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Abstract

Demyelination causes slowed or failed neuronal conduction and is a driver of disability in multiple sclerosis and other

neurological diseases. Currently, the gold standard for imaging demyelination is MRI, but despite its high spatial reso-

lution and sensitivity to demyelinated lesions, it remains challenging to obtain specific and quantitative measures of

molecular changes involved in demyelination. To understand the contribution of demyelination in different diseases and

to assess the efficacy of myelin-repair therapies, it is critical to develop new in vivo imaging tools sensitive to changes

induced by demyelination. Upon demyelination, axonal Kþ channels, normally located underneath the myelin sheath,

become exposed and increase in expression, causing impaired conduction. Here, we investigate the properties of the Kþ

channel PET tracer [18F]3F4AP in primates and its sensitivity to a focal brain injury that occurred three years prior to

imaging. [18F]3F4AP exhibited favorable properties for brain imaging including high brain penetration, high metabolic

stability, high plasma availability, high reproducibility, high specificity, and fast kinetics. [18F]3F4AP showed preferential

binding in areas of low myelin content as well as in the previously injured area. Sensitivity of [18F]3F4AP for the focal

brain injury was higher than [18F]FDG, [11C]PiB, and [11C]PBR28, and compared favorably to currently used MRI

methods.
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Introduction

Myelin facilitates rapid propagation of action poten-

tials and provides trophic support and protection to

axons.1 As such, the integrity of the myelin sheath is

critical for most brain functions including cognition,

visual processing, and ambulation.2–4 In addition to

multiple sclerosis (MS),5 demyelination is emerging as

a prominent cause of disability in many brain diseases

including spinal cord injury (SCI),6 traumatic brain

injury (TBI),7 stroke,8 and Alzheimer’s disease (AD).9

Currently, demyelination can be detected by histopa-

thology, by PET using tracers that bind to myelin

such as [11C]PiB or [11C]MeDAS10,11 or by MRI.12,13

Unfortunately, histopathology is not applicable for in

1Gordon Center for Medical Imaging, Department of Radiology,

Massachusetts General Hospital and Harvard Medical School, Boston,

MA, USA
2Spaulding Neuroimaging Lab, Spaulding Rehabilitation Hospital and

Harvard Medical School, Charlestown, MA, USA
3Department of Neurology, Northwestern Feinberg School of Medicine,

Chicago, IL, USA
4Translational Neuroradiology Section, National Institute of Neurological

Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
5Positron Emission Tomography Department, NIH Clinical Center,

National Institutes of Health, Bethesda, MD, USA

Corresponding authors:

Pedro Brugarolas, 55 Fruit St., Bulfinch 051, Boston, MA 02114, USA.

Email: pbrugarolas@mgh.harvard.edu

Marc D Normandin, 55 Fruit St., White 427, Boston, MA 02114, USA.

Email: normandin@mgh.harvard.edu

Journal of Cerebral Blood Flow &

Metabolism

2021, Vol. 41(7) 1721–1733

! The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0271678X20963404

journals.sagepub.com/home/jcbfm

https://orcid.org/0000-0002-7455-2743
mailto:pbrugarolas@mgh.harvard.edu
mailto:normandin@mgh.harvard.edu
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/0271678X20963404
journals.sagepub.com/home/jcbfm


vivo disease monitoring. [11C]PiB and [11C]MeDAS
have both been shown to bind to myelin;10,11 however,
these myelin-binding tracers are not ideal due to the
high abundance of myelin which can mask small lesions
due to spill-in signal from surrounding areas
and because of binding to amyloid in the case of
[11C]PiB.14 Finally, while structural and diffusion
MRI offer some insight into the structural integrity
of white matter, MRI measurements are not specific
to white matter lesion properties such as myelin content
or fiber density.15 Furthermore, MRI offers limited
sensitivity to gray matter demyelination.16 Therefore,
novel molecular imaging tools for monitoring demye-
lination in vivo are needed.

A well-established biochemical effect of demyelin-
ation that is responsible for the poor conduction of
action potentials in demyelinated fibers is the dysregu-
lation of axonal voltage-gated Kþ (Kv) channels.

17 Kv

channels are transmembrane proteins that allow the
selective passage of Kþ ions across the cell membrane
upon membrane depolarization. In the brain, Kv chan-
nels are primarily expressed in neurons where they are
involved in the propagation of action potentials.18

In myelinated axons, Kv1.1 and Kv1.2 channels are
located near the nodes of Ranvier beneath the myelin
sheath.19 Upon demyelination, these protein channels
become exposed to the extracellular milieu, disperse
throughout the demyelinated segment and increase in
expression several fold resulting in slowed or failed
axonal conduction.17,20,21 This increase in Kþ channel
expression upon demyelination has been previously
demonstrated by immunohistochemistry in several
unrelated models of demyelination including in shiv-
erer mice,21 lysolecithin-injected rats,22 cuprizone-fed
mice,23 and experimental autoimmune encephalomyelis
(EAE) mice.24 4-aminopyridine (4AP) is a blocker of
Kv1 channels and is used clinically to enhance conduc-
tion of demyelinated fibers.25,26 This mechanism has
been exploited for the symptomatic treatment of
MS,27,28 SCI,29 and stroke.30

3-fluoro-4-aminopyridine, 3F4AP, is a fluorinated
analog of 4AP that binds with similar affinity as 4AP
to Kv1 channels expressed in Xenopus oocytes as well as
explanted optic nerves from mice.31,32 It has been
recently shown by autoradiography that [14C]4AP
and [14C]3F4AP accumulate in demyelinated areas
after intravenous administration in several animal
models of demyelination including Shiverer mice,
lysolecithin-injected mice, and DTA-mice.31 This is
due to the increased level of expression of Kv1 channels
in those areas as well as the increased accessibility of
the drug to the channels given the lack of
myelin.20,21,33,34 It has also been reported that 3F4AP
can be labeled with fluorine-1835–37 and that radio-
fluorinated [18F]3F4AP can be used to detect

lysolecithin-induced demyelinated lesions in rat brains
using PET.31 The high sensitivity of this tracer towards
demyelination makes it a promising candidate for
imaging many neurological diseases where there is
demyelination including MS, TBI, SCI, stroke, AD,
and others.34 This tracer also holds promise as a tool
for monitoring remyelinating therapies, a major focus
in current drug development.34,38

In order for a PET tracer to be of clinical value, it
must not only bind to a clinically relevant target, it
must also have appropriate pharmacokinetics that
allow reliable quantification of the target.39 Ideally, a
brain tracer should have high brain penetration, high
metabolic stability, high plasma availability, relatively
fast kinetics, and high specificity for its target.39 The
goal of this study was to comprehensively evaluate
[18F]3F4AP in nonhuman primates in preparation for
human studies.

Materials and methods

All experiments involving nonhuman primates were
performed in accordance with the U.S. Department
of Agriculture (USDA) Animal Welfare Act and
Animal Welfare Regulations (Animal Care Blue
Book), Code of Federal Regulations (CFR), Title 9,
Chapter 1, Subchapter A, Part 2, Subpart C, §2.31.
2017. Experiments were approved by the Animal
Care and Use Committee at the Massachusetts
General Hospital and the Animal Care and Use
Committee at the National Institutes of Health.
Animal studies were conducted in compliance with
the ARRIVE guidelines (Animal Research: Reporting
in Vivo Experiments) for how to report animal
experiments.

Study design

The primary objective was to characterize [18F]3F4AP
in nonhuman primates. Screening against a panel of 38
other common brain receptors was also performed to
rule out off-target binding. [18F]3F4AP whole-body
scans were performed on two rhesus macaques
(Monkey 1 and Monkey 2) to provide a whole-body
dosimetry estimation. In two other rhesus macaques
(Monkey 3 and Monkey 4), a total of eight dynamic
PET imaging studies with arterial blood sampling were
performed to provide a thorough characterization of
[18F]3F4AP in vivo pharmacokinetics in the monkey
brain. One of the animals (Monkey 4) showed an inci-
dental finding related to a previously sustained focal
brain injury and was also scanned with the well-
characterized PET tracers [11C]PBR28, [11C]PiB, and
[18F]FDG to investigate the nature of the injury. In
addition, structural, magnetization transfer, and
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diffusion MRI were performed to assess pathological

changes. The T1-weighted multi-echo magnetization-

prepared rapid gradient-echo (MEMPRAGE) were

also used for delineation of brain regions.

Animals and procedures

The animals used in this study were four adult male

Rhesus macaques (8–13 years old, 8–17 kg).

Monkey 4 clinical history. Three years prior to imaging

and while under a research protocol directed by other

investigator, Monkey 4 sustained an accidental injury

during a craniotomy procedure. A recording chamber

was secured atop the skull and a craniotomy was per-

formed with the intention of later installing an intra-

cranial electrode. Post-procedure monitoring revealed

a small dural tear that spread over four weeks. Brain

tissue herniated through the torn dura and the record-

ing chamber was explanted and the wound closed with-

out electrodes ever being placed. The animal could not

proceed under the original research project without

electrodes but appeared to fully recover, and so was

subsequently transferred to our imaging protocol

under the notion that the injury had left no significant

lasting effect.

Preparation of the animals for imaging. Prior to each study,

animals were sedated with ketamine/xylazine

(10/0.5mg/kg IM) and were intubated for maintenance

anesthesia with isoflurane (1–2% in 100% O2).

A venous catheter was placed for infusion of the radio-

tracer and, where applicable, an arterial catheter was

placed for sampling of the arterial input function. The

animal was then positioned on a heating pad on the bed

of the scanner for the duration of the study. Additional

procedural details are described in the Supplementary

Methods (SM).

Receptor panel screen

Samples of non-radiolabeled 4AP and 3F4AP were

sent to the psychoactive drug screening program

(PDSP) from the National Institutes of Health (NIH)

/ National Institute of Mental Health (NIMH) at the

University of North Carolina.40 Specific details for

each assay can be found in the Assay Protocol Book

available on the website: https://pdspdb.unc.edu/

pdspWeb/

Radiochemistry

Radiochemical syntheses of [18F]3F4AP, [11C]PBR28,

[11C]PiB, and [18F]FDG were performed as previously

described.35,41–43

Whole-body dynamic PET/CT imaging of rhesus
macaques with [18F]3F4AP

Two rhesus macaques (Monkey 1 and Monkey 2) were
scanned on a Siemens mCT PET/CT scanner for 4 h as
previously described.31 Procedural details are provided
in the SM.

Human radiation dosimetry estimation

Human organ dosimetry estimates were calculated
from whole-body dynamic PET data from Monkey 1
and Monkey 2 using OLINDA/EXM software as
described in the SM.

Magnetic resonance imaging

Brain MRI was performed on Monkey 3 and Monkey
4 using a 3T Biograph mMR (Siemens Medical
Systems). The following sequences were used
MEMPRAGE (pre- and post- Gd), T2-weighted
fluid-attenuated inversion recovery (FLAIR),
Magnetization Transfer Ratio (MTR), and diffusion
tensor imaging (DTI). Acquisition parameters are pro-
vided in the SM.

Brain dynamic PET/CT imaging of rhesus macaques
with [18F]3F4AP

Dynamic PET/CT imaging (2–3 h) with arterial blood
sampling was performed on Monkey 3 and Monkey 4
using a Discovery MI (GE Healthcare). Each animal
had two baseline scans which were separated by one
month for Monkey 3 and by one year for Monkey 4.
Monkey 4 had four other scans with different doses of
unlabeled 3F4AP (0.75, 1.25, 2.5, and 4mg/kg) co-
injected with [18F]3F4AP. CT scan was acquired
before each PET acquisition for attenuation correction
of PET images. See SM for additional details.

Brain PET/CT scans with [11C]PiB, [11C]PBR28, and
[18F]FDG

Dynamic PET/CT imaging (90min) with arterial blood
sampling was performed on Monkey 4 after adminis-
tration of [11C]PiB and [11C]PBR28. Static PET/CT
imaging was performed on Monkey 4 1 h after admin-
istration of [18F]FDG (6-min scan). Additional details
about the procedures and quantification are given in
the SM.

Arterial blood sampling

Arterial blood samples of 1–2mL were drawn every
30 s immediately following radiotracer injection and
decreased in frequency to every 30min toward the
end of the scan. [18F]3F4AP metabolism was measured
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from blood samples acquired at 5, 10, 15, 30, 60, 90,
120, and up to 180minutes. An additional blood

sample of 3mL was drawn immediately prior to
tracer injection in order to measure the plasma-free
fraction fp of [

18F]3F4AP.

Arterial blood processing and radiometabolite

analysis

Radioactivity concentration (in kBq/cc) was measured
in whole-blood (WB) and subsequently in plasma (PL)
following the centrifugation of WB. Radiometabolite

analysis was performed using an automated column
switching radioHPLC system.44,45 Additional details
are provided in the SM.

Plasma-free fraction determination

Arterial plasma samples of 200 mL drawn before
radiotracer injection were spiked with 444 kBq of

[18F]3F4AP. Following a 15 min incubation period,
radioactive plasma samples were loaded on ultrafiltra-
tion tubes (Millipore Centrifree) and centrifuged at

1500g for 15min at room temperature. fp was calculat-
ed as the ratio of free ultrafiltrate to plasma concentra-
tion and corrected for binding to the ultrafiltration

tube membrane.

Image registration and processing

All PET processing was performed with an in-house

developed Matlab software that uses FSL.46 MR data
were processed in native space using FSL. Individual
brain MR and PET images were aligned into the MRI

NIMH Macaque Template (NMT)47 and regional time
activity curves (TACs) were generated for the occipital
cortex, parietal cortex, temporal cortex, frontal cortex,

hippocampus, amygdala, striatum, thalamus, white
matter, and whole cerebellum. Additional details are
provided in the SM.

Quantitative analysis of [18F]3F4AP brain uptake

Regional TACs were analyzed by compartmental
modeling using the metabolite-corrected arterial

plasma input function. One- (1 T) and two- (2T)
tissue compartment model configurations were investi-
gated while fixing the vascular contribution of the WB

radioactivity to the PET measurements to 5%. The 2T
model was also tested in its reversible and irreversible
modes. Estimates of the kinetic parameters were

obtained using nonlinear weighted least-squares fitting
with the weights defined as the frame durations. The
regional total volume of distribution (VT)

48 was calcu-

lated as K1/k2 for a 1T compartment model and as
ðK1=k2Þ � ð1þ k3=k4Þ for a 2T model (see SM for

details on the kinetic parameters). In addition, Logan

and multilinear analysis MA1 graphical methods49,50

for the estimation of VT was performed. Parametric

maps of VT were generated using the Logan method.

Blinded analysis

Even though the nature of the study did not allow

for fully blinded analysis, the investigators evaluating

[18F]3F4AP on Monkey 4 were unaware of an injury at

the time of data acquisition and analysis.

Statistical analysis

All data are expressed as mean value� one standard

deviation (SD) unless otherwise specified. Agreement

between methods was assessed by computing the aver-

age measured intraclass correlation coefficient (ICC)

among methods or models by use of a two-way

mixed-effects model with absolute agreement defini-

tion. A p value of 0.05 or less was considered statisti-

cally significant. All outliers were included in the

analysis, and no data were excluded. The

Kolmogorov–Smirnov Test of Normality was used to

assess data distribution. Additional details are provid-

ed in the SM.

Results

3F4AP does not bind to other common brain

receptors with high affinity

The capacity of [18F]3F4AP to bind to brain receptors

other than Kv1 channels has not been investigated. For

this purpose, we evaluated the binding of 4AP and

3F4AP against 38 common brain targets. The results

from this screen are included in Supplementary Table

S1. This study showed no significant binding to 37 of

the 38 receptors tested and only low affinity binding for

histamine H2 receptors (Ki�5 mM).

Whole body dynamic imaging shows organ doses

within typical levels for fluorine-18 labeled tracers

In order to estimate the dose of radiation following

administration of [18F]3F4AP to human subjects, we

calculated the human equivalent doses to the major

organs using data from whole body 4-h dynamic

scans in two rhesus monkeys (Monkeys 1 and 2).

This study showed an effective dose is 21.6� 0.6 mSv/
MBq, which is comparable to other 18F-labeled tracers

(e.g. whole body [18F]FDG effective dose is

�20.0 mSv/MBq51) (Table 1).
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[18F]3F4AP displays suitable pharmacokinetic

properties for PET imaging

Encouraged by prior findings in rodents and pri-

mates,31 the positive dosimetry results, and the appar-

ent low off-target binding, we set out to evaluate the

pharmacokinetic properties of [18F]3F4AP in rhesus

macaques. [18F]3F4AP was synthesized with high

molar activity (>37.0 GBq/mmol) and high radiochem-

ical purity (>98% RCC). The tracer was injected intra-

venously into two rhesus macaques (Monkey 3 and

Monkey 4) and their brains were imaged dynamically

for 2–3 h, while arterial blood was sampled for measur-

ing radioactivity concentration time courses in whole

blood (WB) and plasma (PL), tracer metabolism as

well as plasma-free fraction (fp).
WB radioactivity time course was consistent across

scans and animals (Figure 1(a)). WB to PL radioactiv-

ity concentration ratio quickly reached a plateau and

was close to unity (WB/PL¼ 1.05� 0.01, Figure 1(b)).

Further analysis of the radioactivity in plasma showed

a very high fp (fp¼ 0.92� 0.03, range: 0.89–0.99) indi-

cating that [18F]3F4AP has minimal binding to plasma

proteins. RadioHPLC analysis of selected plasma sam-

ples revealed very slow metabolic degradation with

only a very small fraction of metabolites (Figure 1(c))

and a very high proportion of parent compound in

plasma (>90%) even after 2–3 h post injection

(Figure 1(d)). Figure 1(e) shows the average

metabolite-corrected arterial plasma curve obtained

across scans and animals with the corresponding stan-

dard deviation. Taken together, the data in blood indi-

cates high plasma availability, fast plasma clearance,

and unusually high metabolic stability, which are

ideal properties for PET tracers.
In the brain, [18F]3F4AP peaked quickly (SUV> 3

at �4min) and was followed by fast washout. Brain

kinetics was fairly homogeneous across brain regions

and animals. According to visual inspection of model

fits and to the Aikake information criterion (AIC),52

the preferred model (AICweight,median¼ 0.999) was a

reversible two-tissue compartment model (2T4k)

(Figure 2(a) and (b)). K1 values, reflecting tracer deliv-

ery, ranged from �0.34mL/min/cc in the white matter

to �0.78mL/min/cc in the striatum, indicating high

brain penetration. The VT estimated from the 2T4k

micro-parameters was robust and the time stability of

2T4k VT estimates was very good as VT values estimat-

ed using only 60min of data were in excellent agree-

ment with those obtained using 120min of PET

measurements (mean difference¼�0.05� 0.10mL/cc,

average intraclass correlation coefficient (ICC)¼ 0.965

Table 1. Estimated human organ radiation doses.

Organ

Monkey 1

uGy/MBq

Monkey 2

uGy/MBq

Average

uGy/MBq

Std. dev.

uGy/MBq

Adrenals 20.0 20.6 20.3 0.4

Brain 16.1 19.4 17.8 2.3

Gallbladder wall 22.5 25.8 24.2 2.3

Small inta 21.1 22.2 21.7 0.8

Stomach wall 19.3 29.9 24.6 7.5

Upper LI walla 21.1 20.6 20.9 0.4

Heart wall 17.7 19.9 18.8 1.6

Kidneys 60.4 77.0 68.7 11.7

Liver 27.0 35.1 31.1 5.7

Lungs 12.3 13.5 12.9 0.8

Muscle 15.2 15.2 15.2 0.0

Pancreas 20.4 21.8 21.1 1.0

Red marrow 32.7 21.8 27.3 7.7

Osteogenic cells 46.8 41.7 44.3 3.6

Skin 11.6 11.6 11.6 0.0

Spleen 18.4 27.0 22.7 6.1

Testes 19.9 18.2 19.1 1.2

Thymus 15.8 15.8 15.8 0.0

Thyroid 18.7 18.0 18.4 0.5

Bladder wall 30.6 33.1 31.9 1.8

Whole body 18.6 18.7 18.7 0.1

Effective dose (uSv/MBq) 21.2 22.0 21.6 0.6

aEstimated from whole-body dose.
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with a 95% confidence interval (CI95%) of [0.916,

0.982]). VT was higher in cortical regions than in the

white matter as previously described (Figure 3). High

signal was observed in the pituitary gland and sinuses

in Monkey 3, which deserves future investigation. In

terms of reproducibility, VT values were consistent in

both animals and showed low variability across all

baseline scans with a coefficient of variation (COV)

within 10% for all brain regions surveyed in this

work (mean COV¼ 5.96� 2.07%, Supplementary

Table S2). Finally, blood-based Logan plots (Figure 2

(c) and (d)) linearized very well for all datasets by a 30

min t* and estimated VT values were in good agreement

with those obtained from the full compartment analysis

(2T4k) (mean difference¼�0.05� 0.07mL/cc, average

measure ICC¼ 0.976 with CI95% of [0.920, 0.989]).

Similar agreement was observed between VT estimates

obtained from MA1 and those obtained from the 2T4k

model (mean difference¼�0.05� 0.07mL/cc, average

measure ICC¼ 0.973 with CI95% of [0.919,0.987]).
Finally, motivated by the high metabolic stability of

3F4AP and the stable WB to PL radioactivity concen-

tration ratio, we investigated the use of an image

derived input function (IDIF) in lieu of using arterial

blood sampling to derive the model input function (IF)

for quantification of VT. The IDIF was extracted from

a region-of-interest (ROI) positioned in the left ventric-

ular chamber of the heart (Supplementary Figure S1).

Visually, the obtained image-derived PL curves were in

very good agreement with those obtained from arterial

blood sampling (Supplementary Figure S2) and the

area under the curve (AUC) was similar (mean

Figure 1. Characterization of [18F]3F4AP in blood. (a) Whole-blood SUV time course. (b) Whole-blood to plasma radioactivity
concentration ratio. (c) RadioHPLC chromatogram of plasma samples from a representative study. (d) Time course of remaining
parent compound in plasma. (e) Metabolite-corrected [18F]3F4AP SUV time course in plasma. (Plots a, b, d, and e show mean� s.d.
across animals (N¼ 2) and scans (2 in Monkey #3 and 6 in Monkey #4). Plot c shows data for a representative study).
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Figure 2. [18F]3F4AP kinetics in different brain regions of Monkeys 3 and 4. (a and b) Time-activity curves and 2T4k model fits. (c and
d) Logan plots using a 30 min t* and corresponding to brain time-activity curves shown in a and b. a and c show data acquired from
Monkey 3, while b and d are from Monkey 4. For each monkey, data shown correspond to a single baseline study.

Figure 3. [18F]3F4AP in the monkey brain. (a) Representative parametric images of Monkey 3 and Monkey 4. Hotspot below the
brain corresponds to the pituitary gland and ethmoid sinuses. (b) Regional 2T4k VT values for each baseline scans and each animal.

Guehl et al. 1727



difference¼ 4.9� 0.1%). Consequently, the quantifica-
tion demonstrated a good agreement in VT values
(mean difference¼�0.06� 0.07mL/cc, average mea-
sure ICC¼ 0.963 with CI95% of [0.797, 0.988]).

It is ineffective to block [18F]3F4AP signal with
unlabeled 3F4AP

Given the low lipophilicity of 3F4AP (logD at pH
7.4¼ 0.41) and the negligible off-target binding in
brain tissue slices previously reported,31 we hypothe-
sized that the [18F]3F4AP signal measured in the
brain reflects tracer binding to Kþ channels as well as
a nondisplaceable component that mostly reflects free
tracer in the intra and extracellular spaces. In order to
confirm this hypothesis, we attempted to block the spe-
cific signal using unlabeled 3F4AP. For this purpose,
we performed four scans in Monkey 4 while coinjecting
the tracer with nonradiolabeled 3F4AP at doses rang-
ing from 0.75 to 4mg/kg. The highest dose tested
(4mg/kg) caused moderate physiological changes
including increased heart rate (from 80 to 93 bpm)
and increased mean blood pressure (from 55 to
69mmHg). Furthermore, when the animal arose from
anesthesia, it was observed to be shivering, which
occurs with Kþ channel blockers prior to seizures.53

In mice, 3F4AP as well as 4AP caused tremors at
�6mg/kg (i.p.) and seizures at �10mg/kg.31 At the
doses tested, no obvious blocking (assessed by reduc-
tion in VT) was observed (Supplementary Table S3),
likely because the doses were below the dose required
to saturate the receptors. In fact, an increase in VT

greater than the test/retest variability was observed
with increasing doses of 3F4AP which could be due
to more channels transitioning to the open state (bind-
able conformation) upon co-injection of unlabeled
3F4AP (see Discussion).

[18F]3F4AP shows high sensitivity to a focal brain
injury

Monkey 4 showed a focal hotspot in a small focal area
of the right frontal cortex. The locus of enhanced
uptake corresponded to the site of a minor intracranial
injury sustained during a craniotomy procedure three
years prior to imaging, and was consistent with the
burr hole seen on the CT (Figure 4(a)). Moreover,
the TAC demonstrated very distinct pharmacokinetics
with characteristics consistent with increased binding
(Figure 4(b)). Quantitative analysis showed a 40.3�
14.4% (N¼ 6 scans) higher VT in the injury site com-
pared to the contralateral site which could not be
attributed to changes in perfusion since the quantita-
tive analysis actually demonstrated a lower K1 value
(�59.4� 10.8%) in this focal spot compared to contra-
lateral site. For comparison, the same analysis was also
performed on Monkey 3, which did not undergo a cra-
niotomy and revealed no differences in VT or K1.

To further investigate the nature of the injury
and the potential underlying mechanisms driving
[18F]3F4AP signal, we performed additional PET
scans with [18F]FDG, [11C]PBR28, and [11C]PiB as
well as MRI with myelin-specific sequences. [18F]
FDG was selected to assess tissue metabolism, confirm
the presence of living tissue in the affected area, and
rule out potential processes that could lead to general
increase in tracer uptake. [11C]PBR28 (TSPO tracer)
was selected to assess inflammation,54,55 and [11C]PiB
was selected to assess demyelination10,56,57 and rule
out the presence of amyloid14,58 (although this was
not suspected). In addition, MRI sequences included
MEMPRAGE, FLAIR, MTR, and DTI as they can
inform of demyelination and other pathologies such as
lesion burden and atrophy.59–61 Images obtained from
the different PET tracers and MR sequences are

Figure 4. Evaluation of [18F]3F4AP in a focal brain injury. (a) CT and [18F]3F4AP PET images of Monkey 4. Arrow points to the
location of the injury. (b) Time-activity curve from the lesion (light blue) of Monkey 4 showing very distinct pharmacokinetic as
compared to other brain regions. (c) 2T4k VT in lesion was significantly higher than VT in contralateral site. For comparison, the other
animal showed no differences in corresponding brain regions.
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shown in Figure 5 and zoomed on the lesion in

Supplementary Figure S3. Qualitatively, [18F]3F4AP

appeared more sensitive for detecting the lesion than

any other imaging methods tested. Quantitatively,

ROI-based analysis of the [18F]3F4AP images

showed the VT value for lesion to be 5.7 standard

deviations higher than the mean VT of all normal

brain regions (Figure 5(b)). In comparison, [18F]

FDG showed a �18% reduction in SUV60–66min in

the lesion compared to the contralateral ROI which

corresponds to 3.0 standard deviations of the SUV60–

66min values of all other brain regions (Figure 5(b)).

The changes in [18F]FDG uptake were suggestive of

hypoperfusion and/or hypometabolism ruling out pro-

cesses that could result in a general increase in tracer

binding. In the case of [11C]PBR28, the VT in the

lesion was �29.9% lower than the contralateral side,

which corresponds to 2.85 standard deviations of the

VT of all other brain regions (Figure 5(b)).

Furthermore, kinetic analysis of [11C]PBR28 showed

a �55.1% reduction in K1 in the lesion compared to

contralateral ROI. The changes observed with [11C]

PBR28 indicated reduced perfusion and no discernible

inflammation. In the case of [11C]PiB, there was a

�11.9% decrease in DVR in the lesion compared to

the contralateral ROI which corresponds to 1.24 stan-

dard deviations of the DVR values of all other brain

regions (Figure 5(b)). The changes in [11C]PiB indicat-

ed that there was no amyloid accumulation in the

lesion area and suggest possible demyelination.
Results from the quantitative analysis of the MRI

data comparing the mean voxel intensity in the lesion

to the contralateral mirror ROI are provided in

Supplementary Table S4. This analysis showed a

modest decrease in MEMPRAGE signal (�9% with

Cohens d¼ 0.58) as well as T2-FLAIR (�14% with

Cohens d¼ 0.58) and MTR (�15% with Cohens

d¼ 1.28). There were also small changes on DTI

Figure 5. Comparison of [18F]3F4AP with other PET radiotracers and imaging modalities. (a) CT, MRI (MEMPRAGE, T2-FLAIR, and
MTR) and parametric PET images ([18F]3F4AP, [18F]FDG [11C]PBR28, and [11C]PiB) of Monkey 4. (b) Brain regional values of the
different brain PET tracers.
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measures that displayed a trend in altered diffusion
properties (mean diffusivity and axial diffusivity,
p¼ 0.10 and p¼ 0.05). In addition, no gadolinium con-
trast enhancement was seen in the lesion. Changes on
the MRI were indicative of an intact blood–brain bar-
rier, gliosis, and encephalomalacia with possible demy-
elination. For completeness, the same voxel-based
analyses were performed on the PET parametric
images ([18F]3F4AP, [11C]PBR28, [11C]PiB, and [18F]
FDG) and the results are also included in
Supplementary Table S4.

Discussion

When an area of the brain is injured by an autoimmune
attack, a physical blow, a transient lack of oxygen or
other insult, one consequence is damage to oligoden-
drocytes and myelin. Such damage to the myelin sheath
hampers the ability of neurons to propagate action
potentials, which can cause a myriad of symptoms
ranging from cognitive deficits to physical disability.5

Given that demyelination is potentially reversible and
that it is one of the drivers of disability in MS and likely
in many other diseases, it is of utmost importance to
develop methods to detect demyelination and monitor
remyelination.

Currently, demyelination is primarily imaged using
MRI. Even though MRI is highly sensitive to demyeli-
nated lesions in the white matter, it lacks specificity as
many potentially coexisting pathological processes
such as inflammation or axonal loss may result in sim-
ilar findings. Furthermore, the sensitivity of MRI to
gray matter demyelination is low.16 PET, on the
other hand, provides quantitative and biochemically
specific information that can complement MRI find-
ings. Previous approaches to image demyelination
with PET involved the use of ligands that bind to
myelin,10,11 which present several limitations including
a narrow dynamic range of the measured signal
and spill-in signal from adjacent areas due to the
limited resolution of PET. Recently, we developed
[18F]3F4AP, a PET radioligand that binds to Kv1 chan-
nels and demonstrated that it preferentially localizes to
demyelinated lesions in several rodent models of demy-
elination and readily penetrates the blood–brain barrier
of primates.31 Targeting Kþ channels is an indirect
method to image demyelination and direct proof show-
ing increases in Kþ expression or accessibility in areas
of increased tracer binding has not yet been published.
However, there is strong evidence that Kv1.1 and Kv1.2
increase in expression17,20–24 and accessibility33 upon
demyelination and that [18F]3F4AP can bind to these
channels.31,32 In view of these promising findings, the
primary purpose of the present study was to conduct a
thorough evaluation of [18F]3F4AP in nonhuman

primates including whole-body radiation dosimetry,
evaluation of binding to other receptors, and pharma-
cokinetic modeling.

This present work demonstrates that [18F]3F4AP
possesses very good properties as a PET radiotracer
including negligible binding to other common brain
receptors (Sup. Table 1), low radiation doses (Table
1), high metabolic stability, low plasma protein bind-
ing, and suitable kinetics in plasma (Figure 1) and
brain (Figure 2). [18F]3F4AP kinetics in the brain
were best described using a reversible two-tissue com-
partment model with a fixed vascular contribution,
which provided a robust quantification of [18F]3F4AP
signal using the total volume of distribution VT as the
outcome measure.

These favorable properties resulted in high repeat-
ability and time stability of VT estimates as well as low
intersubject variability (Figure 3). In two studies for
which we had both the monkey’s heart and brain in
the field of view (FOV), we were able to obtain an
accurate IDIF from a ROI positioned in the left ven-
tricular chamber (Supplementary Figures S1 and S2),
which suggests that [18F]3F4AP signal may be accu-
rately quantified using standard kinetic modeling meth-
ods without the invasive procedure of arterial
cannulation.

Our findings also show that it is ineffective to block
[18F]3F4AP signal using unlabeled 3F4AP. Since exces-
sive blockade of Kþ channels causes seizures,53 we
gradually increased the dose to the highest dose that
we estimated would not cause seizures. We had hypoth-
esized that as Kþ channels become occupied by the
unlabeled 3F4AP, there would be a lower number of
available channels for the radiotracer to bind and, con-
sequently, we would observe a reduction in VT.
Nevertheless, higher VT values were observed upon
coinjection of unlabeled 3F4AP (Supplementary
Table S2). Upon further examination of this phenom-
enon, we found a previous report showing that appli-
cation of high dose of 4AP onto the pial surface of rats
caused a local increase in [3H]4AP binding due to sei-
zure spreading.62 This finding leads us to propose a
mechanism by which as the concentration of 4AP (or
3F4AP) increases, neuronal firing also increases, which
results in more channels in the open, bindable, confor-
mation63 leading to an overall increase in binding.

Interestingly, we incidentally observed enhanced
[18F]3F4AP uptake at the site of a focal intracranial
injury sustained during a surgical procedure three
years prior to imaging (Figure 4). We subsequently
performed advanced MRI to assess myelin in the
region and scanned the animal with tracers for
glucose metabolism, [18F]FDG, microglial activation,
[11C]PBR28, and amyloid/myelin, [11C]PiB (Figure 5).
This comparative study revealed hypoperfusion in the
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lesion area with no inflammation or amyloid accumu-

lation. Furthermore, the [11C]PiB scan was suggestive

of demyelination. From the tracers studied, 3F4AP was

the only tracer that showed an increased binding in the

injury, and it was also the tracer with the highest

apparent sensitivity (Figure 5). On the MRI, some of

the measures showed clear differences between the

lesion and contralateral side (Supplementary Table

S3). For example, MTR, which is commonly inter-

preted as a marker of myelination,64 showed significant

decrease in the lesion. However, other MRI measures

such as T2-FLAIR and MEMPRAGE showed changes

that are not typically seen in demyelinated lesions.

Taken together, MRI findings showed an intact

blood–brain barrier, gliosis, encephalomalacia, and

possible demyelination. The apparent inconsistency in

measures of demyelination may arise from the difficulty

of detecting cortical demyelination using conventional

MRI16 or from upregulation of Kþ channels through a

mechanism independent of demyelination. For exam-

ple, although the negative [11C]PBR28 results suggest

that there were no activated microglia in the injury, it is

known that microglia express Kv1.3
65 which could

potentially lead to increased tracer binding.

Therefore, it will be important to examine via histopa-

thology when the animal reaches the end of its life

whether the Kþ channels in the injury site are from

demyelinated axons or from other neuronal structures

or cell types. In addition, although current evidence

suggests that demyelinated axons are the primary

target of [18F]3F4AP, future human studies should

examine the possibility that Kv channels expressed in

other cells may contribute signal.
In summary, this study supports the conclusion that

[18F]3F4AP is a promising PET radiotracer for imaging

voltage-gated Kþ channels in demyelination, showcases

the potential of [18F]3F4AP for detecting chronic brain

injuries, and warrants further investigation in humans.
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