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Abstract

Reductions of baseline cerebral blood flow (CBF) of �10–20% are a common symptom of Alzheimer’s disease (AD) that

appear early in disease progression and correlate with the severity of cognitive impairment. These CBF deficits are

replicated in mouse models of AD and recent work shows that increasing baseline CBF can rapidly improve the

performance of AD mice on short term memory tasks. Despite the potential role these data suggest for CBF reductions

in causing cognitive symptoms and contributing to brain pathology in AD, there remains a poor understanding of the

molecular and cellular mechanisms causing them. This review compiles data on CBF reductions and on the correlation of

AD-related CBF deficits with disease comorbidities (e.g. cardiovascular and genetic risk factors) and outcomes (e.g.

cognitive performance and brain pathology) from studies in both patients and mouse models, and discusses several

potential mechanisms proposed to contribute to CBF reductions, based primarily on work in AD mouse models. Future

research aimed at improving our understanding of the importance of and interplay between different mechanisms for

CBF reduction, as well as at determining the role these mechanisms play in AD patients could guide the development of

future therapies that target CBF reductions in AD.
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Introduction

The metabolic demand of the brain is narrowly met by

the cerebral blood flow (CBF) it receives, with very

little local energy reserve, making brain function par-

ticularly sensitive to reductions in CBF. It is well

acknowledged that disruption of normal blood

supply, largely characterized by regional hypoperfu-

sion, is an early and persistent symptom in the devel-

opment of Alzheimer’s disease (AD) and other

neurodegenerative diseases.1–4 In addition to such

hypoperfusion, there are other dysfunctions of the cere-

brovascular system that have also been linked to AD

and other neurodegenerative diseases, such as disinte-

grated blood brain barrier (BBB) (reviewed in Sweeney

et al.5) and impaired autoregulation and neurovascular

coupling (reviewed in Iadecola6). These vascular con-

tributions to cognitive impairment and dementia have

recently received much attention.7 While an increasing

number of studies link vascular dysfunction, including
baseline CBF reductions, to AD and cognitive
decline,2,8 the mechanisms leading to these CBF
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reductions remain poorly understood. This review will
focus on the causes and consequences of changes to
baseline CBF in AD. Specifically, we review the alter-
ations in CBF found in patients and mouse models of
AD, the correlations of these CBF deficits with the
progression or severity of the brain pathology and cog-
nitive impacts, and the potential molecular and cellular
mechanisms that may underlie the CBF reduction
found in AD.

Cerebrovascular structure and physiology

Regulation and maintenance of CBF are crucial for
proper brain function. The blood flow supply to the
brain is fed by two internal carotid arteries that bifur-
cate from the common carotid arteries and the two
vertebral arteries. These arteries feed the Circle of
Willis, located at the base of the brain, which then
gives rise to the anterior, middle, and posterior cerebral
arteries that support a large proportion of the brain,
including the cerebral cortex. We note, however, that
there is significant variability between species and
between individuals in the general pattern of large cere-
bral vessel arrangement.9,10 In the cortex, the three
cerebral arteries give rise to a network of pial surface
vessels that then branch into penetrating arterioles that
plunge into the brain. These penetrating arterioles feed
the capillary network, where most of the oxygen and
nutrient exchange occurs.11 The capillary beds have the
smallest diameter vessels, such that blood cells (leuco-
cytes and red blood cells (RBCs)) need to deform to
flow through capillary segments, and they thus contrib-
ute the most to overall vascular resistance.12 The
capillaries converge on ascending venules that return
blood to the cortical surface, where it is drained out
of the brain by surface venules.5 This review will mostly
focus on the AD-related CBF disruptions in the cortex,
where imaging tools in humans and animal models
have enabled the most detailed studies.

Not only does the diameter and connectivity vary
across different vessel classes, but also the cellular
structure of the vessel wall and milieu of nearby asso-
ciated cells, termed the neurovascular unit (NVU),6

changes between arterioles, capillaries, and venules.13

Endothelial cells line all blood vessels, are anchored by
a continuous basal membrane, and are connected to
each other by tight junction proteins, thereby forming
the BBB. While small, lipid-soluble molecules (e.g.
oxygen) can passively diffuse in and out of the brain
through the BBB, the entry and exit of larger molecules
is inhibited and transport proteins (e.g. insulin trans-
porter) are required for BBB crossing.5 The cells of the
NVU found adjacent to the endothelium vary across
vessel classes. Arterioles are surrounded by a tight layer
of smooth muscle cells, astrocytic endfeet, and then the

brain parenchyma (containing neurons, astrocytes,
microglia, and other cells), whereas the capillaries are
covered sparsely by pericytes, and then by astrocytic
endfeet.5 Capillaries are the blood vessels that are the
closest, on average, to neurons and other brain cells.
Venules are surrounded by a sparse layer of smooth
muscle cells and astrocytic endfeet. Cerebral vessels
are surrounded by a perivascular space, where extracel-
lular fluid containing proteins and other solutes are
transported.14 In addition to different vessel classes
having different cellular compositions, vascular cells
show different transcriptional profiles in different
vessel classes. This zonation of the cerebral vasculature
was recently described in detail.15

These differences in topology and cellular structure
along the vasculature reflects varying functional roles
of different vessel classes. The cerebral vascular system
is very dynamic and actively regulates CBF. Several
cell-types of the NVU, including neurons, glial cells
(astrocytes and macrophages/microglia), mural cells
(smooth muscle cells and pericytes), and endothelial
cells, are implicated in brain blood flow regulation.5

Changes in blood pressure are sensed in endothelial
cells and drive vessel diameter changes that maintain
constant blood flow – a process named autoregula-
tion.16 Endothelial cells can signal adjacent endothelial
cells, as well as nearby smooth muscle cells, to coordi-
nate such modulation of vascular tone through gap-
junctions and nitric oxide signaling.17,18

CBF also increases locally in response to increases in
neuronal activity – a process termed neurovascular
coupling.13 Smooth muscle cells surrounding arterioles
and pericytes surrounding capillaries are the contractile
cells around vessels that are critical for this flow regu-
lation.19–22 Several studies have shown that neuronal
activity causes Ca2þ release in astrocytic endfeet that
drives vasodilation and/or vasoconstriction in arterio-
les,23 while other studies suggest astrocytic Ca2þ

dynamics can also influence capillary diameter through
pericyte contractility.24–27 Thus, it is the interplay of
sensing and signaling across multiple cell types in the
NVU that coordinates the tight regulation of CBF in
the brain. It is widely appreciated that these flow reg-
ulation mechanisms are disrupted in AD patients28,29

and in mouse models of AD.6 In this review we will
mostly focus on changes in baseline blood flow in AD
and how this may impact disease progression.

During healthy aging, brain blood flow reaches its
maximum value at the age of 4–6 years, and then
decreases to about 60–70% of the maximum value by
50–60 years of age.30 Some structural changes occur in
cerebral blood vessels with aging, including increased
collagen deposition and calcification in arterioles, lead-
ing to increased vessel wall thickness, decreased vessel
elasticity, and overall increased resistance.31,32
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These vascular changes are correlated with increased
levels of reactive oxygen species (ROS) and vascular

inflammation.33,34 There is also an age-dependent

decrease in capillary density.35,36 These structural

changes in vessels are found to be more severe in

patients with neurodegenerative disease, including

AD,6,37 and likely contribute to the increase in vascular

resistance, hypoperfusion, and alterations in cerebro-

vascular regulation seen in AD37 (Figure 1(a)).

Cerebral blood flow reductions in patients

with Alzheimer’s disease

Many studies have shown the correlation between

reduced CBF, impaired cognitive function, and an

increased probability of developing dementia, includ-
ing AD, later in life. The blood flow reductions corre-

lated with increased risk for dementia exceed the levels

of flow reduction associated with normal, healthy

aging.38 Here, we focus on brain blood flow reductions

in dementia, and in particular in AD, that are not asso-

ciated with the incidence of a clinically-diagnosed

stroke (which in AD patients is associated with more

severe cognitive impairments,39 and is reviewed in

Pendlebury and Rothwell40).
The largest study of the correlation between CBF

reductions and dementia comes from the ongoing

Rotterdam Study. Data from 1,730 patients, aged

55 years or older, showed that higher baseline CBF,

as measured by transcranial laser Doppler of the
middle cerebral artery, was associated with lower risk

of being diagnosed with dementia 6.5 years later in life,
and also with slower cognitive decline over this time, as

compared to patients with lower baseline CBF.41,42

Using single-photon emission computerized tomogra-

phy to spatially resolve changes in CBF, lower flow
within the medial parietal cortex was found to develop

before other symptoms of AD, indicating that reduced
CBF occurs at early stages of disease progression.43,44

In agreement with this, CBF reductions have been
found to precede the onset of detectable memory defi-

cits in patients at predementia stages who later devel-
oped AD.8,45,46 Arterial spin-labeled magnetic

resonance imaging (ASL-MRI) has provided even
greater spatial resolution for imaging CBF changes.

With this approach, patients that had mild cognitive
impairment (MCI) or AD showed progressively worse

disease symptoms with more severe regional CBF
reductions in the left hippocampus and right amygda-

la.47 Interestingly, this study found variable impacts of
MCI and AD on regional CBF in the inferior parietal,

left lateral, left superior, and left orbitofrontal cortices,
and also found an increase in perfusion within the ante-

rior cingulate gyrus. Further studies have largely
shown CBF reductions ranging from 2 to 32%, with

regional variability, in patients with MCI and/or AD,
as compared to healthy controls48–50 (Table 1 and

Figure 1(b)). However, some studies report no changes

Figure 1. Vascular alterations and brain blood flow reductions in AD patients. (a) Heparan sulfate proteoglycan mmunohisto-
chemistry in the cortex of a control subject (upper panel) and an AD patient (lower panel), showing reduced vascular density with
AD.36 (b) Images of brain perfusion using ASL-MRI from a normal aged subject (top images), and an AD patient (bottom images). Red
colors represent higher perfusion, while blue colors represent lower perfusion.167 (c) Bright field images of a capillary segment from a
human brain slice before (left) and after (right) application of 72 nM Ab1-42 onto the slice, which triggered activation of a pericyte
(white arrows) and constriction of the capillary (red line and yellow arrowheads).157
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in CBF or even hyperperfusion, for example in the hip-

pocampus, putamen, caudate, lentiform, and thalamus,

in patients with AD.51,52 These differing results might

be due to subtleties of various CBF measurement tech-

niques, the disease stage at which participants are eval-

uated, or the inclusion/exclusion criteria for selecting

participants – it is known, for example, that cardiovas-

cular risk factors can have complex effects on CBF.
The deposition of tau has also been found to influ-

ence CBF. A recent study including MCI and AD

patients that analyzed the association of CBF and cog-

nition with both tau and amyloid deposition showed

that while increased tau deposition was linked to lower

CBF and more severe cognitive impairment, this asso-

ciation was much stronger in patients with high amy-

loid burdens as compared to those with lower amounts

of amyloid.53

While characterization of structural changes in the

vasculature associated with AD can be assessed using

post-mortem tissue, there are few approaches that can

be used to quantify hypoperfusion using such histolog-

ical approaches. One approach is measuring the ratio

of the concentration of myelin-associated glycoprotein

to proteolipid protein 1, which has been found to

decrease with chronic hypoperfusion.54 This ratio was

found to be reduced in the frontal cortex of tissue from

AD patients, as compared to matched controls.55

Scaling this approach could allow the use of large

sample sizes from tissue banks to explore, for example,

genetic, gender, age, or disease marker progression of

regional brain hypoperfusion, as well as to correlate

hypoperfusion with other pathological changes. Such

data could complement the in vivo imaging data on

CBF in AD patients that is available.
Reduced CBF has also been linked to increased

levels of amyloid deposition and more severe brain

pathology in AD patients.56 Measuring brain amyloid

levels using positron emission tomography with the

amyloid-labeling Pittsburgh Compound B (PiB)

revealed that higher levels of Ab deposition was corre-

lated to global CBF reductions,57 and that even region-

al CBF deficits were linked to regional increases in Ab
deposition.58 In addition, a study by Huang et al. has

shown a correlation between brain regions with CBF

deficits and brain atrophy in AD patients.59 The sever-

ity of white matter hyperintensities, areas of white

matter damage linked to hypoperfusion that are iden-

tified through MRI, is exacerbated in AD patients.60

These studies show that there are correlations between

reduced regional CBF and AD pathology.
These reductions in CBF in AD patients are fre-

quently correlated with the development of vascular

pathology. Cerebral amyloid angiopathy (CAA) is

defined as Ab deposition around the vessel walls of

Table 1. CBF changes in patients with MCI and AD.

Brain region Patients Age (years)

CBF change (% decrease)

Imaging modality CitationAD MCI

Cortex 4759 61.3 6 Phase-contrast MRI 42

17 71� 7.7 22 SPECT 43

15 69.3 13 SPECT 44

37 83.6� 3.5 22 12 ASL-MRI 47

107 �65 11 ASL-MRI 45

17 72.2� 6.8 11 ASL-MRI 49

20 72.9 10 No change ASL-MRI 169

12 70.7� 8.7 32 ASL-MRI 48

22 74.5� 8.6 21 ASL-MRI 170

71 65� 7 18 11 ASL-MRI 50

24 74.6� 6.7 11 9 ASL-MRI 52

Hippocampus 4759 61.3 Dementia (AD) 15 Phase-contrast MRI 42

37 83.6� 3.5 2 �36 (increase) ASL-MRI 47

22 75.6� 9.2 �4.8 (increase) ASL-MRI 51

71 6.25� 7 18 Similar ASL-MRI 50

Thalamus 4759 61.3 Dementia (AD) 18 �21 (increase) Phase-contrast MRI 42

37 83.6� 3.5 17.5 ASL-MRI 47

24 74.6� 6.7 �12 (increase) ASL-MRI 52

Parahippocampal

gyrus

4759 61.3 12.5 Phase-contrast MRI 42

12 70.7� 8.7 28 ASL-MRI 48

Single-photon emission computed tomography (SPECT); arterial spin labeled MRI (ASL-MRI); Alzheimer’s disease (AD); mild cognitive impairment

(MCI).
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cortical arteries, arterioles, capillaries, and, rarely,
veins.61,62 CAA is present in more than 80% of patients
diagnosed with AD,63 and is linked to pathological
changes in the vasculature and increased incidence of
microhemorrhages and microinfarcts.64 It is thought
that CAA contributes to impaired neurovascular regu-
lation and perivascular flow by reducing the elasticity
of vessels,6 and by disrupting smooth muscle cell func-
tion.65,66 Only a few studies have correlated CBF with
CAA burden in AD patients, and they found that the
presence of CAA was associated with more severe CBF
reductions.67,68 Microvascular pathologies, including
pericyte loss, BBB breakdown, and reduced vascular
density (Figure 1(a)), have also been found at higher
incidence in AD patients, as compared to controls.69,70

The brain microinfarcts and microhemorrhages that
are consequences of microvascular occlusions and rup-
tures are also found in increased number in AD
patients as compared to controls.71

The apolipoprotein E (APOE) e4 allele increases the
risk of AD by 3–8-fold and lowers the onset age of AD
symptoms by 7–15 years.72,73 The e4 allele of APOE is
also linked to cerebral hypoperfusion. A study by
Thambisetty M, et al., showed that APOE e4 carries
have 2–6% reduction in CBF across several brain
regions, as compared to non-carries, as well as
impaired memory function.73 Similar results were
observed in other studies of APOE e4 carries,57,74

although newer findings have suggested APOE e4 car-
ries have regional brain hyperperfusion in mid-life.75

Some of the cerebrovascular pathology seen in AD
may be exacerbated by the presence of cardiovascular
risk factors. Indeed, most cardiovascular risk factors,
including hypertension, type 2 diabetes, hypercholes-
terolemia, as well as metabolic syndrome and obesity
(especially when present in mid-life) have been shown
to increase the risk for developing AD and severity of
symptoms in AD patients.76,77 Cardiovascular risk
scores taken during mid and late age in patients can
predict cognitive decline later in life.42,55 In a prospec-
tive study, the Framingham cardiovascular risk score
was predictive of the degree of cognitive decline over a
year in a cohort of 254 patients with AD,78 while other
studies have correlated the Framingham score with
cognitive decline in the middle-age general popula-
tion.79 Patients with hypertension frequently also
have decreased brain perfusion and an increased prob-
ability of developing AD later in life.80 A recent meta-
analysis studied this correlation in more depth and
showed that, in particular, stage one (BP> 140mm
Hg/90mmHg (systolic/diastolic)) or two (BP>
160mmHg/95mm Hg) systolic hypertension, but not
diastolic hypertension (> 90 mm Hg distolic), was
associated with more severe AD.81 These cardiovascu-
lar risk factors are all associated with brain blood flow

reductions and increased microemboli,82 and it may be,

in part, through these flow reductions that these car-

diovascular risk factors influence AD progression. In

addition, cardiovascular disease, such as coronary

heart disease or small vessel disease, is associated

with brain hypoperfusion (largest in watershed regions,

including the basal ganglia, white matter, and hippo-

campus83–85) and has been shown to increase the risk of

developing MCI and dementia.86 CBF increase, how-

ever, is not always associated with improved cognitive

function. For example, while moderate exercise is con-

sistently associated with improved cognitive perfor-

mance, this is not always accompanied by an increase

in CBF.87–89 While these studies were not conducted in

AD patients, they suggest a complex interplay between

CBF and cognitive performance.
In addition to alterations in baseline CBF, the

dynamic regional and global regulation of brain

blood flow may be impaired in AD patients. While

there have been many reports of regional and global

differences in blood oxygen level dependent (BOLD)

functional MRI measurements in AD patients as com-

pared to controls,90,91 only a few studies have linked

performance on a memory-encoding task during func-

tional MRI imaging sessions to the degree of functional

hyperemia in the brain regions functionally linked

to the task. These studies showed muted CBF

increases during task performance in AD patients, as

compared to healthy individuals, indicating a deficit in

CBF regulation.92–94 More studies will be needed on

task- and context-dependent CBF changes between

healthy controls and AD patients to shed light on the

mechanisms causing these impairments in neurovascu-

lar regulation.
In summary, MCI and AD patients tend to:

• have reduced cerebral blood flow across a variety of

brain regions
• show correlation between the severity of hypoperfu-

sion and cognitive impairment
• have microvascular pathology and brain

microinfarcts
• exhibit defects in CBF regulation as well as baseline

flow

The presence of cardiovascular risk factors, some

years earlier, has been shown to increase the risk

and severity of AD and this exacerbation of AD

may be related, in part, to the CBF deficits often

associated with these risk factors. Broadly speaking,

the mechanisms underlying the reductions in CBF

seen in AD patients remain poorly understood and

remain difficult to study since the origin is likely

multifactorial.
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Cerebral blood flow reductions in mouse

models of AD

Mouse models of AD offer the opportunity to elucidate
the mechanistic links between CBF reductions and AD
pathology. Hypoperfusion has been repeatedly demon-
strated in multiple different mouse models of amyloid
precursor protein (APP) overexpression, including
PS2APP, TgCRND8, APP/PS1dE9, 5xFAD, Tg2576,
and J20 mice (Table 2).95–99 In addition, CBF deficits
were found in knock-in mouse models that drive
mutant human APP under the endogenous mouse
APP promoter.100 Flow deficits in AD mice relative
to wild-type animals varied from 13% to 55% across
these studies. High field ASL-MRI (7–11.4 T) allows
regional CBF to be assessed in mice, and several
brain regions in AD mouse models have been shown
to exhibit reduced brain blood flow using this
approach, including the occipital cortex,101,102 cerebral
cortex, hippocampus, and thalamus.97,103,104 However,
one study showed increased CBF in the frontoparietal
cortex and thalamus,105 while another found no deficits
in CBF at eight months of age in APP/PS1 mice,106 but
a reduction at 15months of age compared to age-
matched wild-type mice.106,107 The APOE4 allele is
the largest risk factor for AD, and targeted replace-
ment knock-in mouse models carrying the human
APOE allele are associated with CBF reductions in
the cortex, hippocampus, thalamus, and the white
matter.108–110 The CBF reductions associated with
APOE manipulation were found to correlate with peri-
cyte loss,111 decreased capillary density,112 and BBB
breakdown via the CypA-MMP9 pathway,109,113 sug-
gesting the possibility of mechanistic ties between dif-
ferent microvascular dysfunctions. In patients who
carry the APOE4 allele, increased pericyte loss and
BBB breakdown was also observed, as well as more
severe cognitive decline.114,115

Overall, these data suggest a broad consensus that
hypoperfusion occurs in mouse models of AD, but the
degree of hypoperfusion and the brain regions most
affected are very heterogeneous across the published
literature. This variability, including findings of nor-
moperfusion or hyperperfusion, could be a result of
differences in age, sex, genetic background, transgenic
mouse strain, controls, and imaging modality, much of
which is underreported in the existing literature.

Impact of chronic hypoperfusion on

AD-like pathology and behavior in mice

Chronic hypoperfusion has been shown, on its own, to
cause cognitive deficits in mice, as well as to recreate
some of the brain inflammation associated with AD,
although the hypoperfusion sufficient to cause these

effects is more severe than that found in AD patients
or mouse models. We briefly review these findings
because they suggest how CBF deficits may exacerbate
AD-related pathology. To induce chronic hypoperfu-
sion in mice, common methods include the unilateral
common carotid artery occlusion (UCCAO) and the
bilateral carotid artery stenosis (BCAS) model, which
lead to steady-state reductions of between �30% and
�70%, depending on coil diameter, although often
with more severe hypoperfusion just after coil implan-
tation.18,116,117 After 1–4months, these CBF decreases
lead to deficits in short-term memory.116–118 Such
chronic cerebral hypoperfusion also induced hyper-
phosphorylation of the mouse tau protein after
2.5months.117 When hypoperfusion is induced in
mouse models of AD, the pathological phenotypes
associated with the AD-related pathology are acceler-
ated and the cognitive impact is worsened.119,120 For
example, in 9-month old J20 mice, one month of chron-
ic hypoperfusion led to more severe deficits in spatial
short-term memory measured using a Barnes maze, as
compared to sham surgery controls.121 Interestingly,
this study showed a decrease in the density of diffuse
amyloid plaques and a decrease in the concentration of
Aß(1-42) in the hypoperfused mice.121 In APP23 mice,
hypoperfusion was also found to cause more severe
cognitive deficits, but the hypoperfusion was associated
with an increase in the density of amyloid plaques.122

In 10–11months old female Tg2576 AD mice 8weeks
of chronic hypoperfusion led to impaired learning in
the Morris water maze.123 In the PS1V97L mouse
model of AD chronic hypoperfusion led to increased
BBB permeability, caused by a reduction in tight junc-
tion proteins, which was attributed to enhanced oxida-
tive stress.124 Similarly, an increase in the concentration
of amyloid species was found in APP/PS1 mice with
induced hypoxia,125 although the impact of microvas-
cular obstructions on the aggregation state and density
of Aß can be complex.126 Several studies have also
suggested that cerebral hypoperfusion exacerbates
CAA in the Tg-SwDI mouse model.127,128 However,
there are differences in the reported impact of hypoper-
fusion across AD mouse models that might be
explained by the underlying disease-driving mutations,
promoters driving these transgenes, or the strategies
that were used to reduce brain blood flow. In addition,
the magnitude of CBF reduction caused by these
chronic induced hypoperfusion models is larger than
that typically seen in AD patients,129 and these more
severe CBF reductions could activate pathogenetic
mechanisms that are not involved with the more
modest CBF reductions found in AD. Recognizing
this, new models that use either larger diameter coils
or alternative surgical approaches (e.g. asymmetric
common carotid artery surgery) have been
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developed.129 These models caused CBF reductions of

about 30% and this CBF deficit was still associated
with memory deficits, as measured using a Y-maze,

after 28 days.130

Taken together, these findings indicate that chronic

reductions in brain blood flow in wild-type mice cause
AD-like memory deficits and brain pathologies,

although this has generally required more severe CBF

deficits than seen in AD patients. In addition, inducing

hypoperfusion in mouse models of AD leads to an

acceleration of disease progression, as characterized
by amyloid burden, brain pathology, and cognitive

deficits.

Potential mechanisms contributing to

reduced CBF in AD that have emerged

from mouse model studies

While several mechanisms have been proposed as con-

tributing to brain blood flow reductions in AD, the

physiological cause remains poorly understood.

Disease-related structural changes in vessels as well as

variance in the anatomy of large vessels can be impor-

tant factors in CBF changes linked to neurodegenera-

tion. For example, the hippocampal blood supply is

provided by the collateral branches of the posterior

cerebral artery and the anterior choroidal artery.

Recent studies have shown that variations in the anat-

omy of the anterior choroidal artery in individuals led

to impaired vascular reserve that was associated with

increased risk for neurodegeneration and more precip-

itous cognitive decline with age.131,132 In addition, sev-

eral studies from human AD patients have shown

reduced vascular density and structural vascular alter-

ations that could increase flow resistance, such as

increased tortuosity,133 vessel wall thinning,134 string

vessel formation.135 In mouse models, the data on

structural changes in cerebral vessels is less homoge-

nous. Several studies found decreased density of

capillaries in the APP23 transgenic AD model136 and

in the hippocampus of 12–15month old APP/PS1

mice.137 Another study has also shown that capillary

Table 2. CBF changes in AD mouse models.

Animal model Mutation Brain Region

CBF change

(% decrease)

Age

measured

(months)

Age of

cognitive

deficits Imaging modalities Citation

J20 APP Swedish, Indiana cortex 20 3 4 ASL-MRI 101

5xFAD APP Swedish,

Florida, London

PSEN1 M146L and L286V

cortex 17 5–8 4 2PEF 97

TgCRND8 APP Swedish and Indiana cortex 20 8 4 ASL-MRI 171

TgCRND8 APP Swedish and Indiana cortex 25 7 4 ASL-MRI 159

APP/PS1D9 APP Swedish

PSEN1 L166P

cortex, HC 24 6–7 6–9 ASL-MRI 97

APP knock-in APP Swedish, Dutch,

London

crossed in PS1 M146

cortex 21 8 8 ASL-MRI 100

PS2APP APP Swedish

PSEN PSEN2 N141I

cortex, HC 28 10 8–9 ASL (CASL) MRI 95

J20 APP Swedish, Indiana cortex 45 16 4 Laser doppler 156

APP/PS1D9 APP Swedish

PSEN1 L166P

cortex 28 15 6–9 Contrast

enhanced MRI

106

APP/PS1D9 APP Swedish

PSEN1 L166P

cortex no change 0 6–9 Contrast

enhanced MRI

107

APP/PS1 APP Swedish

PSEN1 L166P

cortex 20 6 6–9 ASL-MRI 172

Tg1130H APP695, V717I,

V721A, M722V

cortex 20 2–3 Laser doppler 173

Tg2576 APP KM670/671NL cortex 15 2–3 6 Laser doppler 148

APP/PS1D9 K594N/M595L

PSEN1 L166P

cortex,

HC

�20

(increase)

2–8 6–9 ASL-MRI 105

APOE4-TR APOE Knock-In Cortex, HC 35 9 autoradiography 109

APOE4-TR APOE Knock-In Cortex 20 3–4 ASL-MRI

2PEF

108

Two-photon excited fluorescence microscopy (2PEF); arterial spin labeled MRI (ASL-MRI); Continuous ASL-MRI (CASAL); hippocampus (HC).
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density decreases in close proximity to amyloid plaques
in the Tg2576 model, suggesting direct Aß-mediated
damage to the vasculature.138 Mouse models of APP
overexpression also exhibit increased tortuosity in cor-
tical ascending venules, increasing vascular resis-
tance.139 In contrast, mice that overexpress a human
mutant tau protein linked to frontotemporal dementia
and which leads to the formation of neurofibrillary

tangles in neurons were found to have increased capil-
lary length, diameter, and density, as compared to con-
trols.140 Overexpression of non-mutant tau, which does
not aggregate into neurofibrillary tangles, did not cause
such vascular changes. In this same study, APP over-
expression models showed no difference in these meas-
ures of vascular structure as compared to controls,
indicating different impacts of Aß and tau overexpres-
sion on vascular structure (Figure 2(a)).140

Cardiovascular risk factors have also been shown to
accelerate disease progression in mouse models of AD,
including by exacerbating cerebrovascular dysfunc-
tion.141,142 A reduction in vascular density was found
in APP/PS1 mice with hypertension induced by angio-
tensin II infusion, as compare to normotensive APP/
PS1 mice.143 Interestingly this study did not show a
difference in vascular density at baseline between
wild-type and APP/PS1 mice.143 The links between
AD and cardiovascular risk factors may be bidirection-
al; a one-month infusion of Ab1-40 was found to induce

hypertension in Wistar rats and lead to a reduction in
carotid artery blood flow.144

Loss of appropriate regulation of vascular diameter,
either in the resting state or in response to vasoactive
mediators, such as hypercapnia, blood pressure change,
or increased neural activity, can also lead to CBF def-
icits. Superfusion of monomeric species of Ab1-40 onto
the somatosensory cortex of wild-type mice was found
to induce vasoconstriction.145,146 In the Tg2576 mouse
model of AD, autoregulation and neurovascular cou-
pling were impaired early in disease progression, before
the appearance of amyloid-beta deposits.99,147,148

However, other studies have found no differences in
neurovascular regulation between Tg2576 and age-
matched wild-type mice when the mice were young,
with the AD mice showing impairment only later in

disease progression when amyloid deposition along
vessels was noted.149 In vitro experiments show that
Ab application to endothelial cells causes an increase
in reactive oxygen species (ROS),150 and subsequent
work has implicated ROS in the impairment of neuro-
vascular regulation. In particular, the scavenger recep-
tor CD36 has been found to bind Ab and mediate
activation of NOX2-containing NAPDH oxidase lead-
ing to the production of ROS, which not only causes
endothelial dysfunction and impairs neurovascular reg-
ulation, but also drives smooth muscle cell degenera-
tion in cortical arterioles later in disease progression

Figure 2. Mechanisms contributing to CBF reductions in mouse models of Alzheimer’s disease. (a) Images from 15month old WT
(left) and APP/PS1-Tg4510 mice (right; overexpresses mutant APP and mutant tau), showing clearly increased vascular volume in this
AD mouse model containing both APP and tau-related mutations (Scale bar, 20lm).140 (b) Fragmentation of smooth muscle cells
(arrows) along a cortical arteriole in Tg2576 mice (left image), which is attenuated by CD36 deletion (right image) (Scale bar, 10lm;
anti-a-actin: green, anti-Ab: red).168 (c) Example image of a pericyte (red) constricting around a cortical capillary (blood plasma shown
in green), with blood cell flow blocked, from an AD mouse.157 (d) Cerebral perfusion was maintained in TgCRND8 mice treated with
dabigatran.159 (e) Image sequences showing stalled (left panels) and flowing (right panels) capillaries, where the darker spots in vessels
are due to unlabeled blood cells within the fluorescently-labeled blood plasma. Stalled capillaries, where blood cells do not move
frame-to-frame, occurred at higher incidence in APP/PS1 mice, as compared to controls.97
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(Figure 2(b)).151,152 Interestingly, another NOX pro-
tein, NOX1, has been implicated as a dominant
source of ROS within the hippocampus in a mouse
model of vascular dementia, raising the possibility
that different brain regions and/or different disease
states involve distinct, but related, molecular players
that cause ROS-mediated vascular dysfunction.153,154

In the J20 mouse model of AD, treatment with simva-
statin restored neurovascular coupling and this was
associated with improvements in spatial memory, as
measured by the Morris water maze.155 In stark con-
trast, Nicolakakis N et al. used the peroxisome
proliferator-activated receptor-gamma agonist piogli-
tazone in J20 mice, which similarly restored neurovas-
cular coupling, but led to no improvements in spatial
memory.156 These findings suggest that rescuing neuro-
vascular coupling may not be sufficient to improve cog-
nition in this mouse model. While the magnitude of the
change in CBF due to neural activation was restored
with these two drugs in J20 mice, the impact on base-
line CBF was not assessed.

The use of in vivo microscopy tools has enabled the
microvascular contributions to CBF reductions in AD
to be explored. Recently, three different cellular mech-
anisms acting at the microvascular level have been pro-
posed to contribute to baseline CBF reductions in AD.
First, a recent study showed, using human brain tissue
taken from neuro-oncological biopsies, that Ab1-42
oligomers induced ROS production that led to release
of endothelin-1 and constriction of capillaries via peri-
cyte contraction, likely contributing to increased vas-
cular resistance and thus reduced CBF (Figure 1(c) and
2(c)).157 The authors also analyzed capillary diameters
near pericyte locations in APPNL-G-F mice,157 a knock-
in mouse model that expresses mutant human APP
under the endogenous mouse APP promoter, and
found that diameters were smaller in APPNL-G-F

mice, as compared to wild-type controls, further impli-
cating Ab-induced capillary constriction as a potential
mechanism of CBF reduction of AD (Figure 2(c)).157

Interestingly a recent study has shown that, in the cap-
illary bed of the retina and cortex, pericytes communi-
cate via tunneling nanotubes. These tunnels were
implicated in coordinated pericyte constrictions in
response to neural activation, likely contributing to
neurovascular coupling.158 These nanotubes could con-
tribute to the orchestration of pericytes mediated cap-
illary constrictions seen in the neuro-oncological
biopsies of AD patients and in APPNL-G-F mice.157

Second, AD mouse models show hypercoagulability
and increased stability of fibrin clots that could cause
vascular obstructions that reduce CBF.159,160 For
example, inducing fibrin clot formation in TgCRND8
mouse models of AD by injections of FeCl3 led to ear-
lier and more occlusions at lower doses, as compared to

wild-type mice. Another study by the same group dem-

onstrated, in female TgCRND8 mice, that treatment

for one year with dabigatran, a reversible thrombin

inhibitor, lead to improvements in cognition and reduc-

tions in inflammation and amyloid load that were cor-

related with increases in CBF (Figure 2(d)).159

Third, we have recently found a small but signifi-

cantly increased number of capillaries with transiently

stalled blood flow in the cortex of APP/PS1 mice as

compared to wild-type controls.97 A similar increase

in stalled capillaries was also recently described in a

mouse model of vascular dementia.161 In the APP/

PS1 mice, the stalled capillaries were found to be

caused by neutrophils that became stuck and plugged

flow in individual capillary segments. Administration

of antibodies that unstuck the neutrophils lead to a

�20–30% increase in CBF within minutes. Strikingly,

this CBF increase was accompanied by a rapid resto-

ration of short-term memory within hours (Figure 2

(e)).162 There is currently no data establishing whether

or not such capillary stalls occur in human patients

with AD or whether they share the same cellular mech-

anism. Interestingly, in patients with diabetic retinop-

athy leucocyte adhesion has been shown to occlude

retina capillaries, with low-level vascular inflammation

implicated as the cause.163 Finding leukocyte-mediated

obstruction of capillaries in human retina lends cre-

dence to the possibility that similar capillary obstruc-

tions could contribute to the CBF reduction in AD

patients, as we have shown in AD mouse models.

Because the retina is, in some sense, a “window into

the brain,” looking for capillary obstructions in the

retina of AD patients may be the first path to establish-

ing whether they occur in AD patients. In fact, the

Alzheimer’s Association has launched an initiative to

further explore the possibility of following progression

of AD pathology, including blood flow deficits, in the

eye.164 It is likely that all three of these mechanisms

contribute to CBF reductions in AD, and that these

mechanisms reinforce each other.
These mouse models do not, of course, capture the

full spectrum of pathogenic factors that contribute to

AD. For example, these studies rely on mouse models

that overexpress the mutant form of APP or tau, and

results may be challenging to transfer in the clinic. The

mice also do not have contributions from cardiovascu-

lar risk factors, although these have been layered on to

AD mice in some studies.165 New, second generation

mouse models of AD have also been generated to

improve the quality of disease modeling by, for exam-

ple, knocking in human mutant APP at the mouse APP

locus to provide more normal APP expression and reg-

ulation than in overexpression models.166
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Conclusion

CBF deficits are frequently found in AD patients, with
some inconsistency across studies (Table 1). Generally,
larger CBF deficits appear to be correlated with poorer
cognitive performance in AD patients. CBF also
decreases in healthy aging, although not as much as
in AD patients, and these flow decreases do not seem
sufficient to cause cognitive impairment. This suggests
that CBF deficits are not the sole driver of cognitive
impairment and, more likely, multiple pathogenic fac-
tors contribute to the cognitive decline seen in AD.
This does not imply, however, that treating CBF defi-
cits in AD patients would not lead to cognitive
improvement. More longitudinal data are clearly
needed to further investigate CBF changes over disease
progression and to determine the correlation with cog-
nitive deficits. The regional differences in blood flow in
the brain of AD patients, as well as how CBF deficits
differ in AD patients according to sex, race, ethnicity,
cardiovascular risk factors, and other relevant factors
needs to be further explored. Increased transparency in
reporting details of subjects and methods would likely
help to resolve remaining inconsistencies.

Mouse models of APP overexpression replicate the
CBF deficits found in AD patients, including CBF
decreases early in disease progression and �20%
CBF reductions, on average (Table 2). Recent studies
link these CBF deficits to a few potential cellular mech-
anisms, including tonic constriction of capillaries by
activated pericytes, hypercoagulability that leads to
vascular obstructions, and increased stalling of capil-
lary segments by circulating white blood cells.
Substantial evidence points toward some of these cel-
lular mechanisms being a result of ROS-mediated dys-
function in microvascular cells. More research is
needed to determine the role of, and interactions
between, different cell types within the NVU that
may drive these cellular mechanisms that contribute
to CBF deficits in AD, and may cause other microvas-
cular dysfunction, such as BBB failure and neurovas-
cular dysregulation. In AD mouse models, there
remains a lack of data on CBF deficits from brain
regions other than the cortex, as well as on differences
in CBF deficits with sex and across different mouse
models of AD. In addition, the contribution of aggre-
gated tau to brain blood flow reductions in AD is
severely understudied. Still, given the dramatic struc-
tural impacts on the brain vasculature caused by tau
aggregation, it is critical to understand its impacts on
CBF, as well as the interplay with mutant APP
expression.

The correlation of CBF deficits with more severe
cognitive outcomes in AD patients as well as the
improvement in memory performance in AD mouse

models with rescued blood flow both suggest that

improving CBF could be a potential symptomatic
treatment for AD, especially in early phases of disease
progression. Elucidation of the detailed molecular and

cellular mechanisms that underlie the CBF deficits in
AD could suggest novel therapeutic targets. However,

there remains only sparse data analyzing the mecha-
nisms of CBF reduction in AD, and much more
research is warranted to fully understand these mecha-

nisms and their links to other aspects of cerebrovascu-
lar dysfunction in AD. Recent advances in optical

imaging modalities and genetically-targeted molecular
labeling and manipulation tools make some of these
critical studies a possibility.
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