Skip to main content
. Author manuscript; available in PMC: 2022 May 11.
Published in final edited form as: IEEE J Biomed Health Inform. 2021 May 11;25(5):1824–1831. doi: 10.1109/JBHI.2020.3025049

TABLE II.

Machine learning model performance for various feature sets

Feature Set Model ACC SPE SEN AUC F1
Spatiotemporal SVM 0.73 0.89 0.55 0.73 0.67
Stride LR 0.65 0.73 0.56 0.69 0.59
Aggregated Stride LR 0.66 0.78 0.53 0.76 0.60
EDSS SVM 0.62 0.89 0.33 0.71 0.46
PRM SVM 0.70 0.84 0.56 0.74 0.65
PRM + EDSS LR 0.70 0.79 0.61 0.79 0.67

SVM: Support Vector Machine; LR: Logistic Regression; AUC: Area Under the Receiver Operating Characteristic Curve; ACC: Accuracy; SPE: Specificity; SEN: Sensitivity; F1: F1-Score.