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Objectives: To train a deep learning model to differentiate between pathologically proven 

hepatocellular carcinoma (HCC) and non-HCC lesions on MRI including lesions with atypical 

imaging features.

Methods: This IRB-approved retrospective study included 118 patients with 150 lesions 

(93(62%) HCC and 57(38%) non-HCC) pathologically confirmed through biopsies (n=72), 

resections (n=29), liver transplants (n=46), and autopsies (n=3). 47% of HCC lesions showed 

atypical imaging features (not meeting Liver Imaging Reporting and Data System [LI-RADS] 

criteria for definitive HCC/LR5). A 3D convolutional neural network (CNN) was trained on 140 

lesions and tested for its ability to classify the 10 remaining lesions (5 HCC/5 non-HCC). 

Performance of the model was averaged over 150 runs with random sub-sampling to provide class-

balanced test sets. A lesion grading system was developed to demonstrate the similarity between 

atypical HCC and non-HCC lesions prone to misclassification by the CNN.

Results: The CNN demonstrated an overall accuracy of 87.3%. Sensitivities/specificities for 

HCC and non-HCC lesions were 92.7%/82.0% and 82.0%/92.7%, respectively. The area under the 

receiver operating curve was 0.912. CNN's performance was correlated with the lesion grading 

system, becoming less accurate the more atypical imaging features the lesions showed.

Conclusion: This study provides proof-of-concept for CNN-based classification of both typical 

and atypical-appearing HCC lesions on multi-phasic MRI, utilizing pathologically confirmed 

lesions as “ground truth”.
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1) Introduction

Hepatocellular carcinoma (HCC), the fourth most common cause of malignancy-related 

death worldwide, represents the most frequent primary liver cancer and its incidence rates 

continue to rise [1]. Other liver lesions to be differentiated include intrahepatic 

cholangiocarcinoma (ICC), metastases as well as various types of benign lesions. Contrast-

enhanced multi-phasic computed tomography (CT) and magnetic resonance imaging (MRI) 

play a central role for diagnosis and classification of these lesions. Standardized imaging 

features of HCC summarized in Organ Procurement and Transplantation Network (OPTN) 

or Liver Reporting & Data System (LI-RADS) criteria provide the framework for clinical 

diagnostic workup [2, 3]. In lesions not meeting typical imaging criteria, the diagnosis can 

be challenging. High inter-reader variability depending on the radiologist’s experience may 

lead to unnecessary tissue biopsies [4] prone to complications such as hemorrhage, sepsis, 

carcinoid crisis [5] or tumor seeding [6]. These may compromise orthotopic liver 

transplantation which is the only established curative therapy for HCC [7, 8].

In recent years, deep learning has gained considerable traction in the field of medical image 

analysis. The most common tool to classify lesions on radiologic imaging is the 

convolutional neural network (CNN) [9]. Unlike other machine learning methods, CNNs do 

not require definition of specific radiological features to learn how to interpret images. After 
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being shown imaging examples with and without the disease the CNN automatically learns 

features through backpropagation using multiple layers [10].

Recently, several studies used CNNs on CT/MRI focusing on liver lesions with typical 

appearances, allowing for distinctive image-based diagnosis according to the standardized 

criteria [11-13]. However, in order to be used in clinical management, CNNs should also 

correctly diagnose lesions that do not fit into established classification systems. As the 

number of heterogeneous input samples grows, CNNs have the potential to recognize 

atypical lesions, thus reducing the need for biopsies and subsequent post-biopsy 

complications.

The aim of this study was to prove the capability of CNNs to handle a wider spectrum of 

HCC and non-HCC lesions on multi-phasic contrast-enhanced MRI, using pathologically 

proven liver lesions as the “ground truth”.

2) Materials & Methods

This retrospective, single-center study was approved by the Institutional Review Board and 

Health Insurance Portability and Accountability Act (HIPAA). It was conducted according 

to the Standards for Report of Diagnostic Accuracy guidelines. Informed consent was 

waived.

Study Cohort Selection

HCC and non-HCC lesions from patients older than 18 years diagnosed between 2010 and 

2018 were identified using a picture archiving and communication system (PACS) as well as 

the electronic medical record. Only patients with histopathological diagnosis were included. 

Pathological proof was established for all through biopsies (n=72), resections (n=29), liver 

transplants (n=46), and autopsies (n=3). In case of transplants/autopsies the liver was subject 

to gross pathological/histopathological analysis including full histological assessment of the 

HCC lesion. H&E staining was used to assess lesions and additional histopathological 

surface markers were applied. Lesions indicated in pathology reports were identified by a 

radiology trainee supervised by a board-certified radiologist sub-specialized in abdominal 

imaging with approximately 25 years of experience in body imaging. The lesions were 

qualified regarding size and intra-hepatic localization. A multi-phasic T1-weighted MRI 

data set including contrast-enhanced late arterial, portal venous and delayed/equilibrium 

phases had to be present to meet inclusion criteria. Clear correspondence between pathology 

and imaging was achieved collaboratively with a pathologist and side-by-side review of 

location for each tumor. If more than one lesion was visible on MRI in the segment 

described by the pathologist, images of CT- guided biopsy were used to ascertain the 

biopsied lesion. If these were unavailable, all lesions in the segment were excluded. Lesions 

that were biopsied before the MRI scan were excluded if procedure-related hemorrhage was 

leading to significant alteration of T1 signal. Up to 4 lesions per patient were used. In the 

non-HCC class, only primary liver neoplasms were included. HCC lesions with loco-

regional therapy performed between MR imaging and resection/transplantation were 

included only if residual viable tumor was present on histology that would allow 

confirmation of etiology. Tumors with complete necrosis were excluded.
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MRI Acquisition Protocol

MRI examinations were conducted on 1.5T or 3T MRI scanners including Signa Excite®, 

GE Discovery®, Siemens Aera®, Espree®, Verio®, Avanto®, Skyra®, and Trio Tim® 

scanners. Non-contrast T1 images were acquired in all patients prior to administration of 

intravenous contrast. After the administration of intravenous gadolinium-based contrast 

agent (including Gadavist® (Bayer), Dotarem® (Guerbet), Magnevist® (Bayer), ProHance® 

(Bracco Diagnostics), and Optimark® (Covidien), dosed at 0.1 mmol/kg), three T1-weighted 

three-dimensional (3D) gradient-echo (GRE) breath-hold imaging series (acquisition times 

of 12-18s, with fat suppression) were acquired reflecting CT/MRI LI-RADS 

recommendations: (1) late arterial, (2) portal venous and (3) delayed or equilibrium phase. 

Bolus tracking was applied in a large proportion of patients. Imaging parameters were in the 

range of TR 3-5 ms, TE 1-2 ms, flip angle 9-13 degrees, bandwidth 300-500 Hz, slice 

thickness 3-4 mm, image matrix 256 x 132 to 320 x 216, and field-of-view 300 x 200 mm to 

500 x 400 mm. If a patient received multiple MRI scans, then the MRI performed closest to 

the date of pathological confirmation was used.

Image Processing

After MR imaging studies were retrieved from an institutional database, the x, y, and z 

coordinates of each lesion were manually recorded to define a 3D bounding box around the 

lesion (Figure 1). Only the image volume within this bounding box was analyzed by the 

model. Images were processed using code written in Python 3.5 (Python Software 

Foundation). Affine registration with a mutual information metric was used to register portal 

venous and delayed phase MRI sequences to the late arterial phase. The images were 

cropped to the bounding box defined above and normalized to an intensity range of −1 to 1 

to reduce bias field effects. The images were further resampled to 36x36x12 voxels.

To increase the number of training samples, the training set was augmented by a factor of 

100 (n=14000) in standard fashion (Figure 2). Briefly, images were randomly rotated, 

shifted, scaled, flipped, shifted between phases, and scaled or shifted in intensity. This 

allows for the model to learn imaging features that are invariant to rotation or translation 

[14].

Neural network architecture

The model was trained on a GeForce GTX 1060 (NVIDIA) graphics processing unit. It was 

built using Python 3.5 and Keras 2.2 (https://keras.io/) on a Tensorflow backend (Google, 

Mountain View, https://www.tensorflow.org/). The CNN consisted of three convolutional 

layers (64, 128, and 128 channels respectively; kernel size 3x3x2), two maximum pooling 

layers (size 2x2x2 and 2x2x1 respectively), and two fully connected layers (100 and 1 

neurons respectively), with a sigmoid output corresponding to the probability of a lesion 

being HCC. The CNN used rectified linear units, batch normalization and 10% dropout.

Training and Evaluation

The CNN was trained on 70 HCC examples and 70 non-HCC examples, drawn randomly 

from the augmented dataset. An Adam optimizer was used with a minibatch size of 20 and 

learning rate of 0.01. The model was tested on its ability to correctly classify ten lesions in 
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the test dataset, which was created by randomly selecting 5 HCC lesions and 5 non-HCC 

lesions. In total, 150 independent runs with different splits of training and test data sets (i.e. 

Monte Carlo cross-validation rather than k-fold cross-validation in order to balance HCC/

non-HCC cases within each set) were used to estimate the model’s performance. This 

approach in conjunction with a 14:1 training:test ratio is consistent with machine learning 

best practice[15, 16].

Lesion Grading

As the dataset contained lesions with atypical appearances on MRI, a lesion grading system 

was developed based on the established LI-RADS major imaging criteria [17] using imaging 

features typical of HCC: arterial hyperenhancement, washout and enhancing rim/

pseudocapsule (Figure 3). A supervised radiology trainee credited lesions 1 point for every 

applicable imaging feature so that a lesion could be graded on a scale of 0 to 3 points. 

According to this grading system, both HCC and non-HCC lesions were staged to 

demonstrate the similarity between HCC and non-HCC lesions prone to misclassification by 

the CNN. On the one hand, lesions receiving 3 points could either be typical LI-RADS 

applicable HCC or pathologically proven non-HCC lesions that presented like HCC on 

imaging. On the other hand, HCC lesions graded with 1 point showed atypical contrast 

dynamics with only one of these features. The differences of the grading scores between the 

well (>90% accuracy) and poorly (<90% accuracy) classified lesions were analyzed to 

provide possible explanations for misclassifications of lesions by the CNN.

Statistics

Sensitivity, specificity, and overall accuracy were calculated in order to validate the 

performance of the deep learning model. These metrics were averaged over 150 runs with 

random sub-sampling to yield class-balanced test sets. The receiver operating characteristic 

curve was obtained and the area under the curve (AUC) was calculated (Figure 4).

3) Results

Study population

This study included 118 patients with HCC (n=73, 62%) and non-HCC lesions (n=45, 38%). 

The HCC cohort contained 57 (78%) men and 16 (22%) women, whereas 23 (51%) men and 

22 (49%) women were included in the non-HCC cohort. The mean age of the HCC patients 

was 61±8 (mean, standard deviation) and the mean age of the non-HCC patients was 59±13 

years. The cohort contained 87 patients with cirrhosis, including 73 (84%) in the HCC class 

and 14 (16%) in the non-HCC class. The majority of these patients were classified as Child-

Turcotte-Pugh-Score A (n=50, 57%) and the most common etiology was hepatitis C 

infection (n=61, 59%). The median Model for End-Stage Liver Disease (MELD) score for 

all patients was 9. The exact values can be obtained in Table 1.

A total of 93 (62%) HCC lesions and 57 (38%) non-HCC lesions were analyzed. The non-

HCC group consisted of 19 (33%) ICCs, 16 (28%) hemangiomas, 15 (26%) cysts, 2 (4%) 

regenerative nodules, 2 (4%) dysplastic nodules, 2 (4%) FNHs and 1 (2%) bile duct 

adenoma.
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The median diameter for all lesions was 2,3cm. The median timeframe between the MRI 

study and pathological proof was 1.6 months (range, 0-25 months) for HCC lesions if 

imaging was obtained prior to the pathological confirmation. Imaging after pathological 

confirmation was performed within one day. For non-HCC lesions, the median time between 

the MRI study and pathological confirmation was 1.4 months (range, 0-73 months), if 

imaging was obtained prior to the pathological confirmation. Imaging after pathological 

confirmation was performed within a median time of 5.5 months (0-24 months) (Table 2). 

One to four lesions per patient (median=1) and one to three lesions per imaging set 

(median=1) were included (Table 3).

Deep Learning Model Performance

The deep learning model demonstrated a training accuracy of 94.1% ± 2.0 (19766/21000 

volumetric samples). The performance was validated on a test set after 30 iterations, where 

the CNN demonstrated an overall accuracy of 87.3% ± 10.5 (1310/1500). The sensitivity to 

classify HCC and the non-HCC class was 92.7% and 82.0%, respectively, and the specificity 

for HCC and the non-HCC class was 82.0% and 92.7%, respectively (Table 4). The receiver 

operating characteristic curve demonstrated an AUC of 0.912 (Figure 4). The CNN was 

trained in 3.2 minutes ± 0.9, and the computing time to classify each lesion in the test data 

set was 2.9 milliseconds ± 1.7.

Evaluation of Lesion Grading

According to the grading system, 23 (25%) of the HCC lesions were scored with 1 point, 28 

(30%) with 2 points, and 42 (45%) with 3 points (Figure 5). In the non-HCC class, 16 (28%) 

lesions were scored with 0, 24 (42%) with 1, 11 (19%) with 2, and 6 (11%) with 3 points. 

The Kruskal-Wallis test showed a significant positive correlation of the grading score with 

improved classification accuracy in HCC lesions (p=0.012) and reduced classification 

accuracy in non-HCCs (p < .001). Specifically, in the HCC class, 1 of 42 (2%) lesions 

graded with 3 points, 4 of 28 (14%) lesions with 2 points and 5 of 23 (22%) lesions graded 

with 1 point were poorly classified (≤90% accuracy in 150 runs) by the CNN. The one 

poorly classified 3 point HCC lesion as well as 3 of 4 poorly classified 2 point HCC lesions 

showed poor image quality. Moreover, 2 of the 4 poorly classified 2 point HCC lesions were 

in close proximity to the liver margin. In the non-HCC class, none of the lesions with 0 

points, 2 of 24 (8%) lesions graded with 1 point, 3 of 11 (27%) lesions with 2 points and 6 

of 6 (100%) lesions graded with 3 points 100% (6/6) were poorly classified.

4) Discussion

This study demonstrates a histopathologically validated deep learning approach to 

differentiate between HCC and non-HCC lesions on multi-phasic contrast-enhanced MRI. 

The model achieved an overall accuracy of 87.3%, with high sensitivity (92.7%) and 

moderate specificity (82.0%) for HCC. The CNN’s short computation time could allow for 

practical integration into a radiologist’s workflow without producing delays.

A few recent studies have focused on classifying different types of liver lesions using a deep 

learning approach. A previous study [11] utilized a CNN trained to differentiate between six 
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different types of liver lesions with an overall accuracy of approximately 90%. This proof-

of-concept study only used lesions with typical imaging features. However, inclusion of 

atypical lesions may provide a more representative dataset and increased translatability to 

clinical practice. Another study investigating deep learning-based liver tumor classification 

also included atypical/indeterminate lesions. However, all indeterminate lesions were 

grouped into one class without further sub-classification [13]. The CNN developed in the 

current study was trained on a majority of atypical lesions to further classify those lesions as 

HCC or non-HCC as verified by pathology. This binary differentiation is a significant step 

towards classifying indeterminant lesions non-invasively in clinical practice. The decision 

HCC vs. non-HCC is particularly important since HCC is a malignant disease which can be 

treated curatively if diagnosed early. Moreover, the aforementioned study was based on CT 

whereas the current study utilized MRI, providing a wider variety of imaging features for the 

CNN to capture. In the present study, 47% of HCC lesions did not meet LI-RADS criteria 

for definitive HCC (LR5) and 48% of all lesions were biopsied, generally suggesting 

indeterminate appearance on imaging. A grading system was used to evaluate the 

representation of atypical-appearing lesions, assigning one point for each classical imaging 

feature of HCC (arterial hyperenhancement, washout, and pseudocapsule). According to this 

grading system, 25% of the HCC lesions scored one point because of their atypical 

appearances, and 30% of non-HCC lesions scored two or more points, mimicking typical 

appearances of HCC lesions. While the present study showed a slightly lower overall 

accuracy than the previous study with classical-appearing lesions, the results suggest that a 

CNN model trained with pathologically-proven atypical lesions can still provide relatively 

high accuracy.

Classical-appearing lesions generally demonstrated higher classification accuracy. The lower 

specificity of HCC classification is likely related to non-HCC lesions displaying features of 

HCC on imaging. However, a small number of HCC lesions graded with 2 and 3 points were 

poorly classified, possibly caused by poor image quality or lesions in close proximity to the 

liver margin. The seemingly high standard deviation is a consequence of the number of 

validation images in each fold. Vanilla CNNs were considered appropriate for the small 

cropped 3D images in our study, as sophisticated architectures such as ResNet [18] and 

DenseNet [19] are designed for larger datasets and 2D high resolution images.

This study has several limitations. A relatively small cohort was used due to the single center 

nature and the requirement for histopathological reference standard. Because the majority of 

non-HCC lesions in the liver were benign and did not require surgical therapy fewer 

pathological proven non-HCCs than HCCs were available with ground-truth pathological 

proof and were mostly acquired incidentally in the setting of transplantation for liver failure 

or accompanied by secondary HCC in the liver. Therefore, these non-HCC lesions were 

grouped into a single pooled category. Metastatic lesions were excluded because pathology 

proof is frequently unavailable for secondary malignancies which do not generally undergo 

surgical resection. Pathological confirmation from various sources was used, including 

biopsies, resections, explants, and autopsies. Additionally, the time interval between MRI 

and pathological confirmation was variable and, especially in benign lesions, relatively 

large. However, the probability of a malignant transformation for a definitively benign 

finding is exceedingly low [20]. Additionally, the time interval in this study was less 
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relevant, since pathology was only used to provide proof of diagnosis. Due to the small 

sample size, a large number of non-HCC lesions without background cirrhosis were used. 

However, lesions were cropped which reduced the impact of background liver tissue on the 

image analysis. Moreover, using heterogenous imaging sources may seem like a limiting 

factor, but demonstrates the robustness of the CNN in the setting of different MRI scanners 

and acquisition protocols. The algorithm does not account for variabilities in contrast agents/ 

acquisition time/ image quality, suggesting that prospective studies should validate those 

points. Additionally, the diagnostic performance of CNN vs. non-assisted radiologist vs. 

CNN-assisted radiologist should be investigated in future studies in order to proof the 

CNN’s clinical applicability. Moreover, lesion grading was conducted by single human 

reader leading to possible bias, which we tried to minimize through supervision.

In conclusion, this study demonstrates the use of deep learning for classification of both 

typical and atypical-appearing HCC lesions on multi-phasic MRI, utilizing pathologically 

confirmed lesions as “ground truth”. Currently most deep learning tools do not provide 

radiological-pathological validation in their training dataset. By strictly including only 

pathologically confirmed lesions, the underlying biological validity of deep learning systems 

can be optimized, paving the way for integration of decision support tools in clinical 

practice. Moreover, this allows for the evaluation of lesions with more atypical appearances, 

pushing the boundaries of non-invasive imaging-based diagnosis. In this manner, CNNs have 

the potential to eventually reduce the need for biopsies and their associated complications, 

resulting in improved patient care. The short computing time of our CNN will facilitate the 

inclusion into clinical routine.
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Key points:

1. A CNN trained on atypical appearing pathologically proven HCC lesions not 

meeting LI-RADS criteria for definitive HCC (LR5) can correctly 

differentiate HCC lesions from other liver malignancies, potentially 

expanding the role of image-based diagnosis in primary liver cancer with 

atypical features.

2. The trained CNN demonstrated an overall accuracy of 87.3% and a 

computational time of < 3 ms which paves the way for clinical application as 

a decision support instrument.
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Figure 1: 
Determination of coordinates and bounding boxes. 1): All coordinates were determined 

manually in the late arterial phase using a DICOM viewer (Radiant®). The maximum extent 

of each lesion within an axis was determined using 2 coordinates. 2): Bounding boxes were 

automatically built according to the defined coordinates. 3): Bounding boxes were checked 

manually to ensure that they are aligned correctly in all phases. 4): In the few cases where 

the bounding boxes were misaligned due to breathing motion artefact, we manually specified 

the coordinates separately in portal venous and delayed/equilibrium phases according to step 

1. 5): After all bounding boxes were correctly aligned, model training/validation was 

conducted according to figure 2.
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Figure 2: 
Flowchart of the lesion classification approach, including model training and testing.
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Figure 3: 
HCC as well as non-HCC lesions were graded with 0 to 3 points in order to demonstrate the 

similarity between HCC and non-HCC lesions prone to misclassification of lesions by the 

CNN. HCC = hepatocellular carcinoma. pv/dl = portal venous/delayed. a: HCC with arterial 

enhancement, b: HCC with washout and enhancing rim, c: HCC with arterial enhancement, 

washout and enhancing rim, d: cyst with no fulfilled criterion, e: hemangioma with 

enhancing rim, f: hemangioma with enhancing rim and washout, g: cyst with arterial 

enhancement, washout and enhancing rim.

Oestmann et al. Page 14

Eur Radiol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Model receiver operating characteristic curve for distinguishing hepatocellular carcinoma 

(HCC) from non-HCC lesions. AUC = area under the curve.
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Figure 5: 
Number of lesions by grading score. HCC = hepatocellular carcinoma.
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Table 1:
Patient characteristics.

The numerical data are summarized as mean ± standard deviation or median (*) and the categorical data are 

shown as frequency (percentage). HCC = hepatocellular carcinoma, ICC = intrahepatic cholangiocarcinoma, 

FNH = focal nodular hyperplasia, MELD = Model For End-Stage Liver Disease, Child-Pugh= Child-Turcotte-

Pugh-Score, NASH= nonalcoholic fatty liver disease, PSC = primary sclerosing cholangitis, ECOG = Eastern 

Cooperative Oncology Group, BCLC = Barcelona Clinic Liver Cancer, HKLC = Hong Kong Liver Cancer 

classification system.

HCC Non-HCC

ICC Regenerative
nodule

Dysplastic
nodule

Hemangioma Cyst FNH Bile duct
adenoma

Number of Patients 73 12 2 2 16 10 2 1

Gender

   - Male 57 (78) 9 (75) 1 (50) 1 (50) 7 (44) 3 (30) 1 (50) 1 (100)

   - Female 16 (22) 3 (25) 1 (50) 1 (50) 9 (56) 7 (70) 1 (50) 0 (0)

Age at imaging 61±8 69±13 37* 61* 57±10 56±9 42* 53*

Ethnic

   - Caucasian 53 (73) 9 (75) 1 (50) 2 (100) 11 (69) 8 (80) 1 (50) 1 (100)

   - African American 9 (12) 2 (17) 0 (0) 0 (0) 2 (13) 0 (0) 1 (50) 0 (0)

   - Asian 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

   - Other 10 (14) 1 (8) 1 (50) 0 (0) 3 (19) 2 (20) 0 (0) 0 (0)

MELD 10* 13±6 20* 10* 8±2 6* 10* 10*

Cirrhosis 73 1 2 2 6 2 0 1

   - Child-Pugh

     ∘ A 44 (60) 0 (0) 0 (0) 1 (50) 4 (67) 0 (0) 0 (0) 1 (100)

     ∘ B 26 (36) 1 (100) 1 (50) 1 (50) 2 (33) 2 (100) 0 (0) 0 (0)

     ∘ C 3 (4) 0 (0) 1 (50) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

   - Cause

     ∘ Hepatitis B 2 (3) 0 (0) 1 (50) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

     ∘ Hepatitis C 53 (62) 1 (50) 0 (0) 2 (100) 2 (33) 2 (100) 0 (0) 1 (100)

     ∘ Alcohol 21 (25) 0 (0) 0 (0) 1 (50) 2 (33) 1 (50) 1 (100) 0 (0)

     ∘ NASH 8 (9) 0 (0) 1 (50) 0 (0) 1 (17) 0 (0) 0 (0) 1 (100)

     ∘ PSC 1(1) 1 (50) 0 (0) 0 (0) 1 (17) 0 (0) 0 (0) 0 (0)

Malignancy related

   - ECOG

     ∘ 0 55 (75) 3 (25)

     ∘ 1 16 (22) 4 (33)

     ∘ 2 1 (1) 2 (17)

     ∘ 3 1 (1) 1 (8)

     ∘ unknown 0 (0) 2 (17)

   - Extrahepatic Spread 1 (14) 0 (0)

HCC related
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HCC Non-HCC

ICC Regenerative
nodule

Dysplastic
nodule

Hemangioma Cyst FNH Bile duct
adenoma

   - BCLC

     ∘ 0 12 (16)

     ∘ A 45 (62)

     ∘ B 0 (0)

     ∘ C 13 (18)

     ∘ D 3 (4)

   - HKLC

     ∘ 1 43 (58)

     ∘ 2 26 (36)

     ∘ 3 1 (1)

     ∘ 4 0 (0)

     ∘ 5 3 (4)
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Table 2:
Lesion characteristics.

The numerical data are summarized as mean ± standard deviation or median(*) and the categorical data are 

shown as frequency (percentage). HCC = hepatocellular carcinoma, ICC = intrahepatic cholangiocarcinoma, 

FNH = focal nodular hyperplasia, TACE = transcatheter arterial chemoembolization, MWA = microwave 

ablation, RFA = radiofrequency ablation

HCC Non-HCC

ICC Regenerative
nodule

Dysplastic
nodule

Hemangioma Cyst FNH Bile duct
adenoma

Number of Lesions 93 19 2 2 16 15 2 1

Pathological proof

   - Biopsy 47 (50) 15 (79) 1 (50) 1 (50) 6 (37) 0 (0) 2 (100) 0 (0)

   - Resection 10 (11) 4 (21) 0 (0) 0 (0) 5 (31) 10 (67) 0 (0) 0 (0)

   - Explant 36 (39) 0 (0) 1 (50) 1 (50) 3 (19) 4 (27) 0 (0) 1 (100)

   - Autopsy 0 (0) 0 (0) 0 (0) 0 (0) 2 (13) 1 (7) 0 (0) 0 (0)

Cirrhosis 93 1 2 2 6 4 0 1

Timeframe in days (median)

   - Imaging pre path 49 22 42 68 104 181 509 27

   - Imaging post path 1 295 0 0 143 0 0 0

Diameter in cm 2,0* 4.2±1.4 3,7* 1.1* 5.0±4.0 4.9±3.5 4,46* 1.4*

Residual tumor 8 0

Treatments 29 0

   - TACE 22 (76)

   - Bland embolization 3 (10)

   - Ethanol ablation 2 (7)

   - MWA 6 (21)

   - RFA 3 (10)

LI-RADS

   - LR5 49 (53)

   - < LR5 44 (47)
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Table 3:
Image characteristics.

HCC = hepatocellular carcinoma, ICC = intrahepatic cholangiocarcinoma, FNH = focal nodular hyperplasia.

HCC Non-HCC

ICC Regenerative
nodule

Dysplastic
nodule

Hemangioma Cyst FNH Bile duct adenoma

Number of Patients 73 12 2 2 16 10 2 1

Number of Imaging Studies 80 17 2 2 16 11 2 1

Number of Lesions 93 19 2 2 16 15 2 1
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Table 4:
Performance of the neural network on HCC classification.

Performance was averaged over 150 runs with random sub-sampling to yield class-balanced test sets. HCC = 

hepatocellular carcinoma.

HCC Non-HCC Overall

Training lesions 88 52 140

Test lesions 5 5 10

Sensitivity 92.7% 82.0% 87.3%

Specificity 82.0% 92.7% 87.3%
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