, and short period of 

time needed to generate a fall risk assessment, the 4-stride BiLSTM shows promise to serve 

as a powerful tool for classifying the fall risk of PwMS in a clinical setting. Further studies 

are needed to assess the ability of this approach to identify fallers prospectively [28], and the 

performance of this model in the home environment to test the viability of this approach 

outside of the clinic for prolonged fall risk monitoring.

V. Conclusion

In this study, we analyzed a variety of machine learning models and feature sets for 

classifying the fall status of PwMS. Specifically, we assessed the impact of sensor location, 

number of strides, and aggregation of decision scores on the performance of LSTM LSTM, 

and BiLSTM deep learning models. For comparison, we assessed the performance of 

traditional machine learning models using feature sets manually calculated from wearable 

accelerometer data, derived from spatiotemporal gait parameters, and extracted from patient 
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reported measures and clinical assessments. The BiLSTM deep learning model was found to 

provide the highest performance with AUC of 0.88. These results support the use of deep 

learning with gait acceleration data for classifying the fall status of PwMS. While future 

studies are required to assess the performance of these methods for classifying fall risk in the 

home environment and predicting risk for future falls in this population, these promising 

results indicate that this deep learning approach is worthy of future consideration.
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Appendix

TABLE III

Machine learning model performance for various feature sets of all Models

Feature Set Model ACC SPE SEN AUC F1

Spatiotemporal

ENS 0.54 0.53 0.56 0.47 0.54

LR 0.59 0.74 0.44 0.65 0.52

KNN 0.57 0.53 0.61 0.54 0.58

SVM 0.73 0.89 0.55 0.73 0.67

Tree 0.38 0.32 0.44 0.44 0.41

Stride

ENS 0.61 0.74 0.44 0.65 0.59

LR 0.65 0.73 0.56 0.69 0.59

KNN 0.57 0.69 0.42 0.60 0.47

SVM 0.62 0.84 0.36 0.69 0.46

Tree 0.57 0.66 0.45 0.60 0.48

Aggregated Stride

ENS 0.57 0.78 0.35 0.75 0.44

LR 0.66 0.78 0.53 0.76 0.60

KNN 0.63 0.83 0.41 0.71 0.52

SVM 0.62 0.84 0.36 0.69 0.46

Tree 0.63 0.72 0.53 0.65 0.58

EDSS

ENS 0.65 0.74 0.56 0.54 0.61

LR 0.70 0.74 0.67 0.63 0.69

KNN 0.65 0.74 0.56 0.64 0.61

SVM 0.62 0.89 0.33 0.71 0.46

Tree 0.54 0.53 0.56 0.47 0.54

PRM

ENS 0.65 0.63 0.67 0.64 0.65

LR 0.70 0.79 0.61 0.65 0.67

KNN 0.73 0.68 0.78 0.72 0.74

SVM 0.70 0.84 0.56 0.74 0.65

Tree 0.78 0.68 0.89 0.60 0.80

PRM + EDSS

ENS 0.73 0.84 0.61 0.74 0.69

LR 0.70 0.79 0.61 0.79 0.67

KNN 0.68 0.58 0.78 0.69 0.70
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Feature Set Model ACC SPE SEN AUC F1

SVM 0.65 0.84 0.44 0.77 0.55

Tree 0.68 0.58 0.78 0.69 0.70

ENS: Ensemble; LR: Logistic Regression; KNN: K-Nearest Neighbors; SVM: Support Vector Machine; Tree: Decision 
Tree; AUC: Area Under the Receiver Operating Characteristic Curve; ACC: Accuracy; SPE: Specificity; SEN: Sensitivity; 
F1: F1-Score.

TABLE IV

Optimization parameters for various feature sets of all Models

Feature Set Model Optimization Parameters

Spatiotemporal

ENS Method: LogitBoost

LR Learner: Logistic, Lambda: 0.01169

KNN Num Neighbors: 3

SVM Solver: SMO, Kernel Function: Linear, Box Constraint: 41.478, Kernel Scale: 21.404

Tree Min Leaf Size: 19

Stride

ENS Method: Bag

LR Learner: Logistic, Lambda: 0.01

KNN Distance: cityblock, Num Neighbors: 7

SVM Solver: SMO, Kernel Function: Linear, Box Constraint: 22.287, Kernel Scale: 23.763

Tree Min Leaf Size: 27

EDSS

ENS Method: Bag

LR Learner: Logistic, Lambda: 0.0015

KNN Distance: chebychev, Num Neighbors: 20

SVM Solver: SMO, Kernel Function: Linear, Box Constraint: 575.38, Kernel Scale: 76.8350

Tree Min Leaf Size: 10

PRM

ENS Method: Bag

LR Learner: Logistic, Lambda: 0.010281

KNN Distance: chebychev, Num Neighbors: 20

SVM Solver: SMO, Kernel Function: Linear, Box Constraint: 5.737, Kernel Scale: 10.624

Tree Min Leaf Size: 5

PRM + EDSS

ENS Method: Bag

LR Learner: Logistic, Lambda: 0.0103

KNN Distance: chebychev, Num Neighbors: 20

SVM Solver: SMO, Kernel Function: Linear, Box Constraint: 5.737, Kernel Scale: 10.624

Tree Min Leaf Size: 5

ENS: Ensemble; LR: Logistic Regression; KNN: K-Nearest Neighbors; SVM: Support Vector Machine; Tree: Decision 
Tree; SMO: Sequential Minimal Optimization
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Fig. 1. 
Raw z-acceleration from chest and thigh with walking bouts and 4 steps extracted to provide 

input for BiLSTM classifier determining fall classification.
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Fig. 2. 
ROC curve of 4-stride BiLSTM using the median decision scores over the 1-minute walking 

trial compared to evaluating each input.
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Fig. 3. 
ROC curve (true positive rate - TPR vs. false positive rate - FPR) of best performing model 

for each sensor configuration; thigh and chest, thigh only, and chest only. All results were 

found using the 4-stride BiLSTM and taking the median decision score of all strides in the 

1-minute walking trial.
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TABLE I

PERFORMANCE OF DEEP LEARNING MODELS BY NUMBER OF STRIDES AND AMOUNT OF 

DATA CONSIDERED

Strides Model AGG ACC SPE SEN AUC F1

5 BiLSTM
None 0.74 0.86 0.58 0.76 0.67

Median 0.77 0.89 0.65 0.79 0.73

4 BiLSTM
None 0.73 0.76 0.69 0.80 0.70

Median 0.86 0.83 0.88 0.88 0.86

3 BiLSTM
None 0.70 0.73 0.67 0.77 0.67

Median 0.80 0.83 0.76 0.83 0.79

2
LSTM None 0.72 0.77 0.66 0.74 0.68

LSTM Median 0.80 0.83 0.76 0.78 0.79

1
LSTM None 0.58 0.64 0.52 0.61 0.52

LSTM Median 0.60 0.67 0.53 0.65 0.56

LSTM: Long-Short Term Memory Neural Network; BiLSTM: Bidirectional Long-Short Term Memory Neural Network; AGG: Aggregation 
technique (none or median of 1 minute of stride observations); AUC: Area Under the Receiver Operating Characteristic Curve; ACC: Accuracy; 
SPE: Specificity; SEN: Sensitivity; F1: F1-Score.
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TABLE II

Machine learning model performance for various feature sets

Feature Set Model ACC SPE SEN AUC F1

Spatiotemporal SVM 0.73 0.89 0.55 0.73 0.67

Stride LR 0.65 0.73 0.56 0.69 0.59

Aggregated Stride LR 0.66 0.78 0.53 0.76 0.60

EDSS SVM 0.62 0.89 0.33 0.71 0.46

PRM SVM 0.70 0.84 0.56 0.74 0.65

PRM + EDSS LR 0.70 0.79 0.61 0.79 0.67

SVM: Support Vector Machine; LR: Logistic Regression; AUC: Area Under the Receiver Operating Characteristic Curve; ACC: Accuracy; SPE: 
Specificity; SEN: Sensitivity; F1: F1-Score.
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