TABLE III.
Machine learning model performance for various feature sets of all Models
Feature Set | Model | ACC | SPE | SEN | AUC | F1 |
---|---|---|---|---|---|---|
Spatiotemporal | ENS | 0.54 | 0.53 | 0.56 | 0.47 | 0.54 |
LR | 0.59 | 0.74 | 0.44 | 0.65 | 0.52 | |
KNN | 0.57 | 0.53 | 0.61 | 0.54 | 0.58 | |
SVM | 0.73 | 0.89 | 0.55 | 0.73 | 0.67 | |
Tree | 0.38 | 0.32 | 0.44 | 0.44 | 0.41 | |
Stride | ENS | 0.61 | 0.74 | 0.44 | 0.65 | 0.59 |
LR | 0.65 | 0.73 | 0.56 | 0.69 | 0.59 | |
KNN | 0.57 | 0.69 | 0.42 | 0.60 | 0.47 | |
SVM | 0.62 | 0.84 | 0.36 | 0.69 | 0.46 | |
Tree | 0.57 | 0.66 | 0.45 | 0.60 | 0.48 | |
Aggregated Stride | ENS | 0.57 | 0.78 | 0.35 | 0.75 | 0.44 |
LR | 0.66 | 0.78 | 0.53 | 0.76 | 0.60 | |
KNN | 0.63 | 0.83 | 0.41 | 0.71 | 0.52 | |
SVM | 0.62 | 0.84 | 0.36 | 0.69 | 0.46 | |
Tree | 0.63 | 0.72 | 0.53 | 0.65 | 0.58 | |
EDSS | ENS | 0.65 | 0.74 | 0.56 | 0.54 | 0.61 |
LR | 0.70 | 0.74 | 0.67 | 0.63 | 0.69 | |
KNN | 0.65 | 0.74 | 0.56 | 0.64 | 0.61 | |
SVM | 0.62 | 0.89 | 0.33 | 0.71 | 0.46 | |
Tree | 0.54 | 0.53 | 0.56 | 0.47 | 0.54 | |
PRM | ENS | 0.65 | 0.63 | 0.67 | 0.64 | 0.65 |
LR | 0.70 | 0.79 | 0.61 | 0.65 | 0.67 | |
KNN | 0.73 | 0.68 | 0.78 | 0.72 | 0.74 | |
SVM | 0.70 | 0.84 | 0.56 | 0.74 | 0.65 | |
Tree | 0.78 | 0.68 | 0.89 | 0.60 | 0.80 | |
PRM + EDSS | ENS | 0.73 | 0.84 | 0.61 | 0.74 | 0.69 |
LR | 0.70 | 0.79 | 0.61 | 0.79 | 0.67 | |
KNN | 0.68 | 0.58 | 0.78 | 0.69 | 0.70 | |
SVM | 0.65 | 0.84 | 0.44 | 0.77 | 0.55 | |
Tree | 0.68 | 0.58 | 0.78 | 0.69 | 0.70 |
ENS: Ensemble; LR: Logistic Regression; KNN: K-Nearest Neighbors; SVM: Support Vector Machine; Tree: Decision Tree; AUC: Area Under the Receiver Operating Characteristic Curve; ACC: Accuracy; SPE: Specificity; SEN: Sensitivity; F1: F1-Score.