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Abstract

Recent development in the data-driven decision science has seen great advances in individualized 

decision making. Given data with individual covariates, treatment assignments and outcomes, 

policy makers best individualized treatment rule (ITR) that maximizes the expected outcome, 

known as the value function. Many existing methods assume that the training and testing 

distributions are the same. However, the estimated optimal ITR may have poor generalizability 

when the training and testing distributions are not identical. In this paper, we consider the problem 

of finding an optimal ITR from a restricted ITR class where there is some unknown covariate 

changes between the training and testing distributions. We propose a novel distributionally robust 

ITR (DR-ITR) framework that maximizes the worst-case value function across the values under a 

set of underlying distributions that are “close” to the training distribution. The resulting DR-ITR 

can guarantee the performance among all such distributions reasonably well. We further propose a 

calibrating procedure that tunes the DR-ITR adaptively to a small amount of calibration data from 

a target population. In this way, the calibrated DR-ITR can be shown to enjoy better 

generalizability than the standard ITR based on our numerical studies.
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1 Introduction

Data-driven individualized decision making problems are commonly seen in practice and 

have been studied intensively in the literature. In disease management, the physician may 

decide whether to introduce or switch a therapy for a patient based on his/her characteristics 

in order to achieve a better clinical outcome (Bertsimas et al., 2017). In public policy 

making, a policy that allocates the resource based on the characteristics of the targets can 

improve the overall resource allocation efficiency (Kube et al., 2019). In a context-based 

recommender system, the use of the contextual information such as time, location and social 

connection can increase the effectiveness of the recommendation process (Aggarwal, 2016). 

One common goal of these problems is to find the optimal individualized treatment rule 
(ITR) mapping from the individual characteristics or contextual information to the treatment 

assignment, that maximizes the expected outcome, known as the value function (Manski, 

2004; Qian and Murphy, 2011).

One approach for estimating an optimal ITR is to first estimate the conditional mean 

outcome, known as the Q-function, given the individual characteristics and the treatment 

assignment, and then induce the ITR that prescribes the treatment by maximizing the 

estimated Q-function (Qian and Murphy, 2011). In the binary treatment case, such an 

approach can be reformulated as estimating the conditional treatment effect (CTE) as the 

difference of the conditional mean outcomes under two candidate treatments (Zhao et al., 

2017; Chen et al., 2017; Qi et al., 2020). Another approach is to directly estimate the value 

function using the inverse-probability weighted estimator (IPWE), and then search for the 

ITR that maximizes the corresponding value function (Zhao et al., 2012; Kitagawa and 

Tetenov, 2018; Liu et al., 2018; Zhang et al., 2019). Since there are potential model 

misspecification issues of these approaches, the augmented IPWE (AIPWE) of the value 

function combines the estimates of the Q-function and the treatment propensity score. 

AIPWE is doubly robust in the sense that the consistency of the value function estimate is 

guaranteed as long as either the Q-function model or the propensity score model is correctly 

specified (Dudík et al., 2011; Zhang et al., 2012b; Athey and Wager, 2017; Zhao et al., 

2019a). While the doubly robust property can protect against the violation of the model 

assumptions, one key assumption behind is that the training and testing distributions should 

be identical.

When the training and testing distributions are different, an estimated optimal ITR may not 

generalize well on the testing data (Zhao et al., 2019b). Similar phenomenon for causal 

inference in randomized controlled trials (RCTs) has also been pointed out by Muller 

(2014); Gatsonis and Morton (2017). Specifically, due to the inclusion and exclusion criteria 

of an RCT, the training sample can be unrepresentative of the testing population we are 

interested in. Therefore, the corresponding casual evidence may not be broadly applicable or 

relevant for the real-world practice. In causal inference literature, it is common to regard the 

training data as a selected sample from the pooled population of training and testing. The 

selection bias can be adjusted by reweighing or stratifying the training data according to the 

relationship between training and testing (O’Muircheartaigh and Hedges, 2014; Buchanan et 

al., 2018). However, it requires strong assumptions on completely measuring the selection 

confounders and correctly specifying the selection model, and thus can only work well on a 
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prespecified testing population. There are many other practical scenarios where the 

difference between the training and testing distributions is unknown. One example is that the 

training data can be confounded by some unidentified effects such as batch effects, which 

may cause potential covariate shifts (Luo et al., 2010). Another possibility is that the testing 

distribution may evolve over time (Hand, 2006). There is also a widely studied scenario that 

multiple datasets are aggregated to perform combined analysis (Alyass et al., 2015; Shi et 

al., 2018; Li et al., 2020). Aggregating data from various sources can benefit from sharing 

common information, transferring knowledge from different but related samples, and 

maintaining certain privacy. However, due to the heterogeneity among data sources, standard 

approaches of finding pooled optimal ITRs may not generalize well on all these sources. 

One way of handling the heterogeneity is to formulate it as a problem of distributional 

changes, where we train on the mixture of subpopulations while testing on one of the 

subpopulations (Duchi et al., 2019). In all these applications, an optimal ITR that is robust to 

unattended distributional differences is of great interest.

Despite a vast literature in ITR, much less work has been done on the problem when the 

training and testing distributions are different. Imai and Ratkovic (2013) and Johansson et al. 

(2018) estimated the CTE function by reweighing the training loss to ensure the estimators 

generalizable on a prespecified testing distribution. Zhao et al. (2019b) aimed to find an ITR 

that optimizes the worst-case quality assessment among all testing covariate distributions 

satisfying some moment conditions. However, since their method only requires some 

moment conditions, the uncertainty set of the testing distributions can be very large. Recent 

developments in the distributionally robust optimization (DRO) literature provide the 

opportunities to quantify the difference between the training and testing distributions more 

precisely (Ben-Tal et al., 2013; Duchi and Namkoong, 2018; Rahimian and Mehrotra, 2019). 

Motivated by the DRO literature, we develop a new robust optimal ITR framework in this 

paper.

In this paper, we consider the problem of finding an optimal ITR from a restricted ITR class, 

where there is some unknown covariate changes between the training and testing 

distributions. We propose to use the distributionally robust ITR (DR-ITR) that maximizes 

the defined worst-case value function among value functions under a set of underlying 

distributions. More specifically, value functions are evaluated under all testing covariate 

distributions that are “close” to the training distribution, and the worst-case situation takes a 

minimal one. Our distributionally robust ITR framework is different from the existing 

doubly robust ITR framwork that uses an AIPWE. In particular, an AIPWE robustifies the 

model specification assumptions, while our DR-ITR robustifes the underlying distributions. 

The DR-ITR aims to guarantee reasonable performance across all testing distributions in an 

uncertainty set around the training distribution by optimizing the worst-case scenarios. In 

particular, we parameterize the amount of “closeness” by the distributional robustness-
constant (DR-constant), where the smallest possible DR-constant corresponds to the 

standard ITR that maximizes the value function under the training distribution. To ensure the 

performance of the DR-ITR on a specific testing distribution, we fit a class of DR-ITRs for a 

spectrum of DR-constants at the training stage, and calibrate the DR-constant based on a 

small amount of the calibrating data from the testing distribution. In this way, the correctly 

calibrated DR-constant ensures that the DR-ITR performs at least as well as, often much 
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better than, the standard ITR. Using our illustrative example, we show that the standard ITR 

can have very poor values on many testing distributions, while our calibrated DR-ITRs still 

maintain relatively good performance. In particular, our proposed calibrating procedures can 

tune DR-constants based on the small calibrating sample. To solve the worst-case 

optimization problem, we make use of the difference-of-convex (DC) relaxation of the 

nonsmooth indicator, and propose two algorithms to solve the related nonconvex 

optimization problems. We also provide the finite sample regret bound for the proposed DR-

ITR.

The rest of this paper is organized as follows. In Section 2, we discuss an illustrative 

example that the optimality of an ITR can be sensitive to the underlying distribution, and 

introduce the DR-ITR that can generalize well across all testing distributions considered in 

this example. Then we propose the DR-ITR framework and the corresponding learning 

problem. In Section 3, we justify the theoretical guarantees of the finite sample 

approximations for the learning problem. In Section 4, we evaluate the generalizability of 

our proposed DR-ITR on two simulation studies: the problem of covariate shifts and the 

problem of mixture of multiple subgroups. We apply our proposed DR-ITR on the AIDS 

clinical dataset ACTG 175 and evaluate its generalizability on the subgroup of female 

patients in Section 5. Some related discussions and extensions are given in Section 6. The 

implementation details, technical proofs and some additional numerical results are all given 

in the Supplementary Material.

2 Methodology

In this section, we introduce the value maximization framework in the current literature, and 

discuss its limitation when the training and testing distributions are different. Then we 

propose the DR-value function that optimizes the worse-case value function across all 

distributions within an uncertainty set around the training distribution.

2.1 Maximizing the Value Function

Consider the training data (X, A, Y ) ℙ, where X ∈ X ⊆ ℝp denotes the covariates, 

A ∈ A = + 1, − 1  is the binary treatment assignment, and Y ∈ Y ⊆ ℝ is the observed 

outcome. We assume that the larger outcome is better. Let Y ( + 1), Y ( − 1) be the potential 

outcomes. Consider a prespecified ITR class D ⊆ ± 1 X. For d ∈ D, denote 

Y (d): = Y (1)1[d(X) = 1] + Y ( − 1)1[d(X) = − 1] as the potential outcome following the 

treatment assignment prescribed by the ITR d. Then the value function under the training 

distribution ℙ is defined as

V(d): = E[Y (d)] .

Denote π(a |x): = ℙ(A = a|X = x) as the training propensity score function for treatment 

assignment. If we assume 1) the consistency of the observed outcome Y = Y (A); 2) the strict 
overlap π( ± 1 |x) ⩾ τ > 0 for any x ∈ X; and 3) the strong ignorability 
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(Y (1 + ), Y ( − 1)) ⫫ A|X (Rubin, 1974), then we can identify V(d) in terms of the observed 

data (X, A, Y ) by the IPWE of E 1[d(X) = A]
π(A|X) Y .

Instead of targeting the value function directly, we instead consider the CTE function as 

C(x): = E[Y ( + 1) − Y ( − 1) |X = x] under the training distribution ℙ. Note that for an ITR d 
and all x ∈ X, the prescribed treatment assignment satisfies d(x) ∈ ± 1 . Then we have 

C(x)d(x) = E[Y (d) − Y ( − d) X = x]. Based on this representation, we define another value 

function

V1(d): = E[C(X)d(X)] = E[Y (d) − Y ( − d)] . (1)

Since Y (d) + Y ( − d) ≡ Y (1) + Y ( − 1), it can be observed that 

V1(d) = 2 V(d) − E[Y ( + 1) + Y ( − 1)]
2 = 2[V(d) − V(drand)], where drand(x) = + 1 with 

probability 1/2 and −1 with probability 1/2. Therefore, V1(d) can be interpreted as the value 

improvement of the ITR d upon the completely random treatment rule drand. In terms of the 

optimal ITR, the resulting rules by optimizing the value functions V1(d) and V(d) over d are 

equivalent.

By the definition (1), we have V1(d) ⩽ E[ |C(X) | ] with equality if d(X) = sign[C(X)] almost 

surely. Such an ITR is the global optimal ITR when D consists of all measurable functions 

from X to ± 1 . To obtain the global optimal ITR, we can estimate C(X) from data using 

flexible nonparametric techniques, such as the Bayesian additive regression tree (BART) 

(Hill, 2011), or the casual forest (Wager and Athey, 2018). However, in general, the global 

optimal ITR x sign[C(x)] can take a very complicated functional form, while decision 

makers may want to have a simpler ITR (Kitagawa and Tetenov, 2018). Then the ITR class 

D is often considered as a restricted subset of measurable functions from X to ± 1 . The 

following two-step procedure can be implemented to estimate the restricted optimal ITR on 

D: first we estimate the CTE function x C(x) using flexible nonparametric techniques; 

and then we estimate the ITR by solving maxd ∈ DEn[C(X)d(X)] on the restricted ITR class 

D (Zhang et al., 2012a). Here, En is the empirical average based on the training data.

2.2 Covariate Changes

It can be observed that the value functions defined in Section 2.1 depend on the underlying 

distribution. Suppose we are interested in a testing distribution ℙtest that may be different 

from the training distribution ℙ to some extent. Then ITRs estimated by most existing 

methods may not be able to perform well on our target population. In order to address this 

problem, we first make the following assumption on the potential difference between ℙtest
and ℙ.

Assumption 1 (Covariate Changes). For every training distribution ℙ and testing distribution 

ℙtest considered in this paper, we assume the followings:

I. ℙtest ≪ ℙ;
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II. There exists w:X ℝ+ such that Eℙw(X) = 1, and dℙtest/dℙ = w(X).

Assumption 1 (I) requires that the support of the testing distribution cannot go beyond the 

training distribution. Assumption 1 (II) is mathematically equivalent to assuming that the 

differences between ℙ and ℙtest only appear in the covariate distributions. The treatment-

response relationship conditional on covariates remains unchanged across training and 

testing distributions. Specifically, let pX(x)pY |X(y(1), y( − 1) |x) and qX(x)qY |X(y(1), y( − 1) |x)
be the training and testing densities of the data (X, Y (1), Y ( − 1)). Then the density ratio 

dℙtest/dℙ becomes

dℙtest
dℙ =

qX(X)
pX(X) ×

qY X(Y (1), TY ( − 1) X)
pY X(Y (1), TY ( − 1) X)

.

If qY |X(Y (1), Y ( − 1) |X) = pY |X(Y (1), Y ( − 1) |X), i.e., the conditional distributions 

(Y (1), Y ( − 1)) |X are identical under ℙtest and ℙ, then dℙtest/dℙ = qX(X)/pX(X), which is the 

weighting function w(X) in Assumption 1 (II).

The assumption of covariate changes is commonly seen in the setting of randomized trial. 

Consider the training and testing populations together as a pooled population with finite 

subjects. For each subject i ∈ 1, 2, … , N , let Si ∈ 0, 1  be a selection random variable 

such that Si = 1 if i is a training sample point, and Si = 0 if i is a testing sample point. Let the 

distributions of (Xi, Y i(1), Y i( − 1)) | (Si = 1) and (XiY i(1), Y i( − 1)) | (Si = 0) be the training 

distribution ℙ and the testing distribution ℙtest respectively. Denote ℙ as the joint distribution 

of (XiY i(1), Y i( − 1), Si). Then conditions in Assumption 1 can correspond to the following 

(Hotz et al., 2005; Stuart et al., 2011):

• (Overlapping Support) 0 < ℙ(Si = 1|Xi) < 1;

• (Selection Unconfoundedness) Si ⫫ (Y i(1), Y i( − 1)) |Xi.

In particular, under this finite population setting, the overlapping support condition is 

equivalent to that ℙtest ≪ ℙ and ℙ ≪ ℙtest, and the selection unconfoundedness condition is 

equivalent to Assumption 1 (II). Such a correspondence can bring more intuitive 

implications of Assumption 1 under the randomized trial setting. Specifically, the 

overlapping support requires the chances of each subject being selected into the training and 

testing populations to be both positive. The selection unconfoundnedness requires that the 

selection mechanism is independent of the potential outcomes given the covariates. Both 

conditions can be satisfied by a successful trial design (Pearl and Bareinboim, 2014). The 

phenomenon of covariate changes between ℙ and ℙtest can exist if 

ℙ(Si = 1|Xi) ≠ ℙ(Si = 0|Xi) with a positive probability. This can be often the case if the 

subject needs to satisfy certain requirements before enrolling a trial.

As a consequence from Assumption 1, the CTE function 

C(X) = Eℙ[Y (1) − Y ( − 1) |X] = Etest[Y (1) − Y ( − 1) |X] remains unchanged under ℙ and ℙtest. 
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Then it can be convenient to consider the value functions V1(d) = Eℙ[C(X)d(X)] and 

V1, test(d) = Etest[C(X)d(X)] defined in (1). When the testing value function V1, test(d) is of 

interest, maximizing the training value function V1(d) may not be optimal. Alternatively, we 

can rewrite the testing value function V1, test(d) = Eℙ[w(X)C(X)d(X)] where 

w(X) = dℙtest/dℙ. Then based on the training data from ℙ, we can maximize 

Eℙ[w(X)C(X)d(X)] that targets the correct objective. It amounts to determine the weighting 

function w that captures the differences between ℙtest and ℙ.

Remark 1. Notice that for any weighting function w:X ℝ+, we have 

Eℙ[w(X)C(X)d(X)] ⩽ Eℙ[w(X) |C(X) | ] with equality if d(X) = sign[C(X)]. That is, if D
consists of all measurable functions from X to ± 1 , then the global optimal ITR is not 
sensitive to any covariate changes in the testing distribution. However, the problem of 

covariate changes induces a challenge if D is a restricted ITR class.

Remark 2. Our methodology only relies on the fact that C(X) remains unchanged under ℙ
and ℙtest. Therefore, it can be possible to relax Assumption 1 to allowing distributional 

changes in (Y (1), Y ( − 1)) |X, while assuming that the CTE function C( ⋅ ) remains identical 

across ℙ and ℙtest. Furthermore, our methodology can also be meaningful if the testing CTE 

function can be different from training, but the optimal treatment assignment remains 

unchanged. We will discuss this extension in Remark 5.

2.3 An Illustrative Example

In this section, we begin with an example as in Figure 1 that the optimality of an ITR 

depends on the underlying distribution. There are two underlying bivariate normal 

distributions of means (0, 0)⊤; (training) and (1.47, 1.69)⊤; (testing) respectively. We obtain 

the standard ITR by maximizing the value function V1(d) under the training distribution 

over the linear ITR class. We also obtain the DR-ITR by maximizing the DR-value function 

Vc
k(d) to be introduced in Section 2.4 over the linear ITR class. Then the DR-ITR is 

compared with the standard ITR through the value functions V1 under the training 

distribution and V1, test under the testing distribution as in Table 1. Since the values can be 

comparable only through the same value function but not across different value functions, 

we further define the criteria relative regret of an ITR as 

[value(LB‐ITR) − value(ITR)]/|value(LB‐ITR)|, where “value” can be V1 or V1, test, and the LB-

ITR maximizes the corresponding value function over the linear ITR class. In this sense, 

value(LB-ITR) is the best achievable value among the linear ITR class for the corresponding 

value function, and becomes the benchmark reference for the relative regret criteria.

Two facts can be concluded from Table 1: 1) the optimality of an ITR can be different across 

different distributions; and 2) maximizing the training value function may have poor testing 

performance when covariate changes exist. In Table 1, even though the standard ITR is 

optimal under the training distribution, it can be far from optimal (94.49% off in terms of 

relative regret) under the testing distribution. In contrast, the DR-ITR may not enjoy high 
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training value, but can have much better testing performance (only 9.16% off in terms of 

relative regret).

Remark 3. Figure 1 also illustrates how the covariate changes affect the optimality of ITRs. 

Specifically, we can divide the covariate domain into two types of subdomains, annotated in 

blue and red, on which the DR-ITR and standard ITR have different treatment assignments. 

On the blue subdomain, the standard ITR assignment shares the same sign with the CTE 

function, while the DR-ITR does not. In this case, the standard ITR outperforms the DR-ITR 

with the difference of value |C(X)| at the individual level. The case reverses on the red 

subdomain on which the DR-ITR outperforms the standard ITR. The overall difference of 

values integrates the individual difference with respect to the training or testing density.

The overall outperformance of the DR-ITR under the testing distribution can be explained 

from the following three perspectives: 1) the 95% confidence ellipsoid of the training 

domain only covers a small area of the red subdomain, while that of the testing domain 

covers a much larger area; 2) the distance of the red subdomain from the testing centroid is 

much closer than its distance from the training centroid. Then the red subdomain 

concentrates higher testing density than training; and 3) the individual value differences 

|C(X) | ′s are generally larger on the red subdomain intersected with the testing domain than 

that intersected with the training domain. Therefore, the DR-ITR performs much better than 

the standard ITR on the testing distribution.

2.4 Maximizing the Distributionally Robust Value (DR-Value) Function

We begin to introduce our DR-ITR that can show strong generalizability as in Figure 1. As 

discussed in Section 1, our goal in this paper is not to find an ITR that is generalizable on a 

specific testing distribution, but rather, to find an ITR that guarantees reasonable 

performance across an uncertain set of testing distributions. We first define the k-th power 
uncertainty set in two equivalent ways under Assumption 1:

Pc
k(ℙ): = ℚ ≪ ℙ dℚ/dℙ Lk(ℙ) ⩽ c (2)

= ℚ ≪ ℙ w:X ℝ+, Eℙw(X) = 1, Eℙw(X)k ≤ ck, dℚ
dℙ = w(X) . (3)

The set Pc
k(ℙ) consists of the probability distributions ℚ such that the Lk(ℙ)-norm of the 

density ratio dℚ/dℙ is bounded above by the DR-constant c. The definition (3) highlights 

that the density ratio is a weighting function w of X, and the distribution ℚ in Pc
k(ℙ) can be 

characterized by the weighting function w satisfying the conditions in (3). Here the DR-

constant c ⩾ 1 controls the degree of the distributional robustness that measures how “close” 

ℚ is from ℙ. In particular, c = 1 reduces the power uncertainty set Pc
k(ℙ) to the singleton ℙ . 

The power order 1 < k ⩽ + ∞ parametrizes the measurement of the distance of ℚ from ℙ. In 

particular, the power uncertainty set Pc
k(ℙ) increases in c as k is fixed, and decreases in k as 

c is fixed. The latter one is due to the Lyapunov’s inequality: dℚ/dℙ Lk(ℙ) ⩽ dℚ/dℙ Lk′(ℙ)
whenever 1 < k ⩽ k′ ⩽ + ∞. In the Supplementary Material, we will discuss the explicit 
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form of Pc
k(ℙ) in the context of specific parametric families of distributions, and how it 

depends on the DR-constant c and the power k. One important conclusion from Example S.2 

in the Supplementary Material for the mean-shifted p-dimensional normal distribution is that 

Np(μ, Ip) ∈ Pc
k(Np(0p, Ip)) if and only if μ 2

2 ⩽ 2logc
k − 1 .

With the power uncertainty set Pc
k(ℙ), we propose to robustly maximize the following worst-

case value function among the values under ℚ ∈ Pc
k(ℙ):

Vc
k(d): = inf

ℚ ∈ Pck(ℙ)
Eℚ[C(X)d(X)],

(4)

which we term as the DR-value function. In particular, c = 1 reduces the DR-value function 

V1
k(d) to the standard value function V1(d) = Eℙ[C(X)d(X)] in the definition (1).

Remark 4 (Optimality). The “optimality” of the DR-ITR is with respect to the DR-value 

function Vc
k, which highlights its difference from the traditional “optimal” ITR with respect 

to the standard value function V1.

In the example in Section 2.3, the standard ITR maximizes the value function under the 

training distribution over the linear ITR class, while the DR-ITR maximizes the DR-value 

function Vc
k(d) of k = 2 and c = 20 over the linear ITR class. In particular, the randomness of 

ℙ comes from the training covariate distribution N2(02, I2). Such a choice of Pc
k(ℙ) contains 

the mean-shifted normal distributions N2(μ, I2) for all μ ∈ {(μ1, μ2)⊤:μ1
2 + μ2

2 ⩽ 4log5}. In 

Figure 2a, we enumerate such mean-shifted normal distributions as the testing distributions, 

and evaluate the relative improvement of the DR-ITR over the standard ITR as the difference 

of their relative regrets. Among all testing distributions, the relative improvements of the 

DR-ITR span from −37.4% to 85.3%, suggesting that the potential of improvement can be 

large. Besides the DR-constant c = 20, we also consider the case c = 2.71, 6.57, 10.31 in the 

Supplementary Material. As c increases, the range of relative improvements becomes wider. 

The increase in the relative improvement upper bound is in general much larger than the 

decrease in the lower bound.

Based on these observations, the DR-constant c should be carefully chosen. On one hand, as 

can be seen from Figure 2a, the DR-ITR for a fixed DR-constant c may or may not improve 

over the standard ITR on a specific testing distribution within Pc
k(ℙ). When the DR-constant 

c can be tuned adaptive to the specific testing distribution, then the DR-ITR can perform at 

least as well as the standard ITR. On the other hand, we may not even have any prior 

information on c to ensure that the power uncertainty set Pc
k(ℙ) contains the testing 

distribution of interest. Both cases ask for additional information to calibrate the choice of c 
so that the DR-ITR performs well on a specific testing distribution. Suppose we are able to 

obtain a small size of calibrating sample from the testing distribution. We propose the 

following training-calibrating procedure to choose c: 1) at the training stage, we estimate 
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DR-ITRs {dc}c ∈ C where c is the DR-constant to compute dc, and C is a set of candidate 

DR-constants; 2) we obtain a calibrating sample from the testing distribution, on which we 

estimate the testing values of {dc}c ∈ C; 3) we select the c  that maximizes the value of dc
among c ∈ C.

In order to estimate the value function under the testing distribution, we consider the 

following two possible calibration scenarios: 1) the calibrating sample is a randomized 

controlled trial (RCT) dataset (X, A, Y ) from the testing distribution; and 2) the calibrating 

sample only consists of the covariates X from the testing distribution. Scenario 1 will be 

more ideal than Scenario 2 since we have the testing information of both the treatment and 

the outcome. We can evaluate an ITR d using the IPWE 

Vcalib
IPWE(d) = Encalib{1[d(X) = A]Y /πcalib(A |X)}, where Encalib is the empirical average over 

the calibrating sample, πcalib is the corresponding propensity score function, and πcalib is 

known or estimable from the calibrating data. We call the corresponding calibrate DR-ITR 

as RCT-DR-ITR. In Scenario 2, we do not have the treatment-response information from the 

testing distribution. We can instead use the value function estimate 

Vcalib
CTE(d) = Encalib[Cn(X)d(X)] to evaluate d, where Cn(X) is estimated at the training stage. 

However, the CTE estimate Cn( ⋅ ) may also suffer from a potential generalizability problem 

on the testing distribution. Practitioners need to be careful of the generalizability of the CTE 

estimate when performing the calibration. We call the corresponding DR-ITR as CTE-DR-
ITR.

RCT-DR-ITR and CTE-DR-ITR are different in their use of information for calibration. 

Specifically, the RCT-DR-ITR makes use of (X, A, Y ) from the testing distribution, while the 

CTE-DR-ITR only makes use of X from the testing distribution, and the underlying CTE 

function C(X). In practice, C(X) is estimated from training data. It requires Assumption 1 to 

generalize the CTE estimate Cn(X) from training to testing. If Assumption 1 holds, then 

CTE-DR-ITR can have better performance than RCT-DR-ITR, since CTE-DR-ITR captures 

less variance from calibrated data. If Assumption 1 is violated, which will be illustrated in 

Section 4.2, then CTE-DR-ITR can have poorer performance than RCT-DR-ITR, since the 

testing value function estimate of CTE-DR-ITR can be biased.

In Figure 2b, we generate a calibrating RCT sample from ℙtest of size 50. It shows that 

across the mean-shifted testing distributions, the relative improvements of the calibrated DR-

ITRs range from −1.70% to 82.4%. It suggests that the small sample size 50 is sufficient for 

a reasonably good calibration, with the positive relative improvements being maintained.

Remark 5 (Extending Covariate Changes). Consider the case that Assumption 1 is violated. 

Let Ctest be the testing CTE function that can be different from the training CTE function C. 

We use the notations ℙ and ℙtest to refer to the training and testing covariate distributions. 

Assume that sign[Ctest(X)] = sign[C(X)] almost surely. Then we can still represent the value 

function under the testing distribution as follows:
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Etest[Ctest(X)d(X)] = Eℙ
dℙtest

dℙ
Ctest(X)

C(X) 1[C(X) ≠ 0] × C(X)d(X) .

The definition of the DR-value function (4) can be robust with respect to the change of 

(ℙtest, Ctest) from (ℙ, C), such that w(X): = (dℙtest/dℙ) × [Ctest(X)/C(X)]1[C(X) ≠ 0] satisfies 

Eℙw(X) = 1 and Eℙw(X)k ⩽ ck.

Remark 6. The calibration procedure ensures that among the DR-ITRs of various DR-

constants, the best one is chosen to maximize the testing value function. In this sense, the 

calibrated DR-ITR can have potential of improving the generalizability from training to 

testing. However, if the testing distribution is very far from the training distribution, one 

cannot expect that an ITR estimated by any method from the training data can perform well 

on the test data, even though our proposed method may be able to protect against such a 

distributional change to some extent. Therefore, in practice, we suggest to use our method 

when training and testing distributions are relatively close.

2.5 Distributionally Robust Expectation

In this section, we first discuss the rationale of considering the Lk-norm of the density ratio 

as the measurement of distributional distance. We show that the k-th power uncertainty set 

Pc
k(ℙ) is equivalent to the distributional ball induced by the ϕ-divergence (Pardo, 2005) for 

some specific divergence ϕ. Then we derive the dual form of the worst-case expectation over 

Pc
k(ℙ), which provides a more tractable optimization problem.

2.5.1 Equivalence to the Divergence-Based Distributional Ball—As a 

generalization of the conventional likelihood-based framework which corresponds to the 

Kullback-Leibler (KL) divergence, the framework of general ϕ-divergence between 

distributions has been well studied in the context of parameter estimation and hypothesis 

testing (Pardo, 2005). The ϕ-divergence between two probability distributions ℙ and ℚ such 

that ℚ ≪ ℙ is defined as follows:

Dϕ(ℚ‖ℙ): = ∫ ϕ dℚ
dℙ dℙ = Eℙϕ

dℚ
dℙ ; ϕ ∈ Φ ,

where Φ is a class of convex functions on ℝ that satisfies the regularity conditions: 

ϕ(w) = + ∞ for w > 0, ϕ(1) = ϕ′(1) = 0, and lim
w 0+

wϕ(p/w) = lim
w + ∞

ϕ(w)/w for p > 0. 

The definition with various choices of ϕ’s includes the empirical likelihood 

ϕEL(w) = − logw + w − 1, the KL divergence ϕKL(w) = wlogw − w + 1, and the χ2-

divergence ϕχ2(w) = 1
2 (w − 1)2. There is another important special case that relates to the 

power uncertainty set of k = + ∞. Consider the optimization indicator for c ⩾ 1:ϕ∞, c = 0 if 

u ∈ [0, c] and +∞ otherwise, for which Dϕ∞, c(ℚ‖ℙ) = 0 if dℚ/dℙ L∞(ℙ) ⩽ c, and +∞

otherwise. Then Dϕ∞, c(ℚ‖ℙ) = 0 if and only if Pc
∞(ℙ).
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Although Dϕ is not a proper metric between probability distributions since it is asymmetric, 

we can still define a Dϕ-distributional ball as Pρ
ϕ(ℙ): = {ℚ ≪ ℙ:Dϕ(ℚ‖ℙ) ⩽ ρ}, where ℙ is 

the center and ρ ⩾ 0 is the radius. Then for any ρ ⩾ 0, the Dϕ∞, c-distributional ball 

Pρ
ϕ∞, c(ℙ) ≡ {ℚ ≪ ℙ:Dϕ∞, c(ℚ‖ℙ) = 0}, which coincides with the power uncertainty set 

Pc
∞(ℙ) defined in (2) for k = ∞. Such an equivalence can be extended to all finite 

k ∈ (1, + ∞) when a Cressie-Read (CR) family (Cressie and Read, 1984) of divergence 

functions ΦCR ⊆ Φ is taken into consideration. For k > 1, the corresponding ϕk ∈ ΦCR is 

defined as

ϕk(w): = wk − kw + k − 1
k(k − 1) ; w ⩾ 0.

Here, ϕk effectively measures the probability-distributional distance by the k-th moment of 

the density ratio, since Dϕk(ℚ‖ℙ) = 1
k(k − 1) [Eℙ(dℚ/dℙ)k − 1] as long as ℚ is a probability 

distribution. Then it can be inferred that the Dϕk-distributional ball Pρ
ϕk(ℙ) is actually 

equivalent to the power uncertainty set Pck
k (ℙ) in (2). Here, there is a one-to-one 

correspondence between the DR-constant c and the radius ρ of the Dϕk-distributional ball 

with ck(ρ): = [k(k − 1)ρ + 1]1/k. We conclude the case k = + ∞ and 1 < k < + ∞ with the 

following:

Pρ
ϕ∞, c(ℙ) = Pc

∞(ℙ); Pρ
ϕk(ℙ) = Pck(ρ)

k (ℙ); ρ ⩾ 0. (5)

2.5.2 Dual Representation—We begin with a general result on the dual representation 

of the ϕ-divergence-based distributionally robust expectation. We state the following lemma 

and refer readers to Duchi and Namkoong (2018, Proposition 1).

Lemma 1. Fix a random variable Z on ℝ with distribution ℙ. Let ϕ ∈ Φ be a legitimate 
divergence function. Define the convex conjugate of ϕ as

ϕ*(x*): = sup
x ∈ ℝ

{ x*, x − ϕ(x)}; x* ∈ ℝ .

Then for ρ > 0,

sup
ℚ ∈ Pρϕ(ℙ)

EℚZ = inf
λ ⩾ 0
η ∈ ℝ

Eℙ λϕ* Z − η
λ + λρ + η .

(6)

Let c ⩾ 1. Lemma 1 can be directly applied to the optimization indicator: ϕ∞, c(u): = 0 if 

u ∈ [0, c] and +∞ otherwise, whose convex conjugate is given by ϕ∞, c* (u) = c max u, 0 . Then 

λ in (6) attains the infimum at λ = 0, so that
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sup
ℚ ∈ Pρ

ϕ∞, c(ℙ)
EℚZ = inf

η ∈ ℝ
{cEℙ(Z − η)+ + η} .

(7)

In particular, the right hand side of (7) is solved by the (1 − 1/c)-value-at-risk VaR1 − 1/c in 

finance, or equivalently, the (1 − 1/c)-quantile of Z under the center distribution ℙ. The right 

hand side of (7) itself is defined as the (1 − 1/c)-conditional value-at-risk CVaR1 − 1/c
(Rockafellar and Uryasev, 2000). Next, we apply Lemma 1 to the k-th power divergence ϕk 

to derive the dual problem of the worst-case expectation over Pc
k(ℙ).

Lemma 2. Let ΦCR be the Cressie-Read family of divergence functions, k, k* ∈ (1, + ∞) be 

conjugate numbers, i.e., 1
k + 1

k* = 1, and ϕk ∈ ΦCR. Then we have following conclusions:

I. The convex conjugate of ϕk is given by

ϕk*(z) = 1
k [(k − 1)z + 1]+k* − 1 .

II. Fix a probability measure ℙ and a random variable Z on ℝ. Then for ρ ⩾ 0,

sup
ℚ ∈ Pρ

ϕk(ℙ)
EℚZ = inf

η ∈ ℝ
ck(ρ)[Eℙ(Z − η)+

k*]1/k* + η ,
(8)

where ck(ρ) = [k(k − 1)ρ + 1]1/k.

Note that the right hand side of (8) and its optimizer η are both coherent risk measures as the 

higher-order generalizations of the CVaR and VaR (Krokhmal, 2007).

Using the equivalence in (5), the worst-case expectation over the power uncertainty set 

Pρ
ϕk(ℙ) for k ∈ (1, ∞] and k* = k

k − 1  (in particular,k = ∞ k* = 1) unifies (7) and (8) as 

follows:

sup
ℚ ∈ Pck(ℙ)

EℚZ = inf
η ∈ ℝ

c[Eℙ(Z − η)+
k*]1/k* + η ; c ⩾ 1.

(9)

By inspecting the dual problem (9), the right hand side is computationally more tractable 

than the left hand side, since instead of optimizing over an infinite-dimensional probability 

measure ℚ, we only need to optimize over a univariate variable η.

In order to apply the duality result to the DR-ITR problem, we negate the DR-value 

maximization to a risk minimization problem. Denote the risk function under the training 

distribution ℙ as ℛ1(d): = V1(d) = Eℙ C(X)[ − d(X)] . Then for k ∈ (1, ∞] and c ⩾ 1, the DR-

risk function is defined as
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ℛck(d): = sup
ℚ ∈ Pck(ℙ)

Eℚ{C(X)[ − d(X)]} .

Using the fact Z = − C(X)d(X) = C(X)1[d(X) = − 1] + [ − C(X)]1[d(X) = 1], the dual 

representation (9) can be expressed in the following particular form (10).

Corollary 3 (Dual Representation of the DR-Risk Function). Let k ∈ (1, + ∞], k* = k
k − 1  if 

k < + ∞ and k* = 1 if k = + ∞, c ⩾ 1. Then the DR-risk function ℛc
k has the following dual 

representation:

ℛc
k(d) = inf

η ∈ ℝ
c E [C(X) − η]+

k*1[d(X) = − 1] + [ − C(X) − η]+
k*1[d(X) = 1] 1/k* + η .

(10)

2.6 Implementation

In this section, we introduce the implementation of DR-risk minimization based on the 

empirical data. We cast the learning problem as finding a decision function f:X ℝ that 

induces an ITR based on its sign: d(x) = sign[f(x)]. The ITR class D can correspond to a 

prespecified decision function class ℱ. The DR-risk function as a functional of the decision 

function becomes ℛc
k(f) = supℚ ∈ Pck(ℙ)Eℚ{C(X)sign[ − f(X)]}. However, directly 

optimizing the risk ℛc
k(f) is challenging, since the sign( ⋅ ) operation is nonconvex and 

nonsmooth. We consider a specific difference-of-convex (DC) relaxation of the sign 

operator.

We propose to relax the indicators in the dual form (10) by the following robust smoothed 

ramp loss (Zhou et al., 2017): 

ψ(u): = (1 − u)21(0 ⩽ u ⩽ 1) + [2 − (1 + u)21( − 1 ⩽ u ⩽ 0) + 21(u ⩽ − 1)]. The DC 

representation is given by ψ(u) = ψ+(u) − ψ−(u), where 

ψ+(u) = (1 − u)21(0 ⩽ u ⩽ 1) + (1 − 2u)1(u ⩽ 0), 

ψ−(u) = u21( − 1 ⩽ u ⩽ 0) + ( − 1 − 2u)1(u ⩽ − 1). The advantages of using the symmetric 

nonconvex loss can be: 1) to protect from outliers in X and improve generalizability (Shen et 

al., 2003; Wu and Liu, 2007), and 2) to equally indicate f(X) < 0 and f(X) > 0. We would 

like to point out that 1[f(X) < 0] + 1[f(X) > 0] ≡ 1 will be preserved to 
ψ[f(X)]

2 + ψ[ − f(X)]
2 ≡ 1 in this surrogate loss. Then we define the DR-ψ-risk function as

ℛc, ψ
k (f): = inf

η ∈ ℝ

c E [C(X) − η]+
k*ψ[f(X)]

2 + [ − C(X) − η]+
k*ψ[ − f(X)]

2
1/k*

+ η .
(11)
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Algebraically, we can invert (11) to its primal representation 

ℛc, ψ
k (f) = supℚ ∈ Pck(ℙ)Eℚ[C(X)ζψ(f)] by introducing a sign random variable ζψ(f) ∈ ± 1

with ℙ(ζψ(f) = ± 1|X): = ψ[ ± f(X)]
2 . That is, given the covariate X, the original 

deterministic sign sign[ − f(X)] is relaxed to the random sign ζψ(f) with ±1 probability 

ψ[ ± f(X)]
2 . In particular, if f(X) > 0, then sign[ − f(X)] = − 1 is a hard sign while ζψ(f) is a 

soft sign with ℙ(ζψ(f) = − 1|X) = ψ[ − f(X)]
2 > ψ[f(X)]

2 = ℙ(ζψ(f) = 1 |X). When c = 1, the 

DR-risk function reduces to the risk function under the training distribution, and the DC 

relaxation here is equivalent to the relaxation in Zhou et al. (2017).

The DR-ψ-risk function provides the learning objective based on the empirical data. In 

particular, the population expectation E is replaced by the empirical average En, and the CTE 

function C( ⋅ ) is replaced by a plug-in estimate Cn( ⋅ ). The corresponding empirical objective 

is minimized over the decision function f and the auxiliary variables (η, λ) jointly:

min
f ∈ ℱ, η ∈ ℝ

c En [Cn(X) − η]+
k*ψ[f(X)]

2 + [ − Cn(X) − η]+
k*ψ[ − f(X)]

2
1/k*

+ η

= min
f ∈ ℱ, η ∈ ℝ, λ ⩾ 0

c
k*λk* − 1En [Cn(X) − η]+

k*ψ[f(X)]
2 + [ − Cn(X) − η]+

k*ψ[ − f(X)]
2 + cλ

k + η .

The objective function is a summation of multiple products of DC functions. For k < + ∞, 

we consider a block successive upper-bound minimization algorithm (Razaviyayn et al., 

2013) to alternatively minimize the convex upper bounds over the decision function f and the 

auxiliary variables (η, λ) respectively. For k = + ∞, it requires a further probabilistic 

enhancement to break ties at argmin and ensure the convergence to stationarity (Qi et al., 

2019a,b). The implementation details are given in the Supplementary Material.

3 Theoretical Properties

In this section, we justify the validity of the DC relaxation and the empirical substitution. 

First of all, we introduce the following joint stochastic objectives:

ℓck(f, η, λ; C): = c
k*λk* − 1 [C(X) − η]+

k*1[f(X) < 0] + [ − C(X) − η]+
k*1[f(X) > 0] + cλ

k + η;

ℓc, ψk (f, η, λ; C): = c
k*λk* − 1 [C(X) − η]+

k*ψ[f(X)]
2 + [ − C(X) − η]+

k*ψ[ − f(X)]
2 + cλ

k + η .

Here, C can be the plug-in estimate Cn or the underlying true CTE C. Denote 

ℒc
k(f, η, λ): = Eℓc

k(f, η, λ; C), ℒc, ψ
k (f, η, λ): = Eℓc, ψ

k (f, η, λ; C). Then by Corollary 3, we have 
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ℛc
k(f) = infη ∈ ℝ, λ ⩾ 0ℒc

k(f, η, λ), ℛc, ψ
k (f) = infη ∈ ℝ, λ ⩾ 0ℒc, ψ

k (f, η, λ). In the following 

proposition, we show the validity of the DC re-laxation.

Proposition 4 (Fisher Consistency and Excess Risk). Suppose ℛc
k, ℛc, ψ

k , ℒc
k and ℒc, ψ

k  are 

defined as above. Fix k ∈ (1, + ∞], k* = k
k − 1 , c ⩾ 1, η ∈ ℝ, λ > 0. Then the following results 

hold:

I. (Fisher Consistency)

argmin
f :X [ − 1, 1]

ℒc, ψk (f, η, λ) = argmin
f :X ± 1

ℒck(f, η, λ), min
f :X [ − 1, 1]

ℒc, ψk (f, η, λ)

= min
f :X ± 1

ℒck(f, η, λ);

II. (Excess Risk) Denote ℒc
k, * (η, λ): = minf ∈ X ± 1 ℒc

k(f, η, λ). Then for 

f:X ℝ, we have

ℒck(f, η, λ) − ℒck, * (η, λ) ⩽ 2[ℒc, ψk (f, η, λ) − ℒck, * (η, λ)] .

Denote ℛc
k, * : = infη ∈ ℝ, λ ⩾ 0ℒc

k, * (η, λ). Then for f:X ℝ, we have

ℒck(f, η, λ) − ℛck, * ⩽ 2[ℒc, ψk (f, η, λ) − ℛck, * ], ℛck(f) − ℛck, * ⩽ 2[ℛc, ψk (f) − ℛck, * ] .

Suppose ℱ is a functional class on X with norm ⋅ ℱ that characterizes the complexity of 

function. Motivated by Steinwart and Scovel (2007, (6)), we define for γ ⩾ 0 the constrained 

version of the approximation error

Ack(γ): = inf
f ∈ ℱ

ℛc, ψk (f): f ℱ ⩽ γ − ℛck, * .

Similarly to that in Steinwart and Scovel (2007), Ac
k(γ) with the appropriately chosen tuning 

parameter γ can trade off the learnability and the approximatability of ℱ towards the 

population Bayes rule argminf:X ± 1 ℛc
k(f). Specifically, as γ increases, the population 

approximation error (“bias”) Ac
k(γ) decreases with γ, while the empirical complexity 

(“variance”) increases with γ. The trade-off will be stated more explicitly in the following 

Assumption 5.

Next, we make the following assumptions to show the regret bound for the empirical 

minimization of the ψ-risk Enℓc, ψ
k (f, η, λ; Cn). Without loss of generality, we restrict to 

consider the functional class ℱ as the Reproducing Kernel Hilbert Space (RKHS) with the 

Gaussian radial basis function kernels, where ⋅ ℱ is the RKHS-norm. General results can 

be established by adopting the covering number argument as in Zhao et al. (2019a, Theorem 

3.1).
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Assumption 2 (Boundedness). There exists M < + ∞ such that C(X) ⩽ M almost surely.

Assumption 3 (Diffuse Property). The distribution of C(X) has a uniformly bounded density 

with respect to the Lebesgue measure.

Assumption 4 (Convergence of the Plug-in CTE). For the CTE estimate Cn(X), we assume 

that Cn − C ∞: = sup
x ∈ X

Cn(x) − C(x) ℙ 0.

Assumption 5 (Approximation Error Rate). There exists β ∈ (0, 1] and KA < + ∞ such that 

for all small enough γ > 0, we have Ac
k(γ) ⩽ KAγ−β.

As a remark, we note that Assumption 2 can hold if the difference of potential outcomes 

Y (1) − Y ( − 1) is uniformly bounded, or X is compact and x C(x) is continuous. 

Assumption 3 holds if X has a diffuse distribution, i.e., X doesn’t contain points with 

positive mass; and x C(x) is injective. Assumption 3 is the key assumption to bound λ 
away from 0. This assumption will not be necessary if k = + ∞ and k* = 1. Assumption 4 

can be met if X is compact and Cn is a random forest estimate (Wager and Walther, 2015). 

Following Steinwart and Scovel (2007, Theorem 2.7), Assumption 5 can be shown valid if 

the Tsybakov’s noise assumption on the population margin is met and the kernel bandwidth 

parameter is chosen appropriately. In the following proposition, we establish the regret 

bound.

Proposition 5 (Regret Bound). Suppose ℛc
k, ℛc, ψ

k , and ℒc
k, ℒc, ψ

k  are defined as above. Fix 

k ∈ (1, + ∞], k* = k
k − 1 , c > 1. Assume that Assumptions 2–5 hold. Let

(fn, ηn, λn) ∈ argmin
f ∈ ℱ, η ∈ ℝ, λ ⩾ 0

Enℓc, ψk (f, η, λ; Cn): f ℱ ⩽ γn ,

with the tuning parameter γn satisfying γn = O(n− 1
2β + 1) as n ∞. Then there exists 

constants K0 = K0(c, M) < + ∞ and K1 = K1(c, M) < + ∞ such that for 0 < δ < 1, with 

probability at least 1 − δ, we have

ℛck(fn) − ℛck, * ⩽ ℒck(fn, ηn, λn) − ℛck, * ⩽ K0 log(2/δ)n− β
2β + 1 + K1 Cn − C ∞ .

In particular, there exists K01, K02, K11, K12 < + ∞ not depending on c, M, such that
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K0(c, M) =
K01

c
(k* + 1)(2k* − 1)

k* − 1 + 1
2

(c − 1)k* + 1/2 Mk * + 1/2, k < + ∞;

K02cM3/2 k = + ∞;

K1(c, M)

=
K11

c2k* + 1

(c − 1)k* − 1Mk* − 1 k < + ∞;

K12c, k = + ∞ .

In Proposition 5, it can be of theoretical interest to understand how the regret bound depends 

on the DR-constant c and the power order k. Specifically, as c + ∞, η approaches to the 

essential supremum of [C(X) − η]+k*ψ[f(X)]
2 + [ − C(X) − η]+k*ψ[ − f(X)]

2  (Krokhmal, 2007, 

Example 2.3). Then λ vanishes to 0 so that 1/λ tends to +∞. Since the Lipschitz constant of 

ℓc, ψ
k (f, η, λ) with respect to λ scales with 1/λk*, the universal constants K0 and K1 grow to 

+∞ as well.

Another important fact is that the conjugate number k* of k appears in the polynomial orders 

of c and M respectively in the universal constants K0 and K1. In particular, for a large 

conjugate order k*, the universal constants K0 and K1 increase with the DR-constant c and 

the CTE bound M more rapidly. In order to achieve a tighter finite sample regret bound, a 

smaller k* and hence a larger k is preferred. Such a phenomenon complements the fact that 

the power uncertainty set Pc
k(ℙ) decreases in k. Specifically, as the power order k increases, 

its conjugate order k* decreases, and the regret bound in Proposition 5 becomes tighter. On 

the contrary, the power uncertainty set Pc
k(ℙ) gets smaller, and the worst-case objective is 

less distributionally robust. Therefore, the power order k trades off between the 

distributional robustness in terms of the size of Pc
k(ℙ), and the finite sample regret bound.

4 Simulation Studies

In this section, we carry out two simulation studies to evaluate the generalizability of the 

DR-ITR on the testing distributions that are different from the training distribution. The first 

simulation considers the covariat shifts. The second simulation considers the mixture of 

subgroups.

4.1 Covariate Shifts

In this section, we extend the motivating example in Section 2.3 to a more practical 

simulation setting. Consider the training data generating process: n = 1,000, p =10, 

X Np(0p, Ip), A|X Bernoulli(1/2) and Y (X, A) = m(X) + (A − 1/2)C(X) + N(0, 1), where 

m(x) = 1 + 1
p ∑j = 1

p xj, C(x) = x2 − (x1
3 − 2x1).

At the training stage, we first obtain a CTE function estimate Cn by fitting a casual forest 

(Wager and Athey, 2018) on the training data. Then we obtain the out-of-bag prediction at 

the training covariates Cn(X). Next we fit the standard ITR by empirically minimizing 
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En{Cn(X)(ψ[f(X)] − 1)} as the ψ-relaxation of the empirical risk function 

En{Cn(X)sign( − f(X)]}, over the linear function class 

ℱγ : = {f(x) = b + β⊤x:b ∈ ℝ, β ∈ ℝp, β 2 ⩽ γ}. The tuning parameter γ ⩾ 0 is determined by 

10-fold cross-validation among {0.1, 0.5, 1, 2, 4}. Finally, we fit the DR-ITRs for k = 2 and 

c ∈ C = {1.19, 1.38, · · · , 20} from the function class ℱγ, where γ is the same as that of the 

standard ITR.

We consider the mean-shifted testing distribution X Np(μ, Ip) for various covariate centroids 

µ’s. In order to calibrate the DR-constant c for every fixed µ, we generate a calibrating 

dataset of size ncalib = 50 from the testing distribution. The following two scenarios for the 

calibrating data are considered here: 1) a randomized controlled trial (RCT) dataset (X, A, Y )
is generated, with X Np(μ, Ip) and (A, Y ) as before; and 2) only the covariate vector 

X Np(μ, Ip) is generated. In Scenario 1, we use the IPWE of the calibrating value function 

Vcalib
IPWE(fc): = Encalib{Y 1[(2A − 1)fc(X) > 0]/(1/2)} to evaulate the DR-constant c, while in 

Scenario 2, we use the CTE-based calibrating value function 

Vcalib
CTE(fc): = Encalib{Cn(X)sign[fc(X)]} instead. Here, the estimated CTE function Cn is 

obtained from the training stage.

For comparison, we consider the following: 1) the LB-ITR that maximizes the value 

function under the testing distribution; 2) the ℓ1-penalized least-square (ℓ1-PLS) (Qian and 

Murphy, 2011) of Q(X, A) = E(Y |X, A) on (1, X, A, AX) and the corresponding estimated ITR 

d(x) ∈ argmina ∈ ± 1 Qn(x, a); 3) the standard ITR; 4) the RCT-DR-ITR for the calibrating 

Scenario 1; and 5) the CTE-DR-ITR for the calibrating Scenario 2. We compare the testing 

values Entest[C(X)d(X)] based on an independent testing dataset of size ntest = 100, 000 for 

every testing distribution. The testing values across different testing distributions are not 

comparable. For a specific testing distribution, the LB-ITR can be a benchmark to be 

compared to, since its testing value is the best achievable in theory among the linear ITR 

class. The training-calibrating-testing procedure is replicated for 500 times. The testing 

values (standard errors) for ncalib = 50 are reported in Table 2.

When the testing distribution is the same as training (μ1, μ2) = (0, 0), the calibration 

procedures for the DR-ITRs are expected to choose c = 1, which corresponds to the standard 

ITR. With the finite calibrating sample, some DR-constant c greater than 1 can be possibly 

chosen, leading to smaller testing values for the DR-ITRs in Table 2. In particular, the 

testing value of the CTE-DR-ITR is higher than that of the RCT-DR-ITR, and is closer to the 

testing value of the standard ITR in this case. The reason is that, the RCT-based calibrating 

value function estimate Vcalib
IPWE

 depends on (X, A, Y ) in the calibrating data, while the CTE-

based one Vcalib
CTE

 depends on X only. As a consequence, the CTE-based calibration can be 

more accurate than the RCT-based one.
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When (μ1, μ2) ≠ (0, 0), the testing distribution is different from training, and the performance 

of the standard ITR deteriorates while the DR-ITRs still maintain reasonably good 

performance. The phenomenon is more evident when μ1, μ2 ∈ 1.469, 1.958 . In particular at 

(μ1, μ2) = (1.958, 1.958), the value of the standard ITR can be as low as 17% of the best 

achievable value among the linear ITR class, while the DR-ITRs can maintain more than 

90%. In fact, such a phenomenon is general. In Figure 3a, we further enumerate the testing 

covariate centroid μ = (μ1, μ2, 0, … , 0)⊤ for μ1, μ2 ∈ [ − 2.448, 2.448] and compute the relative 

regrets of the standard ITR and the RCT-DR-ITR. Across all mean-shifted testing 

distributions, the relative regrets of the standard ITRs can be as high as 108%, in which case 

the standard ITR value is negative, and hence even worse than the completely random 

treatment rule drand. On the contrary, the relative regrets for the RCT-DR-ITR (ncalib = 50) 

shown in Figure 3b are at most 24% across all testing centroids. This suggests that the RCT-

DR-ITR maintains relatively good performance on all such testing distributions, while the 

standard ITR fails. Figure 4 further shows that the DR-ITR provides substantial testing value 

improvements over the standard ITR. This demonstrates that the small sample size ncalib = 

50 is sufficient for calibrating the DR-ITR with significant testing improvement.

From Table 2, it can be also observed that ℓ1-PLS can have better performance than the 

standard ITR when training and testing distributions are different. The reason is that, the 

objective of ℓ1-PLS does not target the value function under the training distribution directly, 

but rather, the mean squared error of the linear approximation to Q(X, A) under the training 

distribution. Such a linear approximation can perform well when the testing distribution is 

not far from the training distribution. However, in the case μ1, μ2 ∈ 1.469, 1.958  in the sense 

that the testing distribution deviates more from the training one, the DR-ITRs enjoy notably 

higher testing values than ℓ1-PLS.

In the Supplementary Material, we provide more detailed results for other comparisons 

including the relative regrets/improvements on all mean-shifted covariate domains of all 

centroids, the misclassification rates on all mean-shifted covariate domains of all centroids, 

the comparison with some other methods in relative regrets and misclassification rates, and 

the case of k ∈ 1.25, 1.5, 2, 3, ∞ . In particular, the misclassification rates inform similar 

conclusions as the relative regrets/improvements. If we increase the calibrating sample size 

from 50 to 100, then the testing values of DR-ITRs can be further improved. We also find 

that among our simulation scenarios, the testing values of the DR-ITR are not very sensitive 

to difference choices of k.

4.2 Performance on the Mixture of Subgroups

In this section, we consider a population that consists of two subgroups, with each following 

a distinct CTE function. We aim to find an ITR that can generalize well on different 

mixtures of subgroups.

We modify the simulation setup in Section 4.1 as follows: 

X |ξ ξNp(μ1, Ip) + (1 − ξ)Np(μ0, Ip), where ξ Bernoulli(pmix) is the unobservable mixture/

subgroup indicator with subgroup 1 probability pmix and subgroup 0 probability 1−pmix, and 
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the subgroup means μ1 = (−1/2, 1/2, 0, … , 0)⊤ and μ0 = μ1. We consider the CTE function 

C(x; ξ): = (2ξ − 1)β0 + β1x1 + β2x2 that is linear in the covariate vector, but with a subgroup-

dependent intercept (2ξ − 1)β0, and (β0, β1, β2): = (−3/2, − 2, 1). The unconditional CTE 

function is nonlinear:

C(x): = E[C(x; ξ) |X = x] =
pmixexp(− x − μ1 2

2/2) − (1 − pmix)exp(− x − μ0 2
2/2)

pmixexp(− x − μ1 2
2/2) − (1 − pmix)exp(− x − μ0 2

2/2)
β0 + β1x1 + β2x2 .

In particular, the unconditional CTE function C(x) depends on the subgroup 1 probability 

pmix. The distributional changes are due to the subgroup 1 probability. Specifically, the 

training subgroup 1 probability is 0.75, while the testing subgroup 1 probability varies in 

{0.1, 0.25, 0.5, 0.75, 0.9}. Since the training and testing CTE functions can be different, 

Assumption 1 cannot be fully met. Therefore, our proposed DR-ITR can be robust to such 

distributional changes only to some extent.

We consider the same training-calibrating-testing procedure as that in Section 4.1, except 

that the DR-constant c ranges in 1.18, 1.27, · · · , 10 . The testing values of the ITRs are 

reported in Table 3. When the training and testing distributions are the same at pmix = 0.75, 

all ITRs have similar testing performance. The standard ITRs have higher testing values than 

the DR-ITRs in this case. When the testing pmix becomes smaller, the DR-ITRs show better 

testing performance than the standard ITR. When the testing pmix = 0.25 or 0.1, the RCT-

DR-ITR has the highest testing values among all. Since the true testing CTE function 

changes along with the testing pmix, the corresponding estimate Cn based on the training 

data can suffer from the generalizability problem. Therefore, the CTE-based calibration 

performs slightly worse than the RCT-based calibration in this case. However, the CTE-

based DR-ITR is superior to the standard ITR, and is comparable to the ℓ1-PLS. More 

detailed comparisons and the case ncalib = 100 are provided in the Supplementary Material.

5 Application to the ACTG 175 Trial Data

In this section, we evaluate the generalizability of our proposed DR-ITR on a clinical trial 

dataset from the “AIDS clinical trial group study 175” (Hammer et al., 1996). The goal of 

this study was to compare four treatment arms among 2,139 randomly assigned subjects 

with human immunodeficiency virus type 1 (HIV-1), whose CD4 counts were 200–500 

cells/mm3. The four treatments are the zidovudine (ZDV) monotherapy, the didanosine (ddI) 

monotherapy, the ZDV combined with ddI, and the ZDV combined with zalcitabine (ZAL).

The evidence found from the AIDS trial data can have some generalizability problems. 

When studying women living with HIV and women at risk for HIV infection in the USA 

cohort, the Women’s Interagency HIV Study (WIHS) (Bacon et al., 2005) has been 

considered to be representative. However, it was reported in Gandhi et al. (2005) that 28–

68% of the HIV positive women in WIHS were excluded from the eligibility criteria of 

many ACTG studies. In the ACTG 175 dataset, the number of female patients is only 368 

out of 2139. Thus we suspect that the female patients may be underrepresented in this 
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dataset, and the ITR based on the dataset may not generalize well on the women subgroup. 

In this section, we study the generalizability of DR-ITR when the testing dataset consists of 

female patients only. Specifically, the training dataset is a subsample from ACTG 175 with 

original male/female proportion, while the testing dataset is a subsample from the female 

patients of ACTG 175, and there is no overlap across training and testing. We try to 

resemble the ideal world that we can have independent testing data from the female 

population.

We consider the outcome Y as the difference between the early stage (at 20±5 weeks from 

baseline) CD4 cell counts and the CD4 counts at baseline. We focus on the treatment 

comparison between the ZDV + ZAL (A = 1) and the ddI (A = −1), and the corresponding 

patients from the dataset. In particular, only 180 of them are women. The average treatment 

effects on the male and female subgroups are −8.97 and −1.39 respectively, which suggests 

that there is treatment effect discrepancy between these subgroups. We sample the training 

data from the ACTG 175 dataset in the ZDV + ZAL or ddI arm of sample size 1, 085 × 60% 

= 651 stratified to the gender. In particular, the training dataset includes 180 × 60% = 108 

female patients. The remaining female data (180 − 108 = 72) are used for testing. We only 

consider female patients in testing. We further sample 50 from the testing female data for 

calibration, and the remaining (72 − 50 = 22) are the testing dataset. We also consider 12 

selected baseline covariates X as was studied in Lu et al. (2013). There are 5 continuous 

covariates: age (year), weight (kg, coded as wtkg), CD4 count (cells/mm3) at baseline, 

Karnofsky score (scale of 0–100, coded as karnof), CD8 count (cells/mm3) at baseline. 

They are centered and scaled before further analysis. In addition, there are 7 binary 

variables: gender (1 = male, 0 = female), homosexual activity (homo, 1 = yes, 0 = no), race 

(1 = nonwhite, 0 = white), history of intravenous drug use (drug, 1 = yes, 0 = no), 

symptomatic status (symptom, 1 = symptomatic, 0 = asymptomatic), antiretroviral history 

(str2, 1 = experienced, 0 = naive) and hemophilia (hemo, 1 = yes, 0 = no).

Before fitting ITRs, we estimate the CTE function C(X) by the following regress-and-

subtract procedure: first we fit two separate random forests by regressing Y on X restricted 

on A = 1 and A = −1 respectively; then we subtract two regression models to obtain the CTE 

function estimate Cn(X). We follow the same implementation as in Section 4.1 to fit the 

standard ITR and DR-ITRs over a constrained linear function class 

ℱγ : = f(x) = b + β⊤x:b ∈ ℝ, β ∈ ℝp, β 2 ⩽ γ  on the training data. The testing performance 

is evaluated by the IPWE of the value function on the testing data. The training-calibrating-

testing procedure is repeated for 1,500 times. The testing values are reported in Table 4, 

where the value can be interpreted as the expected CD4 count improvement from baseline at 

the early stage (20 ± 5 weeks). In addition to the calibrated DR-ITRs, we also include the 

value of the best DR-ITR that enjoys the highest testing performance among all DR-

constants. For comparison, we include the results of residual weighted learning (RWL) 

(Zhou et al., 2017) with linear kernel. Both RWL and the standard ITR share similar 

implementation, except that RWL can be shown equivalently using 

Cn(X) = Qn(X, 1) − Qn(X, − 1) + 2A[Y − Qn(X, A)] as a plug-in CTE estimate.
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The testing results show that our proposed DR-ITRs can have better values than the standard 

ITR and RWL. In particular, the improvement of the best DR-ITR is substantial, while the 

improvements of the calibrated ITRs are not as strong. We plot the testing values of the DR-

ITRs against the corresponding DR-constants in Figure 5. It suggests that the testing values 

generally increase with the DR-constant. In this analysis, the calibrated DR-constants are not 

close to the optimal DR-constant. As a result, the testing performance of the calibrated DR-

ITRs is not as good as the best DR-ITR. One reason for this phenomenon can be that the 

outcome Y has a heavy tail distribution, as was highlighted in Qi et al. (2019b), so that the 

value function estimate is highly variable based on the small calibrating sample. Another 

reason can be that the random forest regress-and-subtract estimate of the CTE function does 

not generalize well on the testing distribution.

On the overall dataset, we fit the DR-ITRs and report their fitted coefficients in Table 5 for 

selected DR-constants. To stabilize the randomness from the random forest estimate of the 

CTE function, we refit the random forest 20 times and average the corresponding DR-ITR 

coefficients. We find that there are noticeable changes in the coefficients of the intercept and 

the homosexual activity when the DR-constant gets large. Within the ACTG 175 dataset 

(ZDV + ZAL or ddI), we find that only 6 female patients have homosexual activity. Four of 

them are treated with ZDV + ZAL, and the change of their CD4 counts are 123, 34, −11 and 

158 respectively. Two of them are treated with ddI, and the change of their CD4 counts are 

−41, −182. Therefore, the ZDV + ZAL (A = −1) may have more benefits compared to the 

ddI (A = −1) on these patients. This helps to explain why the larger coefficients in 

homosexual activity for the larger DR-constants can be beneficial for the female patients.

6 Discussion

In this paper, we propose a new framework for learning a distributionally robust ITR by 

maximizing the worst-case value function among values under distributions within the 

power uncertainty set. We introduce two possible calibration scenarios under which the DR-

constant can be tuned adaptively to a small amount of the calibrating data from the target 

population. In this way, when the training and testing distributions are identical, the 

calibrated DR-ITRs can achieve similar performance as compared to the standard ITR. 

When the testing distribution deviates from the training distribution, we show that there are 

many possible scenarios that the standard ITR generalizes poorly, while the calibrated DR-

ITRs maintain relatively good testing performance. Our simulation studies and an 

application to the ACTG 175 dataset demonstrate the competitive generalizability of our 

proposed DR-ITR.

The main assumption on the changes of covariates in our DR-ITR framework is equivalent 

to the selection unconfoundedness assumption in a randomized controlled trial. In practice, 

there may exist unmeasured selection confounding problems for the trial data, and the 

distributional changes affect both the covariates and the CTE function. One possible 

extension is to consider the simultaneous changes of the covariate distribution and the CTE 

function, and leverage more general robustness measure against these changes.
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In our DR-ITR framework, we require an estimate of the CTE function based on the flexible 

nonparametric techniques. The performance of our DR-ITR can depend on the quality of the 

CTE function estimate. An alternative strategy is to avoid plugging in a CTE estimate. 

Instead, the dual representation (10) can be identified from (X, A, Y ) directly using a 

variational representation of [ ± C(X) − η]+k* (Duchi et al., 2019). This can be a possible 

extension of our framework.

Another possible extension is to consider the problem of high-dimensional covariates. Our 

current formulation involves an ℓ2-constraint to control the model complexity. It can be 

extended to obtain sparse solutions when a ℓ1-constraint is used instead. Besides the high-

dimensional extension, our current theoretical results assume that C(X) is uniformly 

bounded. It will be interesting to relax the assumption, such as sub-Gaussianity. Further 

investigations along these lines can be pursued.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 

ITRs and the 95% confidence ellipsoids of the training distribution (X1, X2) N2((0, 0)⊤, I2)

and the testing distribution (X1, X2) N2((1.47, 1.96)⊤, I2). The blue dashed curve is the 

underlying CTE boundary C(X1, X2) = X2 − (X1
3 − 2X1) = 0.
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Figure 2: 
Relative improvements of the DR-ITR over the standard ITR as the difference of relative 

regrets on testing distributions N2(μ, I2) of μ ∈ {(μ1, μ2)⊤ ∈ ℝ2:μ1
2 + μ2

2 ⩽ 4log5} (lighter the 

better).
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Figure 3: 
Relative Regrets on the Mean-Shifted Covariate Domains (lighter the better).
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Figure 4: 
Relative improvements of the RCT-DR-ITR over the standard ITR as the difference of their 

relative regrets on the mean-shifted covariate domains (ncalib = 50, darker the better).
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Figure 5: 
Expected CD4 Count Improvement (cells/mm3) from Baseline at the Early Stage (20±5 

weeks) of the DR-ITRs of Various DR-Constants on the ACTG 175 Female Patients (higher 

the better)
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Table 1:

Testing Values (Relative Regrets) Comparisons of ITRs

Value ╲ ITR DR-ITR Standard ITR LB-ITR

Training V1 0.6253 (37.36%) 0.9982 (0%) 0.9982

Testing V1, test 4.8230 (9.16%) 0.2927 (94.49%) 5.3096

1
DR-ITR maximizes Vc

k(d) defined in (4) with k = 2 and c = 20 over the linear ITR class.

2
Standard ITR maximizes V1(d) over the linear ITR class.

3
LB-ITR maximizes V1(d) or V1, test(d) over the linear ITR class.

4
Values (larger the better) can be comparable within rows but incomparable between rows.

5
Relative regret(ITR) = [value(LB − ITR) − value(ITR)]/|value(LB − ITR)| (smaller the better)

6
A size-10,000 sample is generated for fitting DR-ITR and LB-ITRs, and an independent size-100,000 sample is generated for evaluation under 

V1 and V1, test.
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Table 2:

Testing Values (Standard Errors) on the Mean-Shifted Covariate Domains (ncalib = 50)

µ2 ╲ µ1 Type 0 0.734 1.469 1.958

1.958

LB-ITR 2.333 (0.00244) 2.907 (0.011) 5.334 (0.0362) 9.27 (0.0154)

ℓ1-PLS 2.124 (0.0022) 2.235 (0.011) 3.613 (0.0505) 6.32 (0.103)

Standard ITR 2.089 (0.00158) 1.735 (0.013) 1.348 (0.0595) 1.567 (0.13)

RCT-DR-ITR 2.085 (0.00444) 2.286 (0.0114) 4.545 (0.0255) 8.371 (0.0451)

CTE-DR-ITR 2.098 (0.00348) 2.304 (0.0106) 4.551 (0.0238) 8.459 (0.0424)

1.469

LB-ITR 1.893 (0.00712) 2.627 (0.00656) 5.28 (0.0213) 9.379 (0.0128)

ℓ1-PLS 1.667 (0.00307) 2.021 (0.0076) 4.095 (0.0342) 7.573 (0.0706)

Standard ITR 1.674 (0.00152) 1.645 (0.0127) 2.377 (0.0553) 4.011 (0.119)

RCT-DR-ITR 1.627 (0.00688) 1.987 (0.00997) 4.484 (0.0192) 8.611 (0.0285)

CTE-DR-ITR 1.663 (0.00326) 1.997 (0.00992) 4.55 (0.0163) 8.686 (0.0269)

0.734

LB-ITR 1.227 (0.00244) 2.144 (0.00609) 5.269 (0.00931) 9.608 (0.00898)

ℓ1-PLS 1.094 (0.00418) 1.676 (0.00442) 4.587 (0.0151) 8.8 (0.0314)

Standard ITR 1.174 (0.00149) 1.553 (0.00806) 3.739 (0.0379) 7.06 (0.0763)

RCT-DR-ITR 1.094 (0.00753) 1.651 (0.00675) 4.622 (0.0109) 9.036 (0.015)

CTE-DR-ITR 1.152 (0.00292) 1.667 (0.00588) 4.648 (0.0113) 9.06 (0.0161)

0.000

LB-ITR 0.9942 (0.00202) 1.774 (0.0034) 5.232 (0.00559) 9.767 (0.0068)

ℓ1-PLS 0.8296 (0.00454) 1.648 (0.0036) 4.914 (0.00501) 9.476 (0.0103)

Standard ITR 0.9437 (0.00153) 1.679 (0.00336) 4.654 (0.017) 8.895 (0.0342)

RCT-DR-ITR 0.8374 (0.00821) 1.647 (0.00574) 4.868 (0.00797) 9.444 (0.00841)

CTE-DR-ITR 0.9206 (0.00272) 1.688 (0.00289) 4.888 (0.00698) 9.442 (0.00999)

1μ = (μ1, μ2, 0, … , 0)⊤ with µ1 in column and µ2 in row is the testing covariate centroid.

2
Values (larger the better) can be comparable for the same (μ1, μ2) but incomparable across different (μ1, μ2).

3
LB-ITR maximizes the testing value function at (μ1, μ2) over the linear ITR class. The corresponding testing value is the best achievable among 

the linear ITR class.
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Table 3:

Testing Values (Standard Errors) on the Mixture of Subgroups (ncalib = 50)

Testing Subgroup 1 Probability

type 0.1 0.25 0.5 0.75 0.9

LB-ITR 1.665 (0.0067) 1.537 (0.00618) 1.444 (0.00412) 1.545 (0.00537) 1.679 (0.00585)

ℓ1-PLS 1.182 (0.00191) 1.264 (0.0014) 1.399 (0.000591) 1.537 (0.000333) 1.624 (0.000781)

Standard ITR 1.143 (0.00434) 1.232 (0.00329) 1.383 (0.0015) 1.535 (0.000543) 1.632 (0.00142)

RCT-DR-ITR 1.267 (0.0066) 1.305 (0.00423) 1.395 (0.00256) 1.52 (0.00212) 1.614 (0.00234)

CTE-DR-ITR 1.16 (0.00409) 1.247 (0.00323) 1.388 (0.00137) 1.534 (0.00055) 1.628 (0.00149)

1
Testing subgroup 1 probability = 0.75 is the same as the training one.

2
Values (larger the better) can be comparable for the same subgroup 1 probability but incomparable across different subgroup 1 probabilities

3
LB-ITR maximizes the testing value function over the linear ITR class. The corresponding testing value is the best achievable among the linear 

ITR class.
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Table 4:

Expected CD4 Count Improvement (cells/mm3) from Baseline at the Early Stage (20±5 weeks) and Standard 

Errors on the ACTG-175 Female Patients (higher the better).

RWL Standard ITR Best DR-ITR RCT-DR-ITR CTE-DR-ITR

10.7617 (0.8636) 10.593 (0.8627) 13.9423 (0.8378) 11.8133 (0.8357) 11.1563 (0.8514)

Standard errors are computed based on 1,500 replications.
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Table 5:

Linear Coefficients of the DR-ITRs Fitted on the ACTG 175 Dataset

DR-constant Intercept age wtkg cd40 karnof cd80 gender homo race drugs symptom str2 hemo

1 −0.02 −0.25 0.06 −0.58 −0.06 0.53 −0.16 −0.4 0.16 0.16 0.16 0.16 0.09

4.8 −0.31 −0.23 0.12 −0.67 0.11 0.55 −0.12 −0.21 0.2 0.12 0.1 −0.06 0.09

8.6 −0.43 −0.23 0.11 −0.64 0.16 0.54 −0.11 −0.05 0.12 0.04 0.07 −0.24 0.01

12.4 −0.54 −0.22 0.1 −0.64 0.19 0.51 −0.04 0.01 0.08 0.05 0.04 −0.27 −0.02

16.2 −0.61 −0.23 0.1 −0.64 0.2 0.51 0 0.03 0.06 0.05 0.02 −0.27 −0.02

20 −0.64 −0.24 0.09 −0.63 0.22 0.5 0.01 0.03 0.05 0.07 0.01 −0.26 −0.01

1
DR-constant = 1 corresponds to the standard ITR; DR-constant = 16.2 has the highest testing value in Figure 5.
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