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Abstract: Laser speckle contrast imaging (LSCI) is a real-time full-field non-invasive technique,
which is broadly applied to visualize blood flow in biomedical applications. In its foundation is
the link between the speckle contrast and dynamics of light scattering particles–erythrocytes. The
mathematical form describing this relationship, which is critical for accurate blood flow estimation,
depends on the sample’s light-scattering properties. However, in biological applications, these
properties are often unknown, thus requiring assumptions to be made to perform LSCI analysis.
Here, we review the most critical assumptions in the LSCI theory and simulate how they affect
blood flow estimation accuracy. We show that the most commonly applied model can severely
underestimate the flow change, particularly when imaging brain parenchyma or other capillary
perfused tissue (e.g. skin) under ischemic conditions. Based on these observations and guided
by the recent experimental results, we propose an alternative model that allows measuring blood
flow changes with higher accuracy.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Laser speckle contrast imaging (LSCI) is a non-invasive optical imaging technique that can
provide information on light scattering particles’ dynamics. Thanks to the high spatio-temporal
resolution and implementation simplicity, LSCI became a key imaging tool to monitor perfusion
in the brain [1–3], skin [4–6], retina [7,8] and other organs. LSCI analyzes speckle pattern arising
from random interference of coherent light scattered by the light-scattering particles, such as red
blood cells. Movement of the particles results in intensity fluctuations, which occur as blurred
speckle pattern when recorded by a camera with a finite exposure time. Pattern blurring is directly
related to the particles’ dynamics, and, thus, to the blood flow, and can be quantified as speckle
contrast K. The form of the contrast-to-blood flow relationship depends on the characteristics of
the light scattering process in the sample, such as scattering regime (single or multiple), particle
motion type (ordered or unordered) and presence of static scattering. These characteristics are
described in the models of the intensity and field temporal autocorrelation functions - g2(τ) and
g1(τ). Under the conventional LSCI theory assumptions, the contrast-to-blood flow relationship
becomes 1/K2 ∝ BFI, where BFI is the blood flow index. This relationship permits real-time
data processing because of its numerical simplicity, and thus has been adopted in the majority of
LSCI applications [8–12].

However, there is growing evidence that using the relationship as described above results in a
discrepancy in the blood flow estimation [13,14]. The discrepancy becomes particularly notable
when imaging ischemic stroke - a major LSCI application [1,12,14,15], where conventional
LSCI severely underestimates the decrease in blood flow [14]. The reason for the discrepancy
is an inaccuracy of assumptions in the contrast-to-blood flow relationship derivation. The key
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assumptions are related to: (i) the form of the field correlation function g1(τ) which is defined
by the scattering regime (single or multiple) and the motion type of the particles (ordered or
unordered) [16,17]; (ii) the presence of static scattering [18,19]; and (iii) impact of coherence,
polarization and speckle averaging effects on the correlation loss which is reflected in the
parameter β [20].

The form of the field correlation function was historically assumed to be g1(τ) = exp(−τ/τc),
where τ is the time lag, and τc is the decorrelation time - a quantitative measure of dynamics. It
is the central assumption that was necessary to build the LSCI theory and to study the effects of
static scattering [15,18]. However, this form only describes the field correlation for the single
scattering unordered motion or multiple scattering ordered motion regimes. It becomes invalid
for the cases where single scattering ordered motion or multiple scattering unordered motion
regimes are predominant [14,17,21]. Recent research shows that these regimes are unexpectedly
abundant in the typical LSCI applications where discrepancies were observed [14,17,22], making
it clear that the fundamental assumptions have to be re-visited.

In this study, we derive new LSCI models that correspond to different forms of the field
temporal autocorrelation function in order to obtain a more accurate contrast-to-blood flow
relationship. We use the derived models to numerically analyze how the key assumptions affect
blood flow estimation accuracy. We re-evaluate the effects of static scattering and the impact
of the correlations loss. We support our numerical investigation with a comparison between
dynamic light scattering imaging (DLSI) [14] and LSCI measurements of the blood flow in the
mouse model of ischemic stroke.

2. Theory

2.1. Conventional LSCI model

The mathematical relationship between spatial contrast Ks and decorrelation time τc was first
derived by Fercher and Briers in 1981 [16] and revised in later studies [23,24]. Briefly, Ks is
given by

Ks =
σs

<I>
, (1)

where <I> and σs are the mean and standard deviation of intensity calculated over a pixel’s
neighbourhood. The spatial variance σ2

s and, thus, speckle contrast, can then be related to the
intensity autocorrelation function g2(τ) with the intensity covariance Ct(τ):

σ2
s (T) =

2
T

∫ T

0
(1 −

τ

T
)Ct(τ)dτ, (2)

Ct(τ) = (g2(τ) − 1)<I>2
t , (3)

where T is the exposure time, τ is the time lag. There are no assumptions related to the
light-scattering process in these equations. However, assumptions are required to relate g2(τ) to
the field temporal autocorrelation function g1(τ) and thus to particles’ dynamics. In the original
derivation the light scattering medium was assumed to be ergodic, thus allowing the use of the
Siegert relation [16]:

g2(τ) = 1 + β|g1(τ)|
2, (4)

where β accounts for the correlation loss due to the speckle averaging, polarization and low
stability and coherence of the light source. Most importantly, except the most recent studies
[14,17], the form of the field correlation function g1(τ) is generally defined as:

g1(τ) = exp
(︁
− τ/τc

)︁
, (5)

which corresponds to the single light scattering from the unordered motion of scattering particles
or to multiple light scattering from the ordered motion of scattering particles [16,17]. Combining
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Eqs. (1–5), results in the equation that relates spatial speckle contrast to the decorrelation time:

K = β0.5
{︃
τc
T
+
τ2

c
2T2

[︂
exp

(︂
−

2T
τc

)︂
− 1

]︂}︃0.5
. (6)

Equation (6) can be solved to find the decorrelation time and get the blood flow estimate in
the form of the inverse decorrelation time 1

τc
. However, solving the equation is rarely done

in practice as it is computationally expensive and requires pre-calibration of the parameter β.
Instead, to allow real-time processing and ease adoption of the technique, the equation was
further simplified, and the blood flow index (BFI) was introduced as an estimate of perfusion:

K ≈

(︃
β
τc
T

)︃0.5
, (7)

BFI = 1/K2 ≈
1
β

T
τc

. (8)

Equation (7) relies on the assumption that T ≫ τc [25], which is true for most applications
[14,18,26] and renders the τ2

c
2T2

[︂
exp

(︂
− 2T

τc

)︂
− 1

]︂
term in Eq. (6) negligible. Conveniently, since β

depends on the system configuration and does not change within a single experiment, Eq. (8)
allows β-independent estimation of the relative blood flow (rBF):

rBF =
BFIresponse

BFIbaseline
=

K2
baseline

K2
response

≈
τc,baseline

τc,response
, (9)

where baseline and response are defined either in time (before vs after stimulus) or in space
(affected tissue vs non-affected tissue). Calculating rBF with Eq. (9) has become the most common
way of analyzing LSCI data, as it provides a system-independent (not affected by β) metric of the
relative blood flow change. It is applied in a broad range of biomedical studies, including stroke
[9,12,27,28], sensory stimulation [29,30], drug response [31,32], and vasoreactivity research
[8,32].

2.2. Key assumptions

Assumptions on the form of the field autocorrelation function, ergodicity and the decorrelation
time were necessary to derive Eqs. (4–9). Below we discuss each assumption in detail:

• Assumption 1: form of the field correlation function is g1(τ) = exp(−τ/τc). In
conventional LSCI, Eq. (5) is used to describe the form of the field autocorrelation function
g1(τ) and its relation to the decorrelation time. This form is defined by the dynamics
scattering regime and corresponds to the single scattering unordered motion, or multiple
scattering ordered motion. Recent studies, however, show that these regimes change
depending on the imaged tissue and the vessel size [14,17]. Specifically, when imaging
capillary perfused tissue (e.g. skin or parenchymal regions of the brain), the observed
dynamics are better described with multiple light scattering and unordered motion . In
contrast, for vessels larger than 150 µm in diameter (e.g. human retinal vessels), a single
scattering and ordered motion is expected. To account for this difference Eq. (6) has to
be re-derived using a corresponding form of the g1(τ). See Table 1 for a summary of the
forms of g1(τ).

• Assumption 2: static scattering is absent. The original derivation assumed ergodicity
and thus an absence of static scattering in the sample. The question of how static scattering
affects the contrast analysis was later addressed with multi-exposure laser speckle imaging
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(MESI) theory [18]. In MESI, the modified form of the intensity correlation function was
introduced:

g2(τ) = 1 + β
[︁
ρ2 |g1,f (τ)|

2 + 2ρ(1 − ρ)|g1,f (τ)| + (1 − ρ)2
]︁
, (10)

where ρ = <If >
<If >+<Is> , Is = EsE∗

s is the intensity of the statically scattered light, If = ⟨Ef E∗
f ⟩

is the time-averaged intensity of the fluctuating dynamically scattered light and g1,f (τ) =
⟨Ef (t)E∗

f (t+τ)⟩
⟨Ef (t)E∗

f (t)⟩
. Equation (6) is then re-derived as [18]:

K = β0.5
{︃
ρ2

e−2x − 1 + 2x
2x2 + 4ρ(1 − ρ)

e−x − 1 + x
x2 + (1 − ρ)2

}︃0.5
, (11)

where x = T/τc.
MESI showed that static scattering is mostly absent when imaging medium or large vessels
directly, but must be accounted for when imaging through skull or monitoring perfusion
in parenchymal regions of the brain [15]. However, the static scattering contribution
was analysed based on the MO/SUn=1 form of the g1(τ), and thus requires re-evaluation,
particularly in parenchymal regions where MUn=0.5 form is dominating [14].

• Assumption 3: decorrelation time τc is much shorter than exposure time T . This
assumption is critical in the derivation of Eqs. (8) and (9), as it allows discarding the
second-order term in Eq. (6). It is true in many of the LSCI applications, as typically used
optimal T is on the order of 5ms [26], while τc is ≤1ms. However, in some applications,
such as ischemic stroke [27] or systemic sclerosis [33], flow speed can be reduced by ≈10
times, thus increasing τc and invalidating the assumption [14]. To keep the assumption
valid in such cases, one may consider using a longer exposure time. It, however, will lead
to the increased relative contribution of static scattering, making it even more critical to
address the assumption 2. Furthermore, increasing T will reduce sensitivity to changes in
faster flows [26] and impose stricter frame rate limitations, making it overall impractical in
biomedical applications.

• Assumption 4: β has no effect on rBF. This assumption holds in two cases: (i) β ≈ 1 or
(ii) static scattering is absent and τc<<T . The value of β is determined by the experimental
setup [20,34,35] and is generally in the range ≈0.3 to 0.6 [14,35], making the first case
implausible. The second case, as discussed above, is only true for some of the LSCI
applications. For other applications, the deviation of β from 1 should not be ignored, and
its contribution to rBF measurements accuracy has to be evaluated.

Table 1. Form of the field correlation function g1(τ) for different scattering
regimes and particle motion types

g1(τ) form Scattering Motion Approx. vessel size Notation

exp(−
√︁
τ/τc) Multiple Unordered Small (≈ ⊘<30µm) MUn=0.5

exp(−τ/τc)
Multiple Ordered

Medium (≈ 30< ⊘ <110µm) MO/SUn=1
Single Unordered

exp[−(τ/τc)
2] Single Ordered Large (≈ ⊘>110µm) SOn=2

2.3. Newly derived contrast models

To explore how the assumptions affect measurement accuracy, we follow the procedure described
above and re-derive Eq. (11) for the different forms of g1(τ). This section only presents the final
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equations, while the detailed derivation can be found in the Supplement 1. Using the multiple
scattering with unordered motion form MUn=0.5 of the field correlation function we arrive at:

K = β0.5
{︃
ρ2

e−2
√

x(4x + 6
√

x + 3) + 2x − 3
2x2 +8ρ(1− ρ)

e−
√

x(2x + 6
√

x + 6) + x − 6
x2 +(1− ρ)2

}︃0.5
.

(12)
Single scattering with ordered motion SOn=2 results in:

K = β0.5
{︃
ρ2

e−2x2
+
√

2πerf (
√

2x)x − 1
2x2 + 2ρ(1 − ρ)

e−x2
+
√
πerf (x)x − 1
x2 + (1 − ρ)2

}︃0.5
, (13)

where erf (x) is the error function defined by

erf (z) =
2
√
π

∫ z

0
e−t2dt. (14)

Here and below we refer to the derived Eqs. (12) and (13) as the MUn=0.5 and SOn=2 models,
and the original Eq. 11 and its simplified version Eq. 7 as the MO/SUn=1 and MO/SUn=1,simp
models respectively. Figure 1 shows the contrast versus T

τc
in the absence of static scattering

(Fig. 1(A)) and with 20% static scattering (Fig. 1(B)). Even in absence of static scattering, there
is a noticeable difference between the MO/SUn=1 and the most commonly used MO/SUn=1,simp
models, which becomes visible at T

τc
≈ 10 and grows larger for smaller T

τc
, eventually leading

to the contrast exceeding the theoretical maximum of 1 for the MO/SUn=1,simp model. For
non-ergodic case, the MO/SUn=1,simp model deviates from the detailed models even more, as it
still reaches K ≈ 0 at larger T

τc
, highlighting the importance of the assumption 2 in its derivation.

Fig. 1. Contrast as a function of exposure time to decorrelation time relationship for all
models in (A) absence of static scattering (ρ = 1) and (B) 20% static scattering (ρ = 0.8),
which is common in parenchyma or skin imaging [14,15] . There is no correlation loss due
to pixel averaging or polarization effects (β = 1).

3. Materials and methods

3.1. Simulation

To quantify LSCI measurement accuracy, we simulate relative blood flow estimation with different
models and calculate the relative error caused by invalid assumptions. The process can be
described as follows:

https://doi.org/10.6084/m9.figshare.14609976
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• Step 1: Define the baseline decorrelation time τcb and the relative blood flow rBFtrue.
Following the existing data [14,18], we set τcb to 50µs, 200µs, and 1ms for the large vessels,
medium vessels, and parenchyma, respectively. For the rBFtrue, we chose a range of values
from 0.1 to 3 (10% to 300% of the baseline flow) to cover the flow change from ischemia
to hyperperfusion.

• Step 2: Calculate the response decorrelation time as τcr = τcb/rBFtrue.

• Step 3: Calculate the speckle contrast that corresponds to τcb and τcr using the model
defined as ground truth. The ground truth model (MUn=0.5, MO/SUn=1 or SOn=2) and its
parameters (ρ,β) are defined accordingly to the vessel size and to the tested assumptions.

• Step 4: Convert contrast, calculated in the previous step, to decorrelation time τcb,test and
τcr,test using the "tested" model. In the tested model, either β,ρ or the form of g1(τ) are
invalid for the chosen vessel type.

• Step 5: Calculate the relative blood flow measured by tested model, as: rBFtest =
τcb,test
τcr,test

.

• Step 6: Compute relative error (RE):

RE =
rBFtest − rBFtrue

rBFtrue
× 100% (15)

3.2. Animal experiment

To support the simulations, we have performed a series of recordings in the animal model of
ischemic stroke and compared LSCI with Dynamic Light Scattering Imaging (DLSI) measure-
ments. All animal procedures were approved by the Boston University Institutional Animal
Care and Use Committee and were conducted following the Guide for the Care and Use of
Laboratory Animals. N=3 animals (approx 15-week-old male C57BL/6 mice ) were used. Here
we provide only a brief description of the animal preparation and imaging procedures, for details
see [14,27]. Animals were anaesthetized with isoflurane, and the first craniotomy was made
- 2mm window was drilled to expose the middle cerebral artery for the further application of
ferric-chloride to induce stroke [27]. Until the stroke induction, the craniotomy was covered
with aCSF-soaked-gauze for protection. Next, another frontoparietal craniotomy was opened
(4 mm in diameter) to visualize the MCA-supplied cortex. The cortex was then covered with
0.7% agarose solution in aCSF, followed by a 5-mm glass coverslip, sealed with dental cement.
The animal was then placed under the imaging system. We waited for at least 30 minutes for the
cerebral blood flow to stabilize before starting baseline imaging. During the entire length of the
surgical procedure, the animal was heated by a homeothermic blanket with rectal-probe feedback
to maintain the temperature at 37 C. Arterial oxygen saturation and heart rate were monitored
noninvasively with a paw probe (MouseSTAT Jr., Kent Scientific Instruments).

Dynamic Light Scattering Imaging system, image acquisition, and data processing are described
in detail in [14]. In the present study, we use the same hardware and procedures, thus only
provide a brief summary. Unlike LSCI, DLSI utilizes a high-speed camera (in our case Fastec
IL5-S, USA) to capture non-blurred speckle intensity at framerates above 20kHz and directly
measure intensity autocorrelation function. Measured g2(τ) is then fitted with a comprehensive
model, based on the Eq. (10), to estimate the decorrelation time, static scattering, correlation loss
and dynamics regime (the form of the field correlation function). In the experiment, DLSI data
were collected for 2 seconds during the baseline recording (30 minutes after surgery) and after
stroke was confirmed (15 minutes after administering ferric-chloride). The same data were used
to obtain LSCI images, as described in [14]. Relative blood flow was then calculated for both
techniques: rBFDLSI = τcb,DLSI/τcr,DLSI for DLSI and rBFLSCI = (Kb,LSCI/Kr,LSCI)

2 for LSCI
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(corresponds to the MO/SUn=1,simpmodel). Additionally, LSCI images were analyzed using the
MUn=0.5 and MO/SUn=1 models with ρ, β = 1 to test potential accuracy improvements. Further
information on the conventional LSCI hardware, image acquisition and contrast calculation can
be found in [24,36–38].

4. Results

4.1. Form of the field correlation function

Figure 2 shows simulation results, where the ground truth model’s g1(τ) form is based on the
imaged vessel type (see Table 1), and the commonly applied MO/SUn=1 and MO/SUn=1,simp
are tested. There is no correlation loss and no static scattering in these simulations (β = 1 and
ρ = 1). From Fig. 2(A), it is clear that using the MO/SUn=1 model to interpret flow in the
parenchyma leads to a severe underestimation of the flow drop (up to 100% error at the 10%
level of the baseline flow). When the most commonly applied MO/SUn=1,simp model is used
to interpret the contrast measurements, the error further increases in the parenchymal regions.
Increases in flow, on the other hand, results in smaller errors. The reason is that a decrease
in flow makes τc comparable or shorter than the exposure time T, thus breaking assumption
3 and increasing the contribution of high-order terms in Eqs. (11),(12),(13). These results
align well with the experimentally observed discrepancy in ischemic stroke imaging, where
relative perfusion measured with LSCI is higher than perfusion measured with other techniques
[12,14,27]. LSCI typically measures ≈ 25 − 40% of the baseline flow in the ischemic core,
while other techniques, such as optical coherence tomography or positron emission tomography,
estimate it to be ≈ 5 − 20% of the baseline flow [14,39]. This corresponds with a 100% to 400%
relative error and is partially explained with the simulation results presented in Fig. 2.

4.2. Static scattering

As was previously shown with MESI, static scattering also contributes to errors in the estimation
of blood flow changes if not properly accounted for [15]. In Fig. 3, we simulate effects of ignoring
static scattering (ρtest = 1) on the relative flow measurements under the condition that the actual
dynamic scattering (ρtrue) contribution varies from 0.1 to 1. Here, we use the same form of g1(τ)
for both the ground truth and tested models in these simulations, which are chosen according to
the imaged vessel size (see Table 1), β = 1, T = 5ms, and only the ρ value is varied. Results
show that ignoring the static scattering, similarly to using the wrong form of g1(τ), leads to
underestimating the flow change. Interestingly, the error is smallest for parenchyma (up to 100%)
and increases for larger vessels (400% and 800%). Such errors, however, are unlikely in typical
LSCI applications since the amount of static scattering is negligible in larger vessels unless
imaging through the skull or other static tissue. Furthermore, even in the parenchyma, the static
scattering contribution will range from 1 − ρ = 0.2 in health [14,15] to 1 − ρ = 0.5 in stroke [14],
resulting in a maximum error of ≈ 30 − 40%.

4.3. Coherence parameter β

When the τc<<T or ρ = 1 condition is not satisfied (that is assumption 2 or 3 is false), the
parameter β will affect not only the absolute value of BFI, but also the accuracy of the rBF
estimates. The reason for this is that high-order terms in Eqs. (11),(12),(13) make increased
contributions. To study the effect reductions in the coherence parameter (i.e. β<1), we perform
simulations similar to that described above, but now ρ is fixed at 1 and only βtrue is varied. From
Fig. 4 we see that using βtest = 1 when βtrue is below 1 also leads to an underestimation of the
flow change. The error is largest when imaging parenchyma (≈70-110% for the typical [35]
β ≈ 0.4 − 0.6 values) and is reduced when imaging medium or large vessels (down to ≈15%
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Fig. 2. Relative error (in percent) resulting from using the MO/SUn=1 model (blue) and
its simplified version MO/SUn=1,simp (orange). The form of g1(τ) and the τc value for the
true models were defined according to the imaged vessel’s size as described in the Methods
section. Other parameters were set as follows: ρ=1, β=1, T=5 ms. We see an error upwards
of 200%, which is caused by using the wrong form of the field correlation function to
interpret speckle contrast in the parenchyma. In A-C, the identity line is shown in dashed
gray.

Fig. 3. Static scattering effect on the relative flow measurement error (in percent) in (A) the
parenchyma, (B) medium vessels, and (C) large vessels. MUn=0.5, MO/SUn=1 and SOn=2
were used both as ground truth and tested models, according to the imaged vessel size. Other
parameters were set as: β = 1, T = 5ms, ρtest = 1. Only ρtrue was varied (from 0.1 to
1). All models show an underestimation of the flow change caused by ignoring the static
scattering, with the parenchyma being affected less than larger vessels.
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and ≈2% respectively). These results highlight the importance of calibrating β for accurate rBF
measurements in the parenchyma.

Fig. 4. The effect reductions in β on the relative flow measurement error (in percent) in
(A) the parenchyma, (B) medium vessels, and (C) large vessels. MUn=0.5, MO/SUn=1 and
SOn=2 were used both as ground truth and tested models, according to the imaged vessel
size. Other parameters were set as: ρ = 1, T = 5ms, βtest = 1. Only βtrue was varied (from
0.1 to 1). All models show an underestimation of the flow change caused by ignoring the
deviation of β from 1, with the parenchyma being affected more than larger vessels.

4.4. Experimental validation

To support the simulation results, we compare blood flow changes during ischemic stroke
estimated with DLSI (rBFDLSI) and different LSCI (rBFLSCI) models (see Fig. 5). From panels
C-F it is clear that rBFLSCI in parenchymal regions deviates from rBFDLSI more than in medium-
sized vessels - up to 260% relative error versus 70% relative error. In line with the simulations,
applying the MUn=0.5 LSCI model to the parenchymal data even without adjusting for coherence
reductions and static scattering (β, ρ = 1) substantially improves the accuracy and reduces the
maximum error to 170% (red lines in Fig. 5(E, G)). Using β = 0.85 and ρ = 0.8 evaluated from
the baseline DLSI measurements further decreases the maximum error to 70% (green lines in
Fig. 5(E, G)). Changing the LSCI model in medium-sized vessels does not have a strong effect
on the accuracy, which also agrees well with the simulations. One should notice, however, that
unlike the simulation results, the rBFLSCI to rBFDLSI comparison crosses the identity line at
rBF ≈ 0.7 instead of rBF = 1 (Fig. 5(E, F)). This behaviour can be explained by one of the
critical parameters being different in the baseline and stroke even when rBF = 1. Specifically, it
can be caused by: static scattering, which in stroke experiments becomes spatially heterogeneous
from ρ = 0.5 − 0.6 in the ischemic core to ρ = 0.8 − 0.9 in healthy tissue [14,15]; dynamics
regime that defines the form of the g1(τ) which can change in stroke compared to baseline [14];
and exogenous noise (shot noise, dark noise, fixed pattern) which offsets the contrast value
[14,18,24].
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Fig. 5. Experimental validation of the simulation results. (A)-(D) - rBF in stroke compared
to baseline calculated with DLSI and different LSCI models. It can be seen that conventional
LSCI underestimates both the reduction (left side of the image) and increase (bottom right)
in blood flow. Relative blood flow calculated using MUn=0.5 model with β, ρ = 1 (panel
C) provides a better estimate of flow reduction in parenchyma, without strong effect on
larger vessels. Setting β = 0.85 and ρ = 0.8 in all pixels (panel D) leads to expected mixed
results - more accurate rBF estimation in parenchyma is accompanied by severe errors in
larger vessels, where there should be no static scattering. (E), (F) - rBFLSCI as a function
of rBFDLSI . (G), (H) - relative error (in percent) calculated for the data presented in (E)
and (F). Blue lines correspond to the conventionally used MO/SUn=1,simp model, yellow
and red to the MO/SUn=1 and MUn=0.5 models respectively (β, ρ = 1), and the green line
corresponds to the MUn=0.5 model with β = 0.85 and ρ = 0.8.



Research Article Vol. 12, No. 6 / 1 June 2021 / Biomedical Optics Express 3581

5. Conclusion

In the present study, we analyzed how assumptions in the LSCI theory affect the accuracy
of blood flow estimation. We have derived speckle contrast models for the different cases of
multiple scattering unordered motion and single scattering ordered motion. Using these models,
we simulated the effects of dynamics regime, coherence reduction and static scattering on the
relative blood flow estimates in physiologically relevant conditions. Our simulations show that
the conventional assumptions in LSCI theory generally result in underestimation of the flow
change. While the deviation is typically negligible when imaging vessels larger than 30µm in
diameter, it becomes substantial for the brain parenchyma or other capillary perfused tissues
(e.g. skin). The underestimation increases further in applications where severe blood flow
reduction is observed, such as ischemic stroke, systemic sclerosis or tissue damage (i.g. burns)
[12,27,33,40]. In such applications, using the wrong form of the field autocorrelation function,
ignoring coherence reductions and/or static scattering, each can lead to upward of 100% relative
error in the rBF estimation. When combined, the most typical assumptions can lead to an error of
300% and higher (see Supplement 1). Interestingly, while the parenchyma model is more affected
by other assumptions, it is less sensitive to the presence of static scattering compared to larger
vessels. This finding has to be accounted for when evaluating the static scattering contribution in
parenchyma with MESI [15,18] and when imaging larger vessels through the skull.

In practice, the error in the rBF estimation can be reduced by using the MUn=0.5 model
instead of MO/SUn=1,simp. This substantially improves the accuracy (up to 100%) in parenchymal
measurements, while the error it can introduce in larger vessels is minor (up to 40%, Fig. 3(A)
and Fig. S2). It will also reduce errors that occur from the change between MO/SUn=1 and
MUn=0.5 regimes in mid-sized vessels associated with severe blood flow reduction [14]. Further
accuracy improvement can be achieved by calibrating β using a static scattering phantom, for
which ρ = 0, and thus K ≈

√
β [35,41,42]. Such calibration can be used for as long as the

hardware configuration, which defines β, remains unchanged. Following β calibration, one can
attempt to account for static scattering by calculating contrast at long exposure times ( T

τc
>10000),

and estimating ρ according to the K ≈
√
β(1 − ρ) for every imaging session. Following these

suggestions will allow making rBF measurements with LSCI up to 200-300% more accurate in
the relevant applications.
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