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Abstract

Purpose: Rule-based approaches to determining glaucoma progression from visual fields alone 

are discordant and have tradeoffs. To better detect when glaucoma progression is occurring, we 

utilized a longitudinal data set of merged VF and clinical data to assess the performance of a 

Convolutional Long Short-Term Memory (LSTM) neural network.

Design: Retrospective analysis of longitudinal clinical and visual field data.

Subjects: From two initial datasets of 672,123 visual fields from 213,254 eyes and 350,437 

samples of clinical data, persons at the intersection of both datasets with four or more visual fields 

and corresponding baseline clinical data (cup-to-disc ratio, central corneal thickness, and 

intraocular pressure) were included. After exclusion criteria, specifically the removal of VFs with 

high false positive / negative rates and entries with missing data, were applied to ensure reliable 

data, 11,242 eyes remained.

Methods: Three commonly used glaucoma progression algorithms (Visual Field Index slope, 

Mean Deviation slope, and Pointwise Linear Regression) were used to define eyes as stable or 

progressing. Two machine learning models, one exclusively trained on visual field data and 

another trained on both visual field and clinical data, were tested.

Outcome Measures: Area under the receiver operating characteristic (AUROC) curve and area 

under the precision-recall curve (AUPR) calculated on a held-out test set and mean accuracies 

from 3-fold cross validation were used to compare the performance of the machine learning 

models.
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Results: The convolutional LSTM network demonstrated 91–93% accuracy with respect to the 

different conventional glaucoma progression algorithms given 4 consecutive visual fields for each 

subject. The model that was trained on both visual field and clinical data (AUROC between 0.89 

and 0.93) had better diagnostic ability than a model exclusively trained on visual fields (AUROC 

between 0.79 and 0.82, p<0.001).

Conclusions: A convolutional LSTM architecture can capture local and global trends in visual 

fields over time. It is well suited to assessing glaucoma progression because of its ability to extract 

spatio-temporal features other algorithms cannot. Supplementing visual fields with clinical data 

improves the model’s ability to assess glaucoma progression and better reflects the way clinicians 

manage data when managing glaucoma.

Detecting visual field (VF) worsening is an important task in glaucoma management. 

Clinicians often make decisions for surgery or escalation of medical therapy based on 

changes in a patient’s visual field over time. Making these decisions, however, is challenging 

due to VF variability across tests which is often but not always due to poor reliability 

indices1. Manually reviewing VFs can be subjective and prone to error, especially given that 

patients usually have a small number of tests per year.2–4 Studies suggest that many tests 

over multiple years are required before progression can be accurately detected5. In response, 

multiple algorithms have been developed to aid in assessing glaucoma progression. Such 

algorithms can be split into two subsets: event-based and trend-based analysis.

Event-based analyses include algorithms which classify progression in a binary manner by 

comparing subsequent to initial visual fields. The most commonly used event-based 

algorithm is Guided Progression Analysis (GPA), which defines progression based on 3 

consecutive visual fields following two baseline tests, where worsening is measured as 

deterioration at identical points in visual fields outside a 95% confidence interval.6 Though 

GPA had a relatively low false positive rate, it is variable and overly reliant on high quality 

baseline studies.7

Trend-based analyses commonly utilize linear regression to determine changes in global or 

local measures. Global measures include Visual Field Index (VFI) and Mean Deviation 

(MD). Local measures include pointwise threshold or age-corrected threshold values. Due to 

variability in visual fields, there can often be delays in detecting progression solely from 

trend-based analyses.8,9 In addition, Saeddi et al. found that significant discordance exists 

between six traditional glaucoma progression algorithms, including VFI Slope, MD Slope, 

and PLR.10 Only 2.5% of eyes analyzed were classified the same by all six algorithms. The 

lack of a standard for glaucoma progression has prompted research in developing an 

objective, interpretable approach.

Machine learning, the notion that systems can learn from prior experience or examples, is a 

tool for the future of assessing glaucoma progression. Studies have already found both 

unsupervised and supervised approaches to predicting disease progression effective for other 

conditions, such as Parkinson’s and Alzheimer’s.11,12 Machine learning has also been 

successfully utilized for the diagnosis of eye diseases. Ting, et al. evaluated a learning 

system for the diagnosis of diabetic retinopathy (DR) and other eye diseases, including 
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glaucoma and macular degeneration (AMD), using 500,000 images across ethnicities and 

populations.13

Work has been done in applying machine learning for glaucoma progression. Caprioli, et al. 

compared the effectiveness of linear, quadratic, and exponential regression in assessing VF 

progression, concluding that exponential fit best modelled rate of decay when MD slope is 

used to define ground truth.14 Yousefi, et al. reported that assessing VF progression using 

machine learning is significantly more effective than traditional point-wise, region-wise, and 

global algorithms.15 Wang M., et al. classified different forms of visual field progression 

into 16 archetypes and defined progression as any significant straying from the normal 

archetype, or a stable rate of progression. They tested their model against multiple 

traditional algorithms as well as a subset of clinician graded sequences and found it 

outperformed AGIS, CIGTS, PoPLR, and MD.16 Numerous other unsupervised and 

supervised models including random forests, Bayesian techniques, and Recurrent Neural 

Networks have been tested in assessing glaucoma progression.17–19

A small number of studies have also attempted to supplement visual fields with other data. 

Hogarty et al. noted that the performance of machine learning classifiers in detecting 

glaucoma progression did not improve when VFs are complemented with Retinal Nerve 

Fiber Layer (RNFL) data.20 These findings are interesting as clinicians are putatively 

making determinations based on measures of optic nerve structure and function in addition 

to other clinical data but could be misleading due to a small train/test set. Kazemian, et al. 

developed a model for forecasting glaucoma progression at different intra-ocular pressure 

ranges for patients.21 Garway-Heath, et al. confirmed the effectiveness of combining VF and 

OCT data for assessing progression.22 These studies suggest that incorporating clinical or 

OCT data into models that assess VF progression may improve performance.

An important machine learning algorithm that is well suited to the determination of 

glaucoma worsening is the convolutional long short-term memory (LSTM) network. As a 

recurrent neural network (RNN), these are a special type of artificial neural network that can 

recognize temporal patterns in data by passing parameters between layers in a model.23 In 

this way, RNNs retain information about previous training examples, helping them learn 

relationships involving sequences of data like visual fields over time. LSTM networks are a 

special type of RNN that help resolve some issues with traditional RNNs by adding memory 

cells and forget gates that control when information enters memory and when it leaves or is 

forgotten.24 Also relevant to determining glaucoma worsening, LSTM networks have been 

successfully applied to problems where the input data represent an ordered sequence but 

where the time between individual samples is not necessarily relevant. Such problems 

include handwriting recognition, sentence parsing, and machine translation.

Convolutional neural networks (CNNs) are a type of deep learning algorithm traditionally 

used for image analysis. They are good at learning spatial relationships within images by 

extracting features from filters, or kernels, and assigning concurrent weights and biases to 

learn these features. The convolutional LSTM model was introduced by Shi et. al and is a 

good fit for the problem of assessing glaucoma progression because of its spatio-temporal 

nature. Convolutional LSTM layers are distinct from stacking convolutional layers on top of 
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recurrent layers in that they compute convolutional operations in both input and recurrent 

transformations. This allows them to extract unique spatio-temporal features that other 

machine learning architectures cannot.25

The purpose of this study was twofold. First, to determine the effectiveness of a 

convolutional LSTM architecture in assessing glaucoma progression and second, to evaluate 

whether supplementing visual field data with clinical data would improve the model’s 

performance.

Methods

This study was reviewed and approved by the Johns Hopkins University School of Medicine 

Institutional Review Board and adhered to the tenets of the Declaration of Helsinki.

Data Sources

Clinical and in-office testing data were obtained from Johns Hopkins Wilmer Eye Institute 

clinical information systems and represent the routine clinical care of the patients involved. 

Data were transferred to an approved, secured server dedicated to machine learning analysis.

Inclusion/Exclusion Criteria

From two initial datasets of 672,123 visual fields from 213,254 eyes of 108,127 patients and 

350,437 samples of clinical data from 55,460 patients, 12,366 patients at the intersection of 

both datasets with four or more visual fields and corresponding clinical data were included. 

1,789 visual fields were excluded because they had false positive or negative rates greater 

than 20%1 or MD values worse than −15dB. This MD cutoff was chosen given the inherent 

difficulty of determining change in those with severe visual field loss. The clinical data were 

obtained from patients in the EHR who had a glaucoma diagnosis (ICD-10 codes starting 

with H40) and were seen by an eye care provider. Three clinical data elements were 

extracted: cup-to-disc ratio, central corneal thickness, and intraocular pressure. Patients with 

missing data in any of these columns were further excluded. After these criteria were 

applied, 11,242 eyes remained for analysis.

Reference Algorithms

Three commonly used automated progression algorithms were used to define the “truth” 

regarding visual field progression: Mean Deviation (MD) slope, Visual Field Index (VFI) 

slope, and Pointwise Linear Regression (PLR). For MD and VFI, the slope of the value over 

time was calculated using linear regression. If the slope was negative and it’s p-value less 

than 0.05, the patient was classified as progressing.26,27 For PLR, a visual field was 

determined to be progressing if the slope of regression for the threshold values of three 

individual points was negative and statistically significant (P<0.01).28 These three 

algorithms were used as the criteria for determining glaucoma progression. Table 1 displays 

the number of eyes marked as stable and progressing by each individual reference algorithm. 

Figure 1 displays the number of eyes marked as progressing by each reference algorithm as 

a Venn diagram.
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Data Preparation

In order to test the effectiveness of supplementing visual fields with clinical data, two sets of 

input data were used: one with 54 features consisting of every 24–2 pattern visual field point 

and a second with 3 additional features from clinical data. Visual fields were represented as 

an 8×9 grid to preserve spatial relationships. The three additional features from clinical data 

were treated as auxiliary input included at later steps in the machine learning architecture. 

All input features were normalized to have a mean of 0 and standard deviation of 1. Because 

a majority of patients were deemed stable, we attempted weighting progressing eyes more 

heavily but this approach overcorrected and eventually decreased the network’s overall 

performance.

Machine Learning Architecture

The machine learning architecture consisted of a single convolutional LSTM layer with 32 

filters and a 3×3 kernel size. Dilation and stride lengths were left at library defaults of 1. 

Batch normalization was used to increase the overall stability of the network by reducing 

covariate shift or the change in distribution of input data across layers. These layers were 

followed by two fully connected dense layers, with 4 and 1 nodes respectively, used to 

provide a final output corresponding to progressing or not. The design of the network was 

based on the results of Wen et al.29 To help prevent overfitting, a 25% dropout layer was 

included between the recurrent layers. Weights were initialized using a random normal 

distribution and L1 regularization was applied to the output of the convolutional layer. The 

input to the network was a multidimensional array consisting of 11,242 eyes with 4 visual 

fields each, all represented as 8×9 grids. The set of 4 visual fields per patient the model was 

trained on were a subset of the full time series, ensuring clinical usefulness. The final model 

architecture is displayed in Figure 2. In order to test the effectiveness of supplementing 

visual fields with clinical data, a second architecture with auxiliary input from an LSTM 

layer with 4 cells was trained and evaluated. The architecture for this model is displayed in 

Figure 3.

An Adam optimizer with learning rate of 0.001 and binary cross-entropy loss function was 

used. Additionally, gradient clipping was applied in order to prevent exploding gradients 

during training. All hyperparameters were optimized using a grid search that tested the 

performance of every combination of learning rates, initialization schemes, network 

architectures, and clipping norms. Binary cross entropy loss is used to assess the 

performance of models that have two classes. In the case of this study, this corresponded to 

stable and progressing. A model that perfectly classifies data has a loss of 0. For the general 

case, cross entropy loss is defined as the sum of ground truth values multiplied by the 

logarithm of the scoring from the model. The results of the VF only (Figure 2) and VF + 

clinical data (Figure 3) models were compared as described below.

Outcome Metrics

3-Fold Cross validation with disjoint, uniform, random splits was used in order to assess the 

accuracy of the model. These splits were iterated so that two groups of data were used as a 

training set and the third as a test set. Splits were partitioned by patient rather than eye in 

order to prevent an inter-eye correlation from biasing the results. Specificity and sensitivity 
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values were calculated with a randomly selected held-out test set. A Receiver Operating 

Characteristic (ROC) curve generated on the same test set was used to compare the 

performances of individual models. Precision-recall (PR) curves generated from cross-

validation were also included to account for class imbalance.

Additionally, in order to better understand the LTSM network after training, we determined 

the extent to which different points on the visual field contributed to the model’s decision 

making ability. Heatmaps for each model (MD slope, VFI slope, PLR) were created by 

subtracting the accuracy of the model after masking each individual point in the training 

dataset with the accuracy of the model trained on the original dataset.

Existing progression algorithms were implemented in Python 3.6.8 and the machine learning 

algorithms in Python using the Keras library (v2.2.4) on a Tensorflow backend (v1.14.0). 

Scikit-learn (v0.21.3), Scipy (v1.3.1), and StatsModels (v0.10.1) were used for statistical 

analysis.

Results

After inclusion criteria were applied, 11,242 eyes from 5,843 patients remained for analysis. 

The mean age of included patients was around 72 years old and the average date of their 

most recent visual fields was in 2018. For excluded patients, the mean age was 67 years and 

average date of most recent visual fields also in 2018. For included patients, the mean rate of 

change of MD for progressors was −0.97 dB / year and for non-progressors, +0.68 dB / year. 

For excluded patients, the mean rate of change of MD for progressors was −0.69 dB / year 

and for non-progressors, +0.60 dB / year. Further characteristics of the study population are 

displayed in Table 2.

Table 3 displays patient characteristics in the train and test sets. A Mann-Whitney U test 

revealed no statistically significant difference in IOP, CCT, CD Ratio, and rate of change of 

MD in the train and test set. There was a significant difference in the train and test set 

between mean patient age. We don’t believe the differences in age impacted model 

performance, as the mean of the distribution was similar and age was not relevant as input 

for training the model.

Area under the ROC (AUROC) curve and area under the precision-recall (AUPR) curve of 

the machine learning model trained exclusively on visual fields, with respect to different 

“gold standard” progression algorithms (MD slope, VFI slope, PLR), are shown in Table 4. 

Timesteps correspond to the number of sequential visual fields from each subject the model 

was trained on. For example, having two timesteps means the model made decisions based 

on two consecutive visual fields for a single eye. As expected, increasing the number of 

visual fields provided to the model increases both AUPR (improvement of between .044 

and .434 per added timestep) and AUROC (improvement of between .011 and .074 per 

added timestep). This indicates that the inclusion of more VFs helped the LSTM network 

learn better.

Table 3 also shows that the inclusion of intraocular pressure, corneal thickness, and cup-disc 

ratio improved the performance of the algorithm. Intraocular pressure was the most 
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important clinical feature, in that its exclusion had the greatest negative impact on model 

performance, as measured by AUROC. Central corneal thickness and cup-disc ratio were the 

second and third most important features, respectively. ROC curves for each model are 

shown in Figure 4 and corresponding AUROC values, AUPR values, and 95% confidence 

intervals in Table 5. Each set of curves in each figure had identical train-test datasets to 

ensure comparability of results. Table 6 shows model sensitivity at fixed specificity levels, as 

per the ROC curves in Figure 4.

In order to test the null hypothesis that there was no change in AUROC between a model 

that uses exclusively visual fields and a model supplemented with clinical data, a Z-test was 

used. We accounted for clustering by using the fastAUC package in R. Results from the Z-

test for individual plots are in Table 7 and indicate statistical significance (p<0.01) for every 

comparison, meaning that the diagnostic accuracy of a model supplemented by clinical data 

is better than a model that exclusively uses visual fields, when trained on 4 subsequent 

timesteps of data.

Additionally, Precision-Recall (PR) curves are shown in Figure 5 and corresponding area 

under the PR curve (AUPR) values in Table 5. While ROC curves can present overly 

optimistic views of algorithm performance in situations where there is large class imbalance, 

PR curves account for class imbalance.

Mean accuracies were also calculated using cross-validation. The accuracy of the model 

trained on 4 timesteps of visual field and clinical data ranged from 91–93%.

In order to understand how often false positives indicated by one ground truth were true 

positives by others, we examined the number of eyes marked as progressing by the network, 

non-progressing by the reference algorithm the network was trained on, and progressing by 

another reference algorithm. Table 8 displays these results and reveals such situations were 

minimal.

The heatmaps generated by iteratively excluding each visual field point from the training 

process did not reveal any clearly identifiable patterns of more and less “important” points 

(Figure 6).

Discussion

The primary aims of this study were to test the ability of a convolutional LSTM model to 

identify glaucoma progression and to determine whether supplementing visual fields with 

clinical data can improve performance. Evaluation against previously described algorithms 

to define glaucoma worsening confirmed that the LSTM model was accurate in its 

predictions and could be trained to learn both global (based on MD, VFI) and local (based 

on PLR) changes in visual fields. Training distinct networks on two data sources, 

specifically visual fields alone and visual fields supplemented with basic clinical data (cup to 

disc ratio, corneal thickness, and intraocular pressure) showed that the network trained on 

the combined data performed better.
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The convolutional LSTM architecture we developed performed well identifying glaucoma 

progression with AUROC values ranging from 0.89 to 0.93 when using multiple visual fields 

and baseline clinical data as inputs. Additionally, AUPR values which incorporate class 

imbalance indicate moderate performance ranging from 0.77 to 0.80 of the network trained 

on combined data. Differences in AUROC and AUPR values are primarily due to AUPR 

values incorporating class imbalance as a determinant of performance. Lower AUPR values 

were expected given the imbalance in the number of stable and progressing patients. 

Although there is no agreed-upon objective definition of glaucoma progression, the 

proposed machine learning model is spatio-temporal by nature and shows it can learn both 

pointwise (as determined by PLR) and global (as determined by MD and VFI) trends. The 

presence of convolutional layers may allow it to extract spatial features that are not reflected 

in prior work30,31. The usefulness of recurrent layers supports Park, et al.’s findings that an 

RNN architecture can more robustly predict future visual fields than traditional regression 

techniques18. The combination of these factors makes the proposed ML architecture 

interpretable and an important step forward in finding a system that can synthesize 

information relevant to glaucoma progression. Having an architecture that can incorporate 

multiple data sources is key to incorporating the same information used by clinicians which 

makes it more likely such a system will be used in clinical practice.

An important contribution of this work is the finding that supplementing visual fields with 

clinical data increased the performance of the model. The ROC curves of models with and 

without clinical data reveal that the sensitivity and specificity of the model using exclusively 

visual fields is significantly lower than those of a model supplemented by clinical data. This 

corroborates the findings of Garway-Heath, et al. and Kazemian, et al. by suggesting that 

including structural data alongside VFs improves model performance regardless of the 

machine learning architecture utilized21,22.

One limitation of this study is the class imbalance and relatively small train/test sets. Either 

or both of these might affect the ability of the LTSM network to learn but the former is a 

feature of “real world” data and so may help us reflect performance in that setting. Class 

imbalance may explain the high accuracy but low AUROC for the model trained exclusively 

on visual fields. The fact that the vast majority of eyes were determined to be stable (Table 

1) makes it possible to achieve high accuracy simply by marking every eye as non-

progressing. Though the ROC curves do imply that the proposed architecture had good 

specificity and sensitivity, there may have been other unknown, extraneous features the 

model learned that would hinder its ability to generalize given the small train/test sets. 

Another limitation is that only 4 visual fields were used to determine ground truth values 

from reference algorithms. This was done in order to ensure sufficiently large train and test 

sets. However, it could mean that some of the ground truth values are inaccurate and thus 

that the network didn’t effectively learn “progression.” This could be addressed in future 

studies by combining data from multiple institutions in order to have larger data sets from 

which to learn. The reference algorithms used in this study, MD, VFI, and PLR each have 

their own strengths and weaknesses. MD and VFI are correlated as they both represent 

global change in visual fields, however, glaucomatous progression typically tends to be 

local. PLR is a local measure but is sensitive to noise and can be highly variable, leading to 

greater number of false positives. Thus, it may be beneficial to include additional standards 
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for identifying glaucoma progression such as physician assessment. A benefit of using rate-

based reference algorithms in this study is that the LSTM network did not have time as one 

of its inputs. It is therefore more likely that the LSTM network is learning something more 

like an event-based model of glaucoma worsening (see Guided Progression Analysis in the 

Introduction). This fact and the inclusion of clinical data makes it less likely that the 

machine learning algorithm is simply learning the mathematics of the reference algorithms.

It is not clear that our results would generalize to other populations given that all data were 

collected from a single site, an academic medical center with highly specialized glaucoma 

care, which likely differs from other types of practice. Further research that examines the 

architecture presented in this paper at different institutions is necessary. A logical follow up 

to this study would be to compare the ConvLSTM against other ML models that have been 

described. Similarly, it will be interesting to determine whether inclusion of data regarding 

optic nerve structure such as photographs and computerized imaging will make the ML 

model better at predicting glaucoma progression. The clear challenge will be to define 

progression based not just on visual fields but also on structural changes in the optic nerve 

structural changes and determining whether worsening in both is required. Finally, it will be 

interesting to see whether and how ML algorithms can incorporate other data from the EHR 

(other diagnoses, medications, procedures, etc.) and whether such data will meaningfully 

augment the data used so far.

While there is much interest in the latest revitalization of machine learning, which promises 

great potential for the future of glaucoma management, we should remember that the field 

itself is not new and that it generated similar excitement more than 20 years ago but then 

failed to transform medicine in a meaningful way. There is also increased awareness of the 

fact that these powerful algorithms are only able to learn from the examples we provide so a 

system that learns glaucoma at one institution may not generalize to another. We should 

therefore be cautious this time that we carefully evaluate and confirm that the algorithms we 

develop can indeed be used in settings with different patient populations so that we are not 

disappointed by our artificial intelligence future.
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A Convolutional Long Short-term Memory network was effective in predicting 

worsening of visual fields in glaucoma patients using prior tests. The model performed 

significantly better when supplemented with clinical data.
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Figure 1. 
Venn diagram displaying number of visual fields marked as progressing by each reference 

algorithm
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Figure 2. 
Machine learning architecture trained on visual field data. Input was a multi-dimensional 

array with timesteps, rows, columns, channels representing the longitudinal data.

Dixit et al. Page 14

Ophthalmology. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Machine learning architecture that incorporates data from visual fields and clinical data. 

Clinical data input was a multi-dimensional array with timesteps and features.
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Figure 4. 
Receiver operating characteristic curves of the machine learning models trained against 

mean deviation slope (A), pointwise linear regression (B), and visual field index slope (C) 

with confidence bands. The model shaded blue was trained on clinical data and visual fields, 

the red model was trained exclusively on visual fields, and the green model trained 

exclusively on clinical data, each over 4 timesteps. Numeric values for this curve are listed 

in Table 5.
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Figure 5. 
Precision recall curves of the machine learning models trained against mean deviation slope 

(A), pointwise linear regression (B), and visual field index slope (C) with confidence bands. 

The model labelled “CD+VF” was trained on both clinical data and visual fields, “VF Only” 

exclusively on visual fields, and “CD Only” exclusively on clinical data, each over 4 

timesteps. Numeric values for this curve are listed in Table 5.
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Figure 6. 
Heatmap of the machine learning models trained against mean deviation slope (A), 

pointwise linear regression (B), and visual field index slope (C). Each point was iteratively 

excluded from the training process. The scale from 0–1 represents the impact of each 

individual point on the model’s predictive ability, where 0 is the least impact and 1 is the 

greatest.
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Table 1.

Number of eyes marked as stable and progressing by each baseline algorithm.

Baseline Algorithm / Ground Truth Progressing Stable

VFI Slope 1997 9245

MD Slope 2410 8832

PLR 3144 8098
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Table 2.

Characteristics of included and excluded patients.

Baseline Characteristics Included Patients Excluded Patients

Age (years) 72 67

MD (dB) −3.7 −3.8

IOP (mmHg) 15.2 16.0

CCT (μm) 538 568

CDR 0.644 0.539

MD slope (dB/year, non-progressors) +0.68 +0.60

MD slope (dB/year, progressors) −0.97 −0.69

IOP = Intraocular Pressure, CCT = Central Corneal Thickness, CDR= Cup-to-disc Ratio, MD = Mean Deviation.
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Table 3.

Characteristics of patients in the train and test sets and p-values from comparison of distributions. A p-value of 

<0.05 signifies a significant difference between both sets.

Baseline Characteristics Train Set Test Set p-value

Age (years) 72 71 <0.01

MD (dB) −3.77 −3.64 0.09

IOP (mmHg) 15.2 15.4 0.25

CCT (μm) 537 539 0.46

CDR 0.64 0.65 0.57

MD slope (dB/year, non-progressors) +0.68 +0.67 0.11

MD slope (dB/year, progressors) −0.97 −0.96 0.42

IOP = Intraocular Pressure, CCT = Central Corneal Thickness, CDR = Cup-to-disc Ratio, MD = Mean Deviation (dB).
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Table 4.

Performance (area under the ROC curve, area under the PR curve) of a model trained on exclusively visual 

fields and a model trained on both visual fields and clinical data with respect to ground truth from traditional 

algorithms over different numbers of timesteps. The change in area under the ROC curve and area under the 

PR curve is displayed in parentheses after individual metrics in the model trained on clinical data and visual 

fields section.

Reference MD Slope PLR VFI Slope

Time steps AUROC AUPR AUROC AUPR AUROC AUPR

Model Trained on Only VFs

2 0.703 0.398 0.651 0.373 0.695 0.401

3 0.741 0.442 0.759 0.465 0.783 0.471

4 0.815 0.519 0.794 0.490 0.794 0.526

Model Trained on Clinical Data and VFs

2 0.701 (−0.002) 0.386 (−0.012) 0.694 (+0.043) 0.492 (+0.119) 0.711 (+0.016) 0.397 (−0.004)

3 0.835 (+0.094) 0.730 (+0.288) 0.784 (+0.025) 0.692 (+0.227) 0.840 (+0.057) 0.681 (+0.210)

4 0.939 (+0.124) 0.772 (+0.253) 0.892 (+0.096) 0.786 (+0.296) 0.915 (+0.121) 0.794 (+0.268)

VF = Visual Field, MD = Mean Deviation, PLR = Pointwise Linear Regression, VFI = Visual Field Index.
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Table 5.

Performance (area under the ROC curve with 95% confidence interval, area under the PR curve with 95% 

confidence interval) of models trained on both clinical data and visual fields, exclusively visual fields, and 

exclusively clinical data given 4 timesteps of data with respect to ground truth from traditional algorithms 

corresponding to Figure 4.

Reference MD slope VFI slope PLR

Model AUROC AUPR AUROC AUPR AUROC AUPR

Clinical Data and Visual Fields 0.939 (±0.008) 0.772 (±0.121) 0.892 (±0.012) 0.786 (±0.045) 0.915 (±0.009) 0.794 (±0.060)

Visual Fields Only 0.815 (±0.015) 0.519 (±0.128) 0.794 (±0.020) 0.490 (±0.101) 0.794 (±0.015) 0.526 (±0.079)

Clinical Data Only 0.743 (±0.018) 0.507 (±0.058) 0.756 (±0.019) 0.467 (±0.151) 0.792 (±0.014) 0.625 (±0.121)

MD = Mean Deviation, PLR = Pointwise Linear Regression, VFI = Visual Field Index.
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Table 6.

Sensitivity (%) of models trained on both clinical data and visual fields, exclusively visual fields, and 

exclusively clinical data given 4 timesteps of data with respect to ground truth from traditional algorithms at 

different specificity levels.

Reference Model Specificity Level

80% 85% 90% 95%

MD slope VF+CD 95% 90% 82% 59%

CD Only 55% 45% 36% 24%

VF Only 64% 58% 47% 32%

VFI slope VF+CD 85% 77% 67% 48%

CD Only 53% 45% 36% 20%

VF Only 64% 60% 53% 38%

PLR VF+CD 90% 85% 74% 51%

CD Only 58% 47% 35% 20%

VF Only 62% 54% 42% 26%

MD = Mean Deviation, PLR = Pointwise Linear Regression, VFI = Visual Field Index, VF = Visual Fields, CD = Clinical Data.
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Table 7.

Statistical comparison of the area under receiver operating characteristic curves with respect to different 

definitions of glaucoma progression for model 1 (visual field only) and model 2 (visual field and clinical data).

Reference Algorithm to Define Ground Truth for ROC Curves

MD Slope PLR VFI Slope

Difference (Model 1AUROC – Model 2AUROC) −0.124 −0.098 −0.121

P-value < 0.001 < 0.001 < 0.001

MD = Mean Deviation, PLR = Pointwise Linear Regression, VFI = Visual Field Index.
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Table 8.

Number of eyes marked as progressing by the network, non-progressing by the reference algorithm the 

network was trained on, and progressing by another reference algorithm. The first column indicates models 

trained on visual field and clinical data with respect to different reference algorithms and the first row 

indicates how different reference algorithms marked eyes.

Reference

Model MD Slope VFI Slope PLR

Trained using MD Slope 0 7 10

Trained using VFI Slope 9 0 17

Trained using PLR 12 13 0

MD = Mean Deviation, PLR = Pointwise Linear Regression, VFI = Visual Field Index.
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