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Abstract

Protein structure prediction and design can be regarded as two inverse processes governed by the 

same folding principle. Although progress remained stagnant over the last two decades, the recent 

application of deep neural networks to spatial constraint prediction and end-to-end model training 

has significantly improved the accuracy of protein structure prediction, largely solving the 

problem at the fold level for single-domain proteins. The field of protein design has also witnessed 

dramatic improvement, where noticeable examples have shown that information stored in neural-

network models can be used to advance functional protein design. Thus, incorporation of deep 

learning techniques into different steps of protein folding and design approaches represents an 

exciting future direction and should continue to have a transformative impact on both fields.
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Introduction

The diverse physiological functions performed by proteins across all organisms are mediated 

by the unique three-dimensional structures adopted by specific amino acid sequences. Given 

the cost, both financially and timewise, associated with experimentally determining a 

protein’s structure and function, extensive effort has been made to develop computational 

methods capable of modeling the structures of natural protein sequences and/or designing 

new sequences with novel structures and functions beyond proteins observed in nature. The 

technique of deep machine learning [1], which has revolutionized many fields of research, 

including computer vision, speech recognition, strategy games and medical diagnosis, has 
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recently made a significant impact on protein structure prediction and design. In this review, 

we will highlight methods used for protein structure prediction and protein design, as well as 

the impact brought about by deep learning on these fields, where a particular emphasis will 

be put on developments that have occurred within the past few years.

Protein Structure Prediction and Impact Brought About by Deep Learning

The goal of protein structure prediction is to use computational methods to determine the 

spatial location of every atom in a protein molecule starting from its amino acid sequence. 

Depending on whether a template structure is used, protein structure prediction approaches 

can be generally categorized as either template-based modeling (TBM) or template-free 

modeling (FM) methods. While TBM constructs models by copying and refining structural 

frameworks of other related proteins, called templates, identified from the PDB, FM aims to 

predict protein structures without using global template structures. FM methods have also 

been referred to as ab initio or de novo modeling approaches. A general pipeline that 

illustrates the key steps involved in traditional TBM and FM methods is depicted in Fig. 1.

Classical Approaches to Template Based Modeling

There are four key steps involved in TBM methods: (1) identification of experimentally 

solved proteins (templates) structurally related to the protein to be modeled (query), (2) 

alignment of the query and the template proteins, (3) construction of the initial structure 

frameworks by copying the aligned regions of the template structure, and (4) construction of 

the unaligned regions and refinement of the global structure. The first two steps are 

intertwined and usually done in a single procedure called template recognition, while the last 

two steps are often accomplished in the template structure refinement procedure.

Depending on the evolutionary distance between the query and template, TBM has been 

historically divided into comparative modeling (CM), which is designed for targets with 

close homologous templates where the templates can typically be identified by sequence-

based alignment, and threading, which is designed for detecting more distantly homologous 

templates by combining sequence profiles and/or Hidden Markov Model (HMM) alignment 

with local structure feature prediction [2,3]. Examples of predicted local structural features 

include torsion angles, secondary structure, and solvent accessibility [2]. With the progress 

of the field, the difference between CM and threading has become increasingly blurred and 

most of the TBM approaches nowadays start with templates identified by advanced 

threading programs. Since different threading programs are trained with different scoring 

function and alignment algorithms, the template recognition and alignment results are often 

diverse for the same query sequence. This has resulted in the prevalence of meta-threading 

programs [4], which collect and combine template alignments from a set of complementary 

threading algorithms. Since there are many more ways for a threading program to get 

incorrect alignments than to get a correct alignment [5], the consensus template selected 

from the meta-threading templates often has a higher accuracy on average than any of the 

individual threading programs.

Since threading templates only provide gapped Cα traces, which have no practical use for 

detailed protein function annotation and/or virtual ligand screening, many programs have 
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been developed to assemble and refine full-length atomic structural models starting from the 

template alignments. Among them, MODELLER [6] is one of earliest programs which 

builds atomic models by optimally satisfying spatial restraints derived from a threading 

alignment, where the restraints are expressed as probability density functions for the 

restrained features. While TBM approaches based solely on restraint satisfaction often 

constrain the models close to the template, TASSER represents one of the first approaches 

that showed a consistent ability to draw the templates closer to the native structure [7]. The 

most successful TBM method is probably I-TASSER [8], which is an extension of TASSER 

and has been consistently ranked as the top automated method in the community-wide 

Critical Assessment of Structure Prediction (CASP) experiment, whose goal is to benchmark 

the state of the art in protein structure prediction [9]. In the I-TASSER pipeline, continuous 

fragments are excised from the template alignments and reassembled through replica-

exchange Monte Carlo (REMC) simulations, where the unaligned regions (mainly loops) are 

built ab initio using a lattice-based system injunction with the aligned fragments. One of the 

key reasons for the success of I-TASSER, especially on template refinement, is its effective 

combination of multiple threading templates (often more than 20-50) under the guidance of 

an optimal knowledge-based force field whose parameters were extensively optimized using 

large-scale structural decoys. Following a similar idea, RosettaCM was developed which 

assembles global structural folds by recombining aligned segments of threading templates 

and building unaligned regions de novo in torsion space using gradient-based minimization 

[10].

Classical Approaches to Template-Free Modeling (FM)

Unlike TBM, FM approaches predict protein structures without the use of global template 

information (Fig 1). One of the most effective methods for constructing FM models is 

fragment assembly, an idea originally pioneered by Bowie and Eisenberg in 1994 [11]. More 

modern fragment assembly approaches include Rosetta [12] and QUARK [13], which first 

identify local structural fragments, with either discrete (3 and 9 AA long) or continuous 

lengths (1-20 AA), from other unrelated proteins based on the profile-profile similarity and 

comparison of the local structural features such as secondary structure, solvent accessibility 

and torsion angles, either predicted for the query or extracted from the templates. In the next 

step of fragment assembly simulations, the backbone torsion angles for a specific region of 

the simulated structure are replaced with those from a selected fragment, either assuming 

ideal bond lengths and angles [12], or directly taking these from the fragments themselves 

[13]. Loop closure may also be used, which adjusts the torsion angles around the 

substitution site in order to prevent large conformational changes downstream [14]. The 

rationale for constructing models through fragment assembly is two-fold: it reduces the 

entropy of the conformational search space, while ensuring the local structures of models are 

well formed as the fragments are selected from experimental structures of other proteins, 

which can help compensate for inaccuracies in the energy functions used for modeling. To 

improve the efficiency of conformational sampling, Rosetta [12] uses simulated annealing 

Monte Carlo simulations, while QUARK [13] uses REMC simulations with as many as 11 

different conformational moves and extracts distance-profile–based contact maps from the 

generated fragments in order to guide the simulations towards the native structure [15].
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Both QUARK and Rosetta have demonstrated excellent performance in the FM section of 

the CASP experiment by successfully folding protein targets that lack identifiable homology 

templates [16-18]. Despite the success, the Monte Carlo simulation-based fragment 

assembly process can be time-consuming compared to TBM approaches, since FM methods 

need to create models starting from random conformations. Encouraging progress has been 

recently made by rapid optimization techniques such as gradient descent to accurately fold 

protein sequences [19,20]. One condition for the success is that a significantly high number 

of long-range spatial constraints are required to reshape and smoothen the energy landscape 

so that the gradient descent-based optimization search is not overly trapped in local minima. 

Meanwhile, many repeated simulations must be performed in order to ensure the 

identification of the global minimum energy state [19].

Early Effort in Inter-residue Contact Prediction to Assist FM

Since the structural fold of a protein can be specified by the inter-residue contact map, 

considerable effort has been devoted to contact prediction. One of the earliest sequence-

based contact prediction methods used correlated mutations observed in multiple sequence 

alignments (MSAs) to predict inter-residue contact maps [21]. The hypothesis behind the 

approach was that if mutations that occur at two positions in an MSA are correlated, these 

positions are more likely to form a contact in 3D space. This is because there is evolutionary 

pressure to conserve the structures of proteins and a mutation at one position may be rescued 

by a corresponding mutation at a nearby residue. The accuracy of co-evolution-based contact 

map prediction remained low for many years due to the inability to distinguish between 

direct and indirect interactions, where indirect interactions occur when residues appear to 

co-evolve but do not actually form contacts. For example, if Residues A and B are both in 

contact with Residue C, A and B often appear as if they co-evolve even when there is no 

physical contact between them. There is evidence showing that such co-evolution may have 

a functional cause [22] rather than a structural one, which resulted in the failure of structure-

based contact derivation.

Progress in contact prediction remained stagnant for some time. However, a leap in contact 

prediction accuracy took place when algorithms started utilizing global prediction 

approaches. Early methods mainly predicted contacts between residue pairs one-at-a-time 

using techniques such as mutual information, thus ignoring the interactions with other 

residue pairs and the global context in which the interactions took place; this is largely why 

it was difficult for these local methods to distinguish between direct and indirect 

interactions. The introduction of global statistical models determined through the use of 

direct coupling analysis (DCA) was more successfully able to distinguish between these 

direct and indirect interactions [23,24]. The goal of such global statistical models is to 

determine the set of direct interactions that most harmoniously accounts for the observed 

sequence co-variation by simultaneously considering the entire set of pairwise interactions. 

Since all pairwise interactions are simultaneously considered, instead of just considering one 

interaction at a time and ignoring the global context in which the interactions take place, 

DCA was able to significantly improve the contact prediction accuracy.
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Many DCA techniques fit a Markov random field (MRF), or more specifically a Potts 

model, to an MSA. An MRF is a graphical model that represents each column of an MSA as 

a node that describes the distribution of amino acids at a given position, where the edges 

between nodes indicate the joint distributions of amino acids between each pair of positions. 

The couplings or co-evolutionary parameters can be determined from the edge weights. 

Since fitting an MRF model using its actual likelihood function is computationally 

intractable due to the need to calculate the partition function, various approximations have 

been developed including those based on message passing [23], Gaussian approximation 

[25], mean-field approximation [24], and pseudo-likelihood maximization [26]. Another 

popular method was introduced by PSICOV [27], which determines the coupling parameters 

by estimating the inverse covariance matrix or precision matrix using a graphical LASSO 

penalty (L1 regularization) instead of directly fitting an MRF model to an MSA. This was 

later extended by ResPRE [28], where the inverse covariance matrix is estimated using L2 

regularization instead of L1 regularization. Network deconvolution has also been used to 

distinguish direct from indirect interactions determined from co-evolutionary data [29].

Accurate Structural Feature Prediction by Deep Learning Techniques

The field of protein structure prediction has been considerably transformed by the recent use 

of deep machine learning techniques to generate high quality geometric feature prediction. 

In addition to the high accuracy of model training enabled by multi-layer neural networks 

[1], another important advantage of deep learning is its ability to predict multiple structural 

features, including contacts, distances, inter-residue torsion angles and hydrogen bonds. The 

combination of these structural features with the classical folding simulation methods has 

significantly improved the modeling accuracy of protein structure prediction, especially for 

FM protein targets which lack homologous templates [16,19,20].

The early focus of deep learning in protein structure prediction was on contact map 

prediction following the long history of contact prediction in the field. Along this line, 

RaptorX-Contact [30] reformulated the pair-wise contact prediction problem as an image 

segmentation task where the whole contact map is regarded as the image and each residue 

pair corresponds to a pixel in the image. The success of this approach can be partially 

attributed to the ability of deep learning to simultaneously consider the global set of pair-

wise interactions instead of considering only one interaction at a time, thereby leading to 

more accurate discrimination between direct and indirect contacts [30]. The approach 

introduced by RaptorX-Contact was adapted by methods such as ResPRE [28] and 

TripletRes [31], which use a similar deep learning architecture but with a unique set of 

features that include multiple co-evolutionary coupling matrices directly deduced from deep 

MSAs without post-processing.

A similar residual neural network was later extended to predict the probability that the 

distance between two residues falls within a given distance range instead of predicting a 

binary contact map [32]. The power of distance map-guided folding was convincingly 

demonstrated by AlphaFold in the CASP13 experiment, in which the program utilized an 

ultra-deep neural network composed of 220 residual blocks to predict distance maps for a 

query sequence [19]. The distance maps were then used to guide their fragment assembly 
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and gradient descent-based folding simulations for full-length structure construction. 

AlphaFold also used a unique fragment generation strategy where they leveraged deep 

learning to produce short structural fragments de novo. To accomplish this, they trained a 

generative network to create fragments based on prediction of the torsional angles for a 

selected region of a protein. This approach allows for the generation of fragments 

conditioned on the input features and eliminates the need to identify near native fragments 

from a library of existing fragment structures.

The success of deep learning-based contact and distance map prediction has raised the 

question of what other constraints can be accurately predicted using deep learning. As 

protein structure modelers have known for years that knowledge-based energy functions that 

are dependent only on residue-residue distances are often not as accurate as those that use 

both distances and orientations [33], a natural extension of distance prediction is inter-

residue torsion angle orientation prediction. Orientation-dependent energy functions are 

important as certain types of inter-residue interactions require not only distance proximity 

but also specific orientations between the residue pairs, e.g., β-strand pairing. Furthermore, 

the geometry of a structure cannot be uniquely determined without torsional angle 

orientation information, as distance information alone cannot differentiate between a pair of 

mirrored structures. Recently, trRosetta has advanced the idea of inter-residue torsion angle 

prediction by simultaneously predicting both pairwise residue distances and inter-residue 

torsion angles from co-evolutionary features using a unified deep ResNet [20]. More 

recently, Li et al. extended the deep learning predictor TripletRes to DeepPotential and 

predicted the ensemble of contact, distance, torsion angle and hydrogen bonding maps, 

which were found to be highly effective at modeling non-homologous protein targets in the 

CASP14 experiment [34].

End-to-End Training with Attention Networks Has Nearly Solved the Single-Domain Protein 
Structure Prediction Problem

The most exciting progress in the history of protein structure prediction was recently 

brought about by AlphaFold2, the second iteration of AlphaFold developed by the Google 

DeepMind team [35], which achieved an unprecedented modeling accuracy in the CASP14 

experiment. Out of the 89 domains with experimentally released structures, AlphaFold2 

generated first-rank models with TM-scores >0.5 for 88 domains, where 59 of them had 

TM-scores >0.914. Here, TM-score is a sequence length-independent metric that measures 

protein structural similarity and takes a value in the range of (0, 1] [36], where PDB 

statistics show that a TM-score >0.5 indicates that two structures share approximately the 

same SCOP/CATH fold [37]. Moreover, we collected a set of 112 single-domain proteins 

whose structures were solved by both NMR and X-ray crystallography and had sequence 

identities >95% and alignment gaps < 10 AA, where we found the average TM-score was 

0.807±0.107 between the NMR and X-ray structures. Thus, AlphaFold2 could fold nearly all 

individual domains in CASP14, with around 2/3 (=59/89) of the cases having accuracy 

comparable to low-to-medium resolution experimental models if we use a cutoff TM-score 

of 0.914 (=0.807+0.107). Fig. 2A lists a comparison of the AlphaFold2 first-rank models 

(green) overlaid on the experimentally solved structures (red) for all 23 free-modeling (FM) 

targets, which are the hardest targets to model due to the lack of templates in the PDB. 
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AlphaFold2 created the correct fold for the core regions for all but one target (T1029-D1), 

which was a small single-domain protein (125 AA) whose structure was solved by NMR. 

For the other two targets with the lowest TM-scores (T1047d1-D1 and T1070-D1), which 

came from one chain of a heterodimer and the N-terminal domain of a 4-domain protein, 

respectively, the error of the AlphaFold2 models was mainly at the disordered tail regions 

but, again, the core regions were correctly folded. These data suggest that AlphaFold2 nearly 

solved the problem of single-domain protein structure prediction, at least at the fold level.

Although most of the top participating groups in CASP14 achieved quite a significant 

improvement over CASP13 [38], AlphaFold2 outperformed the second-best group by a large 

margin with the average TM-score differing by 23% (0.903 vs 0.732). For the FM targets, 

the gap increased to 38% (0.840 vs 0.608). Interestingly, there was nearly no correlation 

(with a PCC =0.145) between the TM-score of the AlphaFold2 models and the logarithm of 

the Neff (the number of effective sequences) of the multiple sequence alignments collected 

by the DeepMSA program [39] searched through the metagenome sequence databases (Fig. 

2B). For the other top ten groups, such correlation is obvious with PCCs ranging from 0.491 

to 0.637. Although different groups use different strategies to collect MSAs and some may 

involve manual MSA search, the data shown in Fig. 2B is encouraging as the modeling 

accuracy by AlphaFold2 likely depends less on the availability of evolutionarily homologous 

sequences in the sequence databases.

Compared to the first iteration of AlphaFold in CASP13, which was driven by convolutional 

neural network-based distance map prediction, one of the major new developments of 

AlphaFold2 is the attention-based neural network architecture that attends arbitrarily over 

the full MSA, which allows the system to select relevant sequences from the MSAs and 

extract richer input information. Moreover, instead of using gradient descent optimization to 

construct models based on the predicted distance restraints, as AlphaFold did in CASP13, 

AlphaFold2 utilizes a full end-to-end training system from sequence to structure models 

using iterative structural refinement based on local structural error estimation. As part of 

this, the system replaces traditional folding simulations with a structure module composed of 

3D equivariant transformer neural networks, which treat each amino acid as a gas of 3D 

rigid bodies and directly builds the protein backbone and sidechains. All these advantages, 

together with the extensive computing resources which are beyond what are accessible to 

most of the academic research laboratories, contribute to the significant improvement of the 

state of the art of deep learning-based protein structure prediction [35]. As an unprecedented 

achievement made by an industrial research company, however, the scientific impact will 

critically depend on whether and how far the method and technique, including the source 

codes of the programs, are made publicly available to the community.

Advances in Functional De Novo Protein Design

De Novo Protein Design

Protein design can be conceptually regarded as the inverse of protein structure prediction in 

that protein structure prediction aims to model unknown 3D structures from known 

sequences, while protein design attempts to identify new amino acid sequences that fold into 

given structural frameworks. De novo protein design usually contains two steps, the 
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construction of a structural framework (or fold) and the identification/optimization of new 

amino acid sequences for that framework.

In addition to its use in protein structure prediction, the idea of fragment assembly has been 

successfully used to address the first step in de novo protein design, which is the 

construction of new protein folds beyond those observed in nature. One of the landmark 

achievements in de novo protein design was the design of Top7 in 2003 [40], which was one 

of the few proteins designed without a natural structural analog. The design of Top7 and 

other more recent de novo designed proteins have expanded on the strategies used by 

fragment assembly-based structure prediction methods, where a generic pipeline for such 

approaches is highlighted in Fig. 3. Instead of starting from an amino acid sequence, popular 

structure design methods such as RosettaRemodel [41] start from a predefined secondary 

structure and other user-defined constraints such as inter-residue distances, which define a 

target fold. Fragments are then picked with secondary structures and backbone torsion 

angles that are compatible with the predefined secondary structure. The simulation strategy 

is slightly altered as the amino acid-specific energy function is replaced with an energy 

function that is independent of the amino acid sequence and generic side-chain centers of 

mass are used to avoid steric clashes [41]. Another popular method for designing backbone 

structures is to generate them using idealized parametric models [42], although this approach 

is typically more useful for designing helical bundle proteins and is not as effective at 

designing proteins with more complex topologies or hydrogen bonding networks.

Following the generation of the initial target folds based on the input constraints, iterative 

rounds of sequence and structure optimization are performed [41] for amino acid sequence 

design. Here, sequence design and structure optimization can be performed using combined 

physics and knowledge-based energy functions such as Rosetta [43] or EvoEF2 [44]. These 

approaches typically start from a fixed protein backbone, where the amino acid side-chain 

conformation or rotamer of a randomly selected position is substituted for another rotamer 

randomly selected from a rotamer library. The corresponding energy changes caused by the 

mutation are then calculated using the physical energy function, where mutations are 

accepted or rejected based on the Metropolis criterion. Following sequence design, local 

structure optimization is performed and the sequence design/backbone optimization is 

iteratively repeated [41].

Most recently, Pearce et al. proposed an automated protein design pipeline, EvoDesign (Fig. 

4) [45], which incorporates evolutionary profiles derived from natural structural analogs in 

the force field in order to enhance the folding stability of the designed sequences. For 

protein-protein interaction (PPI) design, EvoDesign starts from an input complex structure 

and identifies both monomeric and interface structural analogs from databases of solved 

protein structures. These structural analogs are converted into PPI evolutionary profiles, 

which are then combined with a physical energy function for PPI design, EvoEF2, to guide 

the REMC sequence design simulations.

De Novo Design of Proteins with Complex Structures and Functions

The past few years have seen rapid progress in de novo protein design, where proteins with 

increasingly complex structural characteristics and functions have been created [46-56]. 
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Earlier de novo designed proteins had highly idealized structures without functional sites 

and with a single low energy conformation. However, recent work by Wei et al. 

demonstrated that it is possible to design proteins that adopt multiple low energy states that 

assume significantly different conformations [46]. In the study, the authors used Rosetta to 

design a helical bundle that either adopted a short (~66 Å height) or long (~100 Å height) 

state based on the environmental conditions, which mimicked the action of membrane fusion 

proteins. Additionally, new studies have focused on designing proteins with more complex 

logical functions for use in synthetic biology. In this regard, Chen et al. was able to design 

logic gates that controlled transcription and enzymatic activity via the association of 

different designed coiled-coil heterodimers [47]. The backbone structures of each coiled coil 

were designed in a previous study using parametric modeling to generate the helices and 

loop fragments to connect them into a single chain [48]. The association between different 

heterodimers was achieved using the Rosetta HBNet protocol [49], which can be used to 

exhaustively enumerate all of the hydrogen bond networks available for a given design space 

in order to design highly specific protein-protein interactions.

Rosetta has also been applied to the classical problem of designing proteins with significant 

β-sheet content, which have enriched hydrogen bonding patterns. For example, Dou et al. 

designed fluorescence-activated β-barrel proteins using either ideal parametric models or 

fragment assembly [50]. Interestingly, the authors found that the ideal backbones generated 

by the parametric models had unfavorable steric strain and hydrogen bonding interactions. 

These problems were alleviated by building backbones using fragment assembly and 

introducing kinks and bulges into the structures, producing a stable and functional protein. 

Another challenging problem in protein design is the ability to create proteins that can bind 

to highly functionalized small molecules. Polizzi et al. addressed this problem by creating a 

unit of protein structure called the van der Mer, which directly maps the backbone of each 

amino acid to preferred positions of interacting chemical groups [56]. They then used their 

method to design proteins capable of binding the complex drug apixaban, which has 

implications for the de novo design of customized biosensors and enzymes, among other 

applications.

De Novo Design of Therapeutic Proteins

Other studies have focused on designing proteins for therapeutic applications. One strategy 

to accomplish this goal is to design proteins that are capable of binding natural proteins with 

high affinity. For instance, Chevalier et al. described a protocol for generating large pools of 

mini-proteins with different backbone scaffolds composed of ~40 residues produced by 

fragment assembly [51]. The authors demonstrated that given advances in high throughput 

experimental techniques and computational modeling, an unprecedented number of designed 

proteins could be tested. This resulted in the production of highly stable designs that could 

bind to influenza hemagglutinin and provide prophylactic protection without eliciting an 

adverse immune response [51]. Another study by Silva et al. used parametric modeling to 

design mimics of IL-2 and IL-15 capable of binding the IL-2 receptor βγc heterodimer but 

without binding sites for CD25 and CD215, producing a potent anti-cancer effect without 

the toxicity of natural IL-2 therapeutics [52]. Another strategy is to use de novo design 

methods such as Rosetta, TopoBuilder, and EvoDesign to generate computationally designed 
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immunogens with topologies designed to stabilize functional motifs that are capable of 

inducing the production of virus-neutralizing antibodies [53-55,57]. These successes 

highlight the potential for de novo protein design to create therapeutics with tailor-made 

characteristics and superior efficacy compared to those produced by traditional approaches.

Given the havoc caused by the ongoing COVID-19 pandemic, researchers are seeking to 

develop new proteins that can serve as therapeutic treatments against the epidemic. Along 

this line, Huang et al. proposed the design of de novo peptides to inhibit the association of 

the SARS-CoV-2 Spike protein, which is the pathogen behind COVID-19, with the human 

ACE2 receptor [58]. The in silico assay experiments showed that the peptide inhibitors 

designed by EvoEF2 and EvoDesign had a significantly higher affinity for the binding 

domain of the Spike protein than the wildtype hACE2 receptor did. With a similar goal, Cao 

et al. applied Rosetta’s fragment assembly design method to design protein inhibitors for the 

SARS-CoV-2 Spike protein [59]. The authors used two design strategies, either 

incorporating the native helical interface between ACE2 and the Spike protein or generating 

novel interfaces de novo by optimizing the rotamer interaction field. After affinity 

maturation, they found the second approach was able to create proteins capable of potently 

inhibiting SARS-CoV-2 with picomolar affinity.

Improving the Accuracy of De Novo Fold Design without User-Defined Constraints

One prominent challenge associated with designing proteins with novel structures and 

functions is that de novo protein design remains somewhat of an art form, as designers are 

often required to manually specify how the different secondary structure elements (SSEs) 

should pack in order to produce a well-folded protein [50,51,60]. Furthermore, the design 

success rate is quite low in some studies, which may be improved by altering the design 

procedure in an iterative fashion based on the experimental results [51]. To improve the 

success rate of de novo protein design, Pearce and Zhang recently developed a new method 

called FoldDesign (https://zhanglab.ccmb.med.umich.edu/FoldDesign/). The method 

combines fragment assembly with multiple conformational movements and an optimized 

physics- and knowledge-based energy function to design protein-like scaffolds. Fig. 5 

presents scaffolds designed using FoldDesign starting from 9 unique secondary structure 

topologies (α, β and αβ folds) obtained from native proteins without any pre-defined 

contact or distance restraints, where the sequences for each scaffold were designed using 

EvoDesign [45]. Notably, even in the absence of user-defined packing constraints, the 

method is able to produce well-folded scaffolds with complex tertiary structures, such as 

those composed of curved β-sheets, which required extensive pre-definition of packing rules 

in previous studies [50]. To assess the quality of the designed scaffolds, the designs along 

with the native proteins whose secondary structure were used as input to FoldDesign were 

scored using the Rosetta ref2015 [43] and EvoEF2 energy functions [44]. All of the designs 

had lower Rosetta energies and 7 out of 9 had lower EvoEF2 energies than their native 

counterparts, demonstrating the ability of using computational simulations to produce 

protein-like structures with new folds starting only from loose constraints such as the desired 

secondary structure composition.
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Deep Learning Applied to Protein Design

Deep learning has recently been successfully employed to various protein design strategies. 

One such strategy is to design a sequence given a known protein structure, where the native 

sequence recapitulation rate, or the percentage of native amino acids recovered at each 

position, is typically used as one of the key validation criterions. As an example of such 

methods, SPIN combines a neural network composed of two hidden layers with features 

such as the backbone torsion angles for a selected residue, fragment-derived sequence 

profiles, and rotamer-based energy profiles to design favorable sequences for a given 

structure, where the method achieved a native sequence recapitulation rate of 30.7% [61]. 

SPIN was later extended to SPIN2, which added an additional hidden layer and extra local/

nonlocal features, thereby obtaining a native sequence recovery rate of 34.4% [62]. Using a 

different approach, Anand et al. recently extracted features around a local, voxelized 

environment for each residue, which were then fed into a convolutional neural network with 

six 3D convolutional layers [63]. The authors found that their method was able to achieve 

designs with greater sequence diversity than Rosetta. Using a different strategy, Greener et 

al. utilized variational autoencoders to add metal binding sites to existing protein sequences 

and to design new sequences conditioned on the desired topology of a protein [64]. This 

approach removes the constraint of starting from a known protein structure, directly 

allowing the generation of sequences conditioned on the desired fold of a protein.

Most recently, Anishchenko et al. set out to answer the question if the information stored in 

deep neural networks used to predict inter-residue distances and orientations could be 

applied to design new protein sequences and structures [65]. To address this, they used deep 

network hallucination, where they performed Monte Carlo sampling in sequence space, at 

each step feeding the sequences into the trRosetta deep neural network architecture in order 

to predict their distance maps and comparing them against a background distance map 

distribution. Mutations were accepted or rejected based on the Metropolis criterion, where 

the objective of the simulations was to maximize the information gain (Kullback-Leibler 

divergence) between the predicted distance maps and the background distribution. The 

method was able to produce diverse sequences that adopted stable, monomeric folds as 

assessed by circular dichroism. The developed method was then extended in two additional 

studies, where the hallucination was either completely constrained to design sequences for a 

fixed fold [66] or to design sequences that recapitulated native interfaces [67], while 

allowing the remainder of the protein to be hallucinated freely. The ability to constrain the 

design simulation to recapitulate native structural motifs is particularly impactful when 

considering functional inhibitor design, where the native interface from a known binder 

could be incorporated into the hallucinated proteins. However, the ability to freely 

hallucinate interfaces that can bind to therapeutic targets would remove such limitations and 

would address a long-standing problem in the field which is generating high affinity binders 

to arbitrary protein targets. Nevertheless, these studies demonstrate that it is possible to 

utilize the information stored in the deep neural networks used for protein structure 

prediction to design new protein sequences and structures.
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Conclusion and Future Directions

The prediction of protein structures from amino acid sequences alone has remained an 

outstanding problem in structural biology since Anfisen first demonstrated that the 

information encoded in a protein sequence determines its structure more than 60 years ago. 

Now more than ever, there is an urgent need to develop high accuracy protein structure 

prediction methods, as advancements in high-throughput sequencing technology have 

greatly exacerbated the gap between the number of known sequences and the number of 

experimentally determined protein structures. For some time since the development of 

profile-based threading methods and fragment assembly approaches, progress in the field 

has remained slow and only incremental gains have been achieved. Nevertheless, recent 

advancements in co-evolution-based contact map prediction and especially the more recent 

deep learning-based spatial restraint prediction and end-to-end model training have 

revolutionized the field of protein structure prediction, greatly improving its accuracy and 

the ability to fold proteins, in particular those that lack homologous templates in the PDB.

The success of inter-residue contact- and distance-guided folding approaches raises the 

question of what other constraints can be predicted using deep learning and incorporated 

into structure assembly simulations. The most recent studies demonstrated that prediction of 

inter-residue torsional angles [20] and hydrogen-bonding networks [34] may represent a 

future direction of the field, where the use of other restraints should also be investigated. In 

addition to specific spatial feature predictions, the AlphaFold2 team [35] recently 

demonstrated that an end-to-end training system powered by attention-based neural 

networks could self-learn the feature derivation process and refine models based on the 

estimated local structure errors. They generated models with a TM-score above 0.5 for all 

domains (except for one whose structure was solved by NMR) in the CASP14 experiment, 

marking the solution of the single-domain protein structure prediction problem at a fold 

level [68]. Nevertheless, protein structure prediction is multifaced, including single-domain, 

multi-domain and quaternary complex structure modeling, the latter two of which were not 

assessed in CASP14. Even for single-domain structures, there were nearly 1/3 of cases for 

which the AlphaFold2 models were below the level of experimental accuracy. Given that 

most proteins perform their functions through interaction with other domains and chain 

partners in cells and that function annotation and drug discovery studies often requires 

atomic resolution models, all these problems must be carefully addressed before the 

convincing claim of a complete solution to the protein structure prediction problem. Another 

important dilemma raised by the successful use of deep learning is the difficulty in 

understanding what information is being learned by such approaches. Traditional energy 

force fields used for protein folding are easily interpretable as they include explicit terms 

that account for various physically important constraints that guide protein folding. 

However, deep learning is essentially a black box that does not provide any easily 

interpretable information on the physical principles that underlie protein folding. Thus, the 

ability to fold proteins based on first principles or physical principles, which is essential to 

understand the dynamics of protein folding, remains elusive. Nevertheless, while there 

certainly are many challenges in the field, the progress witnessed within the last few years 

provides hope that one of the most difficult and meaningful biological problems, predicting 
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structures of proteins at their equilibrium state starting from the amino acid sequences alone, 

could be solved through the use of deep learning within the foreseeable future.

As the reverse procedure of ab initio folding, protein design has by far witnessed much less 

involvement of deep machine learning models. Given that the same physical principle 

governs both procedures, one can expect that more accurately modeled sequence and 

structure relationships obtained from deep neural network learning should help increase the 

accuracy and success rate of de novo protein design. Indeed, the use of deep network 

hallucination confirmed that it is possible to use the information stored in neural networks 

utilized for protein structure prediction to design novel protein sequences and structures. The 

extension of such networks to functional protein design should have dramatic implications 

as current de novo design approaches require users to pre-specify the length and 

composition of secondary structure elements. The ability to allow deep learning to select the 

most favorable composition of the designed scaffolds for a particular application would 

simplify the design process and allow for a more comprehensive exploration of viable 

solutions. Nevertheless, one drawback to such approaches is that most of the sophisticated 

deep learning models in structural bioinformatics are trained on MSAs, where the MSA 

construction often involves lengthy and time-consuming genome database searching; this 

may render it infeasible to incorporate these deep learning models with extensive sequence 

design simulations because each step of the sequence design iterations generates a new 

sequence and therefore requires new MSA construction and model training. In this regard, 

development of accurate and single sequence-based deep learning models might be 

important to overcome this barrier, which has in fact been demonstrated through the use of 

transformer neural networks by AlphaFold2. Overall, the integration of advanced deep 

learning algorithms with traditional structural folding approaches represents an exciting 

future avenue for both protein structure prediction and protein design and should continue to 

enable the next wave of innovation in both fields.
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Fig 1. 
Typical steps involved in template-free and template-based protein structure prediction 

approaches. Starting from a query sequence, an MSA is generated by identifying 

homologous sequences from a sequence database. The MSA is then converted into a 

sequence profile and used to predict structural features such as the secondary structure, 

backbone torsion angles and solvent accessibility. For fragment assembly-based FM 

methods, these structural features together with the sequence profile are used to search a 

fragment library to identify high scoring local fragments. For TBM methods, they are used 

by threading protocols to identify global template structures. Meanwhile, co-evolutionary 

information is extracted from the MSA and fed into a deep residual neural network to 

predict spatial restraints such as inter-residue long-range contacts, distances, hydrogen bonds 

and torsion angles. For full-length model construction, structure assembly simulations are 

performed under the guidance of a composite force field which usually combines the generic 

knowledge- and/or physics-based energy function with deep neural network feature 

prediction (plus template-based restraints in the case of TBM). Finally, representative 

models are typically selected from the lowest energy conformations or based on structural 

clustering, followed by atomic-level refinement to generate the final model.
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Fig 2. 
Domain-level protein structure prediction results for AlphaFold2 in the CASP14 experiment. 

(A) The first-rank models by AlphaFold2 (green) superposed on the experimental structures 

(red) for the 23 FM domains, together with the domain ID and TM-score values. The 

pictures are listed in descending order of the TM-scores of the AlphaFold2 models. (B) TM-

score versus Neff, the number of effective sequences in the multiple sequence alignments 

collected by DeepMSA, for all 89 FM (stars) and TBM and TBM/FM (circles) domains. 

Dashed and dashed-dotted lines mark the two TM-score cutoffs at 0.5 and 0.914, 

respectively.
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Fig 3. 
Typical steps involved in a fragment assembly-based approach to design new protein 

structures. Starting from the desired secondary structure together with user-defined packing 

restraints, such as residue-residue contact/distance restraints, the query is searched through a 

non-redundant PDB structure library using gapless threading to generate position-specific 

fragment structures. High scoring fragments, which may range from 1-20 residues long, are 

identified based on the complementarity between the desired secondary structure and a 

fragment’s secondary structure and backbone torsion angles. Then during the folding 

simulations, the top scoring local fragments are assembled under the guidance of a 

sequence-independent energy function, which accounts for fundamental rules that govern 

protein folding such as secondary structure packing, backbone hydrogen bonding, favorable 

backbone torsion angles, steric clashes, radius of gyration, as well as the artificial contact/

distance restraints supplied by the user. As the method is sequence independent, generic 

side-chain centers of mass, typically those for valine, are used to evaluate energy terms such 

as steric clashes. Following the folding simulations, the final design may be selected based 

on clustering of the simulation decoys, by selecting the lowest energy structure, or through 

whatever filter the user deems appropriate.
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Fig 4. 
A protocol for evolution-based protein-protein interaction design used by EvoDesign. The 

procedure starts from an input complex, for which monomer/interface structural homologs 

are identified from the PDB library through TM-align and iAlign searches, respectively. 

Structural profiles are then constructed from the alignments of the monomer/interface 

analogs and used in conjunction with a physics-based potential, EvoEF2, to guide the 

REMC simulations to design novel protein sequences. The final designs are selected from 

the center of the largest cluster of designed sequence decoys.
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Fig 5. 
Protein folds designed de novo starting from 9 unique secondary structures. The designed 

folds and corresponding wildtype native proteins (with denoted PDB IDs) whose secondary 

structures were used as input are shown side-by-side for (A) 3 β proteins, (B) 3 α/β and α+β 
proteins, and (C) 3 a proteins. Even in the absence of pre-defined packing rules, such as 

inter-residue distance restraints, the designed new folds have well-packed topologies with 

lower or comparable Rosetta and EvoEF2 energies.
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