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Abstract

Introduction: The PD-L1 immune checkpoint inhibitors atezolizumab and durvalumab have 

received regulatory approval for the first-line treatment of patients with extensive-stage small cell 

lung cancer. However, when used in combination with platinum-based chemotherapy, these PD-L1 

inhibitors only improve overall survival by 2–3 months. This may be due to the observation that 

<20% of SCLC tumors express PD-L1 at >1%. Evaluating the composition and abundance of 

checkpoint molecules in SCLC may identify molecules beyond PD-L1 that are amenable to 

therapeutic targeting.

Methods: We analyzed RNA-Seq data from SCLC cell lines (n=108) and primary tumor 

specimens (n=81) for expression of 39 functionally validated, inhibitory checkpoint ligands. 

Further, we generated tissue microarrays containing SCLC cell lines and SCLC patient specimens 

to confirm expression of these molecules by immunohistochemistry. We annotated patient 

outcomes data, including treatment response and overall survival.

Results: The checkpoint protein B7-H6 (NCR3LG1) exhibited increased protein expression 

relative to PD-L1 in cell lines and tumors (P < 0.05). Higher B7-H6 protein expression correlated 

with longer progression-free survival (P = 0.0368) and increased total immune infiltrates (CD45+) 

in patients. Furthermore, increased B7-H6 gene expression in SCLC tumors correlated with a 

decreased activated NK cell gene signature, suggesting a complex interplay between B7-H6 

expression and immune signature in SCLC.

Conclusions: We investigated 39 inhibitory checkpoint molecules in SCLC and found that B7-

H6 is highly expressed and associated with progression-free survival. In addition, 26/39 immune 

checkpoint proteins in SCLC tumors were more abundantly expressed than PD-L1, indicating an 

urgent need to investigate additional checkpoint targets for therapy in addition to PD-L1.

Keywords

small cell lung cancer (SCLC); immunotherapy; checkpoint molecules; immune checkpoint 
inhibitor; B7-H6

Introduction

Small cell lung cancer (SCLC) is a high-grade neuroendocrine tumor that affects ~15% of 

lung cancer patients and causes ~200,000 deaths annually worldwide.1 Approximately 70% 

of SCLC patients present with distant metastases at initial diagnosis and median overall 

survival is ~1 year for this disease.1 SCLC treatment has consisted of a combination of 

platinum-based chemotherapy plus etoposide for the last 30 years with no significant 

advances in therapeutic paradigms.2 However, in 2019, the United States Food and Drug 
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Administration (FDA) approved the addition of the PD-L1 inhibitor, atezolizumab, in 

combination with chemotherapy for first-line treatment of patients with extensive-stage 

SCLC (ES-SCLC).3 Nearly one year later, another PD-L1 inhibitor, durvalumab, received an 

analogous approval.4 Chemotherapy (platinum/etoposide) plus immune checkpoint 

inhibitors (ICIs) is now the accepted standard of care for ES-SCLC. However, addition of 

PD-L1 inhibitors in this setting only improves overall survival by 2–3 months.3, 5 This may 

be due to the fact that despite high tumor mutation burden,6 SCLC tumors express minimal 

PD-L1,7-10 although additional factors may also explain the poor response. In addition, large 

clinical trials utilizing alternative checkpoint inhibitors such as anti-PD-111-14 and anti-

CTLA-415 have either been negative or achieved minimal response rates (10–30%).10, 12, 16 

Notably, these trials did not stratify patients based on PD-L1 expression, and as a result, it is 

unclear who benefits from current FDA-approved ICIs in SCLC. These data reveal a 

significant knowledge gap in the SCLC clinical realm; immune biomarkers which are 

standardly accepted in other tumor types, including non-small cell lung cancer (NSCLC), 

are either 1) inappropriate targets or 2) not predictive of response to immune checkpoint 

blockade in SCLC.17

There is an urgent need to define the immune landscape in SCLC in order to identify the 

best biomarker(s) of response and resistance to immune checkpoint blockade, maximize the 

utility of ICIs, and personalize medicine for patients with SCLC. Through these studies, we 

sought to characterize inhibitory checkpoint molecules in SCLC in an effort to identify 

targets amenable to ICIs.

Materials and Methods

RNA-Seq Datasets

Details of the RNA-seq datasets and analyses are provided in the Supplementary Methods.

SCLC cell line tissue microarray

A tissue microarray (TMA) was constructed using formalin-fixed and paraffin-embedded 

(FFPE) cell pellets from 19 unique SCLC cell lines (DMS53, DMS114, COR-L51, H69, 

H82, H128, H187, H196, H209, H211, H524, H526, H740, H841, H889, H1048, H1607, 

H2195, H2679) gifted from John Minna, M.D. (University of Texas Southwestern), Pierre 

Massion, M.D. (Vanderbilt University Medical Center), and Vito Quaranta, M.D. (Vanderbilt 

University). The TMA consisted of 1 mm diameter tissue cores from 19 SCLC cell lines, 

each in at least 3 replicates (n=66), human lung adenocarcinoma (n=3), and control tissues 

from normal human lung (n=3) and brain cortex (n=3). 5μm thick sections were cut from the 

array and mounted onto charged slides for immunohistochemistry (IHC) analyses. A 

sequential section was stained with H&E to confirm presence of the histological feature of 

interest (normal or tumor). The actual number of samples reported for each marker was 

lower than the total samples analyzed due to unavoidable tissue loss.

SCLC patients and tissue microarray

FFPE tumor samples from 51 SCLC patients treated at Vanderbilt University Medical Center 

(VUMC) were used to construct a TMA. Patient demographics can be found in 
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Supplementary Table 1. All tissue was used in accordance with the VUMC institutional 

review board (IRB) under protocols #030763 and #160769, which approved the patient 

consent forms or waiver of consent. Archival tissue blocks were stained with H&E and 

reviewed by a pathologist. The TMA consisted of 0.6 mm diameter tissue cores from 51 

unique patients, each in at least 2 replicates (n=164), and 7 control tissues including normal 

human tonsil (n=9), lung (n=2), brain cortex (n=2), pancreas (n=2), adrenal (n=2), thyroid 

(n=2), and parathyroid (n=2). Clinicopathological characteristics of the patients were 

compiled from medical records. 5μm thick sections were cut from the array and mounted 

onto charged slides for IHC analyses. A sequential section was stained with H&E to confirm 

presence of the histological feature of interest (normal or tumor). The actual number of 

samples reported for each marker was lower than the total samples analyzed due to 

unavoidable tissue loss and absence of or limited tumor cells.

B7-H3, B7-H6, PD-L1, and immune cell quantification in SCLC cell lines and tumors.

Quantification of immunohistochemistry staining is described in detail in Supplementary 

Methods.

Statistical Analyses

Statistics were performed as indicated using Python, R, or GraphPad Prism. P < 0.05 was 

considered statistically significant for all studies. For paired analyses, a 2-tailed paired t-test 

was utilized. The Chi-square (χ2) test was used to analyze the correlation of B7-H6 

expression and clinical parameters. The Kaplan-Meier method and Cox regression were used 

to estimate survival and hazard ratios, and survival between groups was analyzed for 

significance using log-rank (Mantel-Cox) test. Where error bars are presented, all data are 

mean ± SD.

Results

PD-L2 and B7-H6 emerge as potential candidates of immune checkpoint blockade in SCLC

To evaluate inhibitory checkpoint molecules in SCLC, we first performed an extensive 

literature review and assembled a list of checkpoint molecules that were 1) expressed by 

tumors, 2) T cell suppressive, and 3) potentially amenable to ICI or other targeted therapies 

(Supplementary Tables 2 and 3). We evaluated the presence of these inhibitory checkpoint 

molecules (n=39) in SCLC cell lines (n=108) using bulk RNA-Seq compiled from three 

publicly available datasets: the Cancer Cell Line Encyclopedia (CCLE),18 Genomics of 

Drug Sensitivity in Cancer (GDSC),19 and SCLC cBioPortal for Cancer Genomics20, 21 

(Fig. 1A). Previous studies report that most SCLC tumors exhibit low PD-L1 expression 

with <1% PD-L1 positive tumor and immune cells.7-10 Quantified expression of each 

inhibitory checkpoint molecule revealed that 18/38 (47%) had significantly increased gene 

expression (P < 0.01) relative to PD-L1 (Fig. 1B).

Lung adenocarcinoma (LUAD) and melanoma have each been reported to have high 

response rates to immune checkpoint blockade therapy.22, 23 We reasoned that genes that 

show similar or increased expression levels in SCLC compared to these tumor types would 

be more likely to have clinical relevance. Using the CCLE dataset, we compared gene 
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expression of inhibitory molecules in SCLC cell lines (n=50) to LUAD (n=188) and 

melanoma (n=49) cell lines. Many checkpoint ligands (n=16/39, 41%) exhibited reduced 

gene expression in SCLC cell lines (Fig. 1C). CD274 expression was higher in SCLC 

relative to melanoma but not LUAD. However, PDCD1LG2 (PD-L2) and NCR3LG1 (B7-

H6) exhibited increased expression relative to both LUAD and melanoma cell lines (Fig. 1c). 

Additional comparison of B7-H6 expression of cell lines in the CCLE revealed an increased 

expression in SCLC relative to most tumor types (Fig. 2A). PD-L2 showed decreased 

expression relative to other tumor types (data not shown). Additionally, we examined the 

potential co-expression of PDCD1LG2 (PD-L2) and NCR3LG1 (B7-H6) with CD274 (PD-

L1) by assessing their correlation. NCR3LG1 (B7-H6) demonstrated minimal correlation 

with CD274 (PD-L1) and PDCD1LG2 (PD-L2) in SCLC cell lines (Fig. 2B).

To validate the findings from SCLC cell lines, a publicly available SCLC tumor RNA-Seq 

dataset (EGAS0000100092524; n=81) was analyzed for expression of inhibitory checkpoint 

molecules (Supplementary Table 2) in SCLC tumors (Supplementary Data 1A). Quantified 

expression of inhibitory checkpoint molecules revealed that 26/38 (68%) had significantly 

increased expression (P < 0.01) relative to PD-L1 (Supplementary Data 1B). The TCGA 

dataset was used to compare gene expression of inhibitory molecules in SCLC tumors 

(n=81) to LUAD (n=576) and melanoma (n=473) tumors. Analyses did not validate 

increased PDCD1LG2 (PD-L2) and NCR3LG1 (B7-H6) gene expression in SCLC tumors 

relative to LUAD and melanoma tumors (Supplementary Data 1C) as observed in SCLC cell 

lines (Fig 1C). In fact, most checkpoint ligands (n=32/33, 97%) exhibited reduced gene 

expression in SCLC tumors. PDCD1LG2 (PD-L2) and CD274 (PD-L1) showed strong 

correlation (R2=0.727) in SCLC tumors, indicating a pattern of co-expression (Fig. 2C). A 

weaker correlation was observed in SCLC cell lines (R2 = 0.310, Fig. 2B). As observed in 

SCLC cell lines, NCR3LG1 (B7-H6) demonstrated little correlation with CD274 (PD-L1) 

and PDCD1LG2 (PD-L2) in SCLC tumors (Fig. 2C).

Immunohistochemistry validates B7-H6 as a potential therapeutic target for immune 
checkpoint blockade

Although NCR3LG1 (B7-H6) did not demonstrate increased gene expression relative to 

CD274 (PD-L1) in SCLC tumors (Supplementary Data 1A, B) and relative to LUAD and 

melanoma tumors (Supplementary Data 1C), it displayed increased expression in SCLC cell 

lines (Fig. 1B) and increased gene expression relative to both LUAD and melanoma cell 

lines (Fig. 1C). Therefore, we chose to validate B7-H6 protein expression in SCLC. We 

examined B7-H6 (NCR3LG1) via immunohistochemistry (IHC) in SCLC cell lines (n=21) 

and clinical specimens (n=120). For comparison, we also analyzed SCLC cell lines for the 

presence of PD-L1 and B7-H3 protein; B7-H3 (CD276) is an inhibitory checkpoint ligand 

previously identified to exhibit high expression in SCLC7 that showed increased gene 

expression relative to PD-L1 (Fig. 1b and Supplementary Data 1B). Correlating with the 

RNA-Seq data (Fig. 1B and Supplementary Data 1B) and previous studies, total PD-L1 

(CD274) positivity was low (< 20% tumor cells) (Supplementary Data 2A, B). Over half 

(59%, n=10) of cell lines had >1% total cells positive for PD-L1 immunoreactivity 

(Supplementary Data 2B). Although B7-H6 average protein expression was similar to PD-

L1, >1% total cells positive were detected in all (n=17) cell lines (Supplementary Data 2B). 
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In addition, median B7-H6 cell positivity was 10-fold higher than PD-L1 (data not shown). 

Consistent with gene expression data (Fig. 1B and Supplementary Data 1B), B7-H3 was 

highly expressed at the protein level and showed >1% positive staining in all cell lines 

(Supplementary Data 2B).

Primary normal human lung tissue was assessed for B7-H6 staining and we observed no 

expression (Fig. 3A). Cells showing immunoreactivity are hemosiderin-laden macrophages. 

Negative staining (Fig. 3B), weak staining (Fig. 3C), moderate staining (Fig. 3D), and strong 

staining (Fig. 3E-F) were observed in SCLC tumors. Similar to SCLC cell lines, most (87%, 

n=34/39) SCLC tumors showed >1% positive staining. B7-H6 expression was also more 

abundant in tumors (P < 0.0001) when compared to PD-L1 (Fig. 3G).

B7-H6 correlation with clinicopathological features in SCLC

Previous reports in other tumor types have indicated that B7-H6 protein expression 

correlates with prognoses and other clinicopathological parameters (tumor progression, 

stage, metastasis, treatment response, and tumor differentiation).25-30 Therefore, we 

investigated the association of B7-H6 expression with clinicopathological features of SCLC 

(Table 1). Since current clinical practices utilize PD-L1 positivity and not H-score to 

determine ICI administration, we stratified patients based on B7-H6 tumor positivity. In 

addition, since no clinical guidelines exist for B7-H6 positivity in tumors, we based 

stratification on the median B7-H6 tumor positive percentage of 24.3% in our cohort. 

Patients with B7-H6 tumor positive < median (n=19, B7-H6low) or ≥ median (n=20, B7-

H6high) were analyzed for SCLC clinical parameters (Fig. 3H). Strong correlation was seen 

between B7-H6 and gender, with males exhibiting higher B7-H6 expression (P < 0.0154). 

All other clinical parameters analyzed were insignificant as noted in Table 1.

B7-H6 is associated with longer progression-free survival and increased immune infiltrates 
in SCLC

In order to further investigate the prognostic value of B7-H6 in SCLC, we conducted 

survival analyses based on B7-H6 tumor expression. B7-H6 expression had no significant 

correlation (P = 0.3994) with overall survival (OS) (Fig. 4A). Interestingly, median OS was 

nearly 2-fold higher (14.3 versus 7.7 months – CI) in B7-H6high patients (Fig. 4A). When 

evaluating progression-free survival (PFS) from start of treatment, B7-H6high patients 

experienced a significantly longer disease control (P = 0.0368) and a more than 3-fold 

improvement in median PFS (10.7 versus 3.8 months) compared to B7-H6low patients (Fig. 

4B). Considering that stage is a major factor of OS and PFS in SCLC, we further assessed 

PFS in stage-matched patients. B7-H6high patients with limited-stage SCLC (LS-SCLC) had 

a nearly 3-fold higher median PFS than B7-H6low low patients (21.5 versus 8.5 months), 

although this difference was not statistically significant (Fig. 4C). Median PFS was similar 

when comparing patients with B7-H6high and B7-H6low ES-SCLC (4.7 versus 3.8 months, 

respectively; Fig. 4D). These data suggest B7-H6 expression is a contributing factor in 

length of PFS, although stage cannot be completely excluded.

Based on the observation of increased PFS in B7-H6high patients, we next sought to 

investigate the influence of B7-H6 expression on immune complexity. Further investigation 

Thomas et al. Page 6

J Thorac Oncol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of B7-H6high/low cohorts via IHC revealed increased leukocyte infiltration (CD45+) in 

primary SCLC lung tumors of B7-H6high patients (n=7), a feature which has been reported 

to be predictive of improved patient outcomes and response to immunotherapy31-33 (Fig. 5A, 

B). To establish the relationship between B7-H6 expression and immune infiltration in 

SCLC tumors, we estimated the inferred relative proportions of immune cell populations 

using CIBERSORTx34 and bulk tumor RNA-Seq data (EGAS0000100092524; n=81). High 

B7-H6 expression was associated with increased CD8+ T cells, plasma cells, and follicular 

helper T cells, which have been reported to be associated with better patient 

prognosis31, 35, 36 (Fig. 5C and Supplementary Data 3A, B). We confirmed the increased 

presence of these immune cell types in B7-H6high SCLC primary lung tumors via IHC (Fig. 

5D). Although NK cell relative proportions did not differ between the B7-H6high/low cohorts, 

we further examined the relationship between B7-H6 and its only known cognate receptor, 

NKp30,37 on inferred NK cell populations identified using the CIBESORTx34 methodology 

and the LM22 gene signature. We also examined the relationship between B7-H6 expression 

and abundance of NK cells. The analyses revealed a significant negative correlation between 

resting NK cells and NKp30 (NCR3) expression (R = −0.29, P = 0.0085; Supplementary 

Data 4A), but a significant positive correlation between activated NK cells and NKp30 

expression (R = 0.64, P = 9.9E-11; Supplementary Data 4B). B7-H6 (NCR3LG1) expression 

was also inversely correlated with abundance of activated NK cells (R = −0.23, P = 0.043; 

Supplementary Data 4C), indicating a potential NK-inhibitory role for B7-H6 in SCLC.

SCLC cell lines and tumors display subtype-specific expression of inhibitory checkpoint 
molecules

Developing in parallel to these practice-changing clinical trials involving use of ICIs in 

SCLC are large-scale - omics efforts to bring more precision to the diagnosis and treatment 

of SCLC at the molecular level. At present, SCLC is approached clinically as a single 

disease with no standard biomarker assessments (such as tumor DNA sequencing) to 

personalize care. Attempts to better define specific patient populations and understand 

SCLC heterogeneity at the molecular level have led to the identification of SCLC subtypes 

within the previously described, broader neuroendocrine (NE) and non-neuroendocrine 

(non-NE) classifications.38-40 These subtypes are defined by differential gene expression of 

four main transcription regulators—Achaete-Scute Complex Homolog-Like 1 (ASCL1), 

Neurogenic Differentiation Factor 1 (NEUROD1), POU Class 2 Homeobox 3 (POU2F3), 

and Yes-Associated Protein-1 (YAP1)—and exhibit potentially unique therapeutic 

susceptibilities.41, 42 At present, little is known about the relationship between the immune 

microenvironment and SCLC subtypes.

SCLC cell lines exhibited distinct subtypes—ASCL1high (SCLC-A), NEUROD1high (SCLC-

N), POU2F3high (SCLC-P), YAP1high (SCLC-Y)—based on relative RNA-Seq expression of 

four well-defined transcription regulators42 (Supplementary Data 5A and Supplementary 

Table 4). Since therapeutic implications amongst individual subtypes have not been fully 

clarified, the more well-elucidated classifications of neuroendocrine (NE; SCLC-A and 

SCLC-N) and non-neuroendocrine (non-NE; SCLC-P and SCLC-Y) were used for 

downstream analyses. Insulinoma-associated 1 (INSM1) gene expression, which is a marker 

of neuroendocrine tumors,43 was also quantified as a measure of subtyping validation 
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(Supplementary Data 5A). Subtyping analyses classified most SCLC cell lines as NE (n=92) 

and the rest as non-NE (n=16). Quantified expression of inhibitory checkpoint molecules in 

NE and non-NE subtypes revealed differential expression of several genes (Supplementary 

Data 5B). Notably, PD-L1 and B7-H6 were not differentially expressed amongst SCLC 

subtypes. Checkpoint genes that were validated in downstream patient analyses are 

displayed in Supplementary Data 5C. Notably, CD70 (TNFSF7), CD81 (CD81), HLA-B 
(MHCI), HLA-E (HLA-E), MICA (MICA), and VTCN1 (B7-H4) all showed increased 

expression (P < 0.05) in the non-NE subtype (Supplementary Data 5C). Similar to SCLC 

cell lines, tumors were first classified into NE (n=67) and non-NE (n=14) subtypes, with NE 

being the predominant subtype (Supplementary Data 6A). NE and non-NE tumors were then 

analyzed for expression of checkpoint molecules (Supplementary Data 6b). Differentially 

expressed markers in SCLC cell lines (Supplementary Data 5C) were validated (P < 0.05) in 

tumor samples (Supplementary Data 6C). The trend of increased gene expression in non-NE 

subtypes observed in cell lines was also evident in tumor samples.

Discussion

ICIs have significantly altered survival outcomes for some cancer patients with demonstrated 

success in many tumor types.44 The FDA has approved PD-L1 inhibitors for use in more 

than 10 cancer types,45 including small cell lung cancer, in which it is approved for first-line 

treatment of advanced disease. However, the number of patients who respond is few, and the 

benefit gained by responders is minimal. Even blockade of alternative inhibitory checkpoints 

molecules—CTLA-4 and PD-1—does not substantially prolong overall survival in SCLC 

patients.11-15 One explanation could be low or absent expression of these molecules in 

SCLC,7-10 precluding their use as viable targets for immune checkpoint blockade. 

Alternatively, expression of these checkpoint molecules might not serve as predictive 

biomarkers for ICI administration. Nonetheless, existing ICIs could prove successful if 

administered within the proper tumor context. To date, there are no guidelines surrounding 

the administration of ICIs in SCLC and no predictive biomarkers have been established.

In these studies, we aimed to provide context for ICI administration by considering 

inhibitory checkpoint molecules beyond PD-L1 for immune checkpoint blockade. 

Additionally, using large datasets, we have highlighted the necessity of considering subtypes 

in SCLC immune checkpoint blockade by identifying subtype-specific, differential gene 

expression of inhibitory checkpoint molecules—CD70 (CD70), CD81 (CD81), HLA-B 
(MHCI), HLA-E (HLA-E), MICA (MICA), VTCN1 (B7-H4)—which are putative targets 

for immune-based therapies (Supplementary Table 2). Further, we identified two potential 

candidates for immune checkpoint inhibition in SCLC—NCR3LG1 (B7-H6) and 

PDCD1LG2 (PD-L2)—and validated B7-H6 as a potential target. PD-L2 has been 

investigated in SCLC but showed no association with clinicopathological factors or 

prognosis in initial studies.46 However, the strong correlation of PD-L2 (PDCD1LG2) and 

PD-L1 (CD274) gene expression might indicate that a combined PD-L1 / PD-L2 ICI 

regimen would be more efficacious. B7-H6 is a novel ligand belonging to the B7 family. 

Several B7 family members, including PD-L1, have been revealed to be overexpressed in 

tumors and implicated in tumor progression and overall worse prognosis. Distinct from other 

family members, B7-H6 is abnormally expressed in tumor tissues29, 47 with little to no 
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expression in normal human tissues, making it an attractive target for existing 

immunotherapies such as ICI, chimeric antigen receptor (CAR) T cells,48-50 or bispecific T 

cell engagers (BiTEs).51 Aberrant B7-H6 overexpression has been reported in a breadth of 

tumor types including glioma, hepatocellular carcinoma, triple-negative breast cancer, and 

non-small cell lung cancer.27, 30, 47, 52 However, unlike PD-L1, B7-H6 can also be co-

stimulatory, by binding to NKp30 and enhancing antitumor NK cell cytotoxicity and 

cytokine secretion.37 Due to its dual immune regulatory nature, the clinical implications of 

abnormal B7-H6 expression in human cancer remain elusive. While some studies report 

strong correlation of B7-H6 expression with tumor progression26, 52-55 and 

chemoresistance55, 56 in multiple tumor types, others do not.30, 57

Although our study herein revealed a positive correlation of B7-H6 expression with 

progression-free survival and increased immune infiltration, we observed a negative 

correlation with B7-H6 and activated NK cells. These findings support previous reports of a 

context-specific, immune regulatory role for B7-H6 in SCLC. Of note, we did not assess for 

the presence of soluble B7-H6, which has been demonstrated to be inhibitory to NK cell 

function.54, 58 Higher expression of B7-H6 on tumor cells could be indicative of lower 

serum amounts of soluble B7-H6, which could explain the longer PFS in B7-H6high SCLC 

patients. We also do not know how the expression of B7-H6 changes dynamically over time 

and in response to chemotherapy. Furthermore, the comparison of inhibitory checkpoint 

molecules in SCLC to PD-L1 at the gene expression level might not correlate directly with 

therapeutic relevance due to various factors that affect protein expression, including protein 

stability and membrane trafficking. Our studies also assume that higher protein expression 

correlates with ICI effectiveness, which might not be the case for all checkpoint molecules.

In conclusion, our studies revealed that several evaluated inhibitory checkpoint molecules 

were more highly expressed than PD-L1, indicating that globally PD-L1 may not be the 

most optimal target for ICIs in SCLC. We also report that SCLC cell lines could serve as 

valid models for checkpoint ligand studies in lieu of the relative paucity of SCLC tissues 

available for research. Future studies will seek to validate B7-H6 as a target amenable to 

immune checkpoint inhibition and investigate checkpoint molecules beyond PD-L1 as 

candidates for immune checkpoint blockade in SCLC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Expression of immune checkpoint molecules in SCLC cell lines.
(A) Heatmap depicting log-transformed absolute gene expression of checkpoint molecules 

(n=39) described in Supplementary Table 2 in SCLC cell lines (n=108). Color scale bar 

represents absolute expression on a log scale. (B) Boxplots of log-transformed absolute 

expression of checkpoint molecules quantified in all SCLC cell lines. Genes that are 

significantly increased (P < 0.01) compared to PD-L1 (CD274, starred) are highlighted in 

purple. (C) Analysis of SCLC checkpoint molecule expression relative to melanoma (n=49) 

and LUAD (n=188) CCLE cell lines. Relative expression of log-transformed median gene 

expression of inhibitory checkpoint molecules with SCLC as baseline log(SCLC+1/

[melanoma or LUAD]+1). Only genes present in all three datasets are shown. SCLC, small 

cell lung cancer; LUAD, lung adenocarcinoma. Arrowheads, increased relative expression in 

SCLC.
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Figure 2: Co-expression of PD-L1, PD-L2, and B7-H6 in SCLC cell lines and tumor.
(A) Quantification of mean log-transformed B7-H6 expression in CCLE cell lines. Error 

bars are standard deviation. Co-expression of NCR3LG1 (B7-H6), CD274 (PD-L1), and 

PDCD1LG2 (PD-L2) in (B) SCLC cell lines and (C) SCLC tumors with associated R-

squared value (Pearson correlation) and 95% confidence interval for fit using linear 

regression. SCLC, small cell lung cancer; AML, acute myeloid leukemia; DLBCL, diffuse 

large B cell lymphoma; CML, chronic myelogenous leukemia; ALL, acute lymphocytic 

leukemia; NSCLC, non-small cell lung cancer.
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Figure 3: B7-H6 immunohistochemistry staining in normal lung and SCLC tissues.
Representative images, 40X magnification; (A) No staining in normal lung (cells showing 

immunoreactivity are hemosiderin-laden macrophages). (B) Negative staining in SCLC. (C) 

Weak staining in SCLC. (D) Moderate staining in SCLC. (E, F) Strong staining in SCLC. 

(G) Comparison of PD-L1 and B7-H6 positive staining in SCLC tumors. Line represents 1% 

tumor positive IHC staining. (H) Stratification of SCLC tumors into B7-H6low (n=19) and 

B7-H6high (n=20) based on median expression (24.3%). ****, P < 0.0001; SCLC, small cell 

lung cancer.
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Figure 4: Overall survival (OS) and progression-free survival (PFS) in B7-H6high and B7-H6low 

patients with SCLC.
Kaplan-Meier estimates of (A) OS and (B) PFS in patients with SCLC according to low or 

high B7-H6 expression. Kaplan-Meier estimates of PFS limited to only patients who 

received systemic therapy with (C) limited-stage or (D) extensive-stage SCLC. SCLC, small 

cell lung cancer; OS, overall survival; PFS, progression-free survival; HR, hazard ratio; LS, 

limited-stage; ES, extensive-stage.
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Figure 5: Correlation of B7-H6 and immune signature in SCLC tumors.
(A) Quantification of tumor-infiltrating immune cells (CD45+) in B7-H6low (n=3) and B7-

H6high (n=5) primary lung SCLC tumors and (B) representative images showing nuclei 

(blue) and CD45+ infiltration (green); scale bar, 100 μm. (C) Relative abundance of immune 

cell populations determined by CIBERSORTx34 methodology in B7-H6low (n=20) and B7-

H6high SCLC tumors (n=20). (D) Quantification of CD8+ and CD4+ T cells, and B cells in 

B7-H6low (n=3) and B7-H6high (n=5) primary lung SCLC tumors. SCLC, small cell lung 

cancer.
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Table 1.

Correlation Between B7-H6 Expression and Clinicopathologic Parameters of Patients With SCLC

Tumor B7-H6 Positive %

Clinical Parameters Cases < Median (B7-H6low) ≥ Median (B7-H6high) Chi-Square p Value

Median survival (range) 39 7.65 mo (1.44-85.53) 15.86 mo (0.10-51.20) – 0.4576

Gender

 Male 18 5 13 5.867 0.0154
a

 Female 21 14 7

Age at diagnosis

 < 65 y 25 11 14 0.6205 0.4309

 ≥ 65 y 14 8 6

Stage at diagnosis

 Limited-stage SCLC 18 7 11 1.293 0.2556

 Extensive-stage SCLC 21 12 9

Stage at biopsy

 Limited-stage SCLC 14 5 9 1.216 0.2241

 Extensive-stage SCLC 25 14 11

Site of biopsy

 Lung 16 5 11 3.327 0.1895

 Lymph node 8 5 3

 Other
b 15 9 6

Distant metastases

 M0 18 7 11 1.293 0.2556

 M1 21 12 9

Survival time

 <1 y 24 14 10 1.520 0.1286

 ≥ 1 y 15 5 10

Response to first-line therapy

 CR 9 3 6 2.272 0.5180

 PR 13 8 5

 Stable disease 3 2 1

 POD 8 5 3

 Did not receive therapy 5 1 4

 Data not available 1 0 1

a
Signifies p < 0.05.

b
Liver, bone, brain, neck, bowel, and adrenal.

CR, complete response; PR, partial response; POD, progression of disease.
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