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SUMMARY

Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the 

establishment of distinct physiological environments. However, the genetic determinants 

contributing to the stability and variation of these microbiome types remain largely undefined. 

Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation 

among wild strains of C. elegans strains that drives assembly of distinct microbiomes. To achieve 

this, we first established a diverse model microbiome that represents the strain-level phylogenetic 

diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. 
elegans utilizes immune, xenobiotic and metabolic signaling pathways to favor the assembly of 

different microbiome types. Variations in these pathways were associated with enrichment for 

specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant 

strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin 

signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and 

modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and 
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PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is 

correlated with faster animal growth rates and larger body size at the end of development. These 

results highlight a new role for the highly conserved insulin signaling pathways in the regulation 

of gut microbiome composition in C. elegans.
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INTRODUCTION

Across kingdoms, shifts in microbiome composition accompany and contribute to host 

development, health, and physiology 1–3. Along with diet and lifestyle, host genetics can 

regulate the size and composition of the microbiome 4–7. This is apparent in human diseases 

with altered microbiome composition such as inflammatory bowel disease and obesity 6. 

While predicted host polymorphic loci for the development of these diseases have been 

identified 8, the directionality of impact or molecular mediators remain ill-defined for most 

cases. Thus, there is a great need to identify causal genetic host determinants that contribute 

to the stability and variation of microbiome types in order to effectively develop microbiome 

interventions as potential therapies.

To address this problem, we used wild strains of the nematode Caenorhabditis elegans and 

established a new diverse 63-member model microbiome, termed ‘BIGbiome’, that better 

represents the phylogenetic and functional diversity of the C. elegans wild microbiome. This 

system proves several key advantages. C. elegans itself has a transparent body plan and 

robust genetic toolbox, and its short lifespan and amenability to high-throughput methods 

increase experimental throughput 9,10. C. elegans also shares many conserved pathways with 

higher organisms that could regulate microbiome recruitment, including metabolic, stress 

and innate immune pathways 11–13. Yet, it has been difficult to determine which of these 

pathways may contribute to microbiome community outcomes because much of our current 

understanding comes from decades of studies of the C. elegans lab strain N2-Bristol in 

association with Escherichia coli or human pathogens 14. By contrast, wild C. elegans strains 

encounter a large variety of microbes and selectively recruit only some of these from the 

environment to form its gut microbiome 15–17. Thus, probing host genetics with a 

representative natural microbial community may more completely reveal causal host 

determinants that contribute to microbiome outcomes.

We make progress towards this goal here. We present the most comprehensive examination 

to date of the causal influence of C. elegans natural genetic variation on the establishment of 

its gut microbiome. To achieve this, we utilized our newly developed model microbiome to 

test natural variation in its acquisition by a panel of nearly 40 ‘germ-free’ wild strains of C. 
elegans 18. We found that these strains selected for and acquired one of only three distinct 

types of gut microbiomes: (i) one dominated by Ochrobactrum, (ii) another dominated by 

Bacteroidetes, and (iii) one similar in composition to the bacterial lawn. Selection of these 

microbes was robust and consistent within the host strain, suggestive of a deterministic 
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process driven by host genetic variation. To probe this variation, we conducted phenotypic, 

genetic and transcriptional profiling of wild strains representative of each microbiome type. 

This analysis revealed fundamental differences in host immune, stress and metabolic 

responses specific for the acquisition of each microbiome. Genetic loss of function studies 

further reveal a key role for insulin signaling pathways in microbiome regulation. In 

particular, we identify a previously uncharacterized role for insulin signaling in wild strains 

of C. elegans in the promotion of selective acquisition and maintenance of the gut 

microbiome via a DAF-2/PQM-1 pathway. Finally, we find that the ability of particular host 

genetic backgrounds to acquire a given microbiome directly influences host health fate. 

Higher levels of insulin signaling and broad activation of immune pathways promoted 

intestinal acquisition of otherwise rare Ochrobactrum from the bacterial lawns, and this was 

associated with faster growth rates. In contrast, low levels of insulin signaling activated non-

selective stress responses and resulted in gut microbiomes that resemble the lawn and were 

associated with lower rates of host growth. Together, these studies both establish wild C. 
elegans and their natural microbes as a robust microbiome system and identify novel roles 

for host insulin signaling in regulation of gut microbiome composition.

RESULTS

Establishment of a diverse and representative gut microbiome of C. elegans.

Effective identification of host genes that drive assembly of distinct microbiomes requires a 

diverse model microbial community that closely resembles the variation a host may 

encounter in the wild. We reasoned that such a community should be: (i) reflective of the 

major microbial taxa found in natural microbiomes of wild C. elegans; (ii) highly 

functionally redundant; and (iii) easy to use and create in the lab. To achieve this, we 

expanded on previous analyses of the core microbiome of wild C. elegans populations 19 and 

selected bacterial strains from our collections (>500 strains) that matched the 14 core 

families of the C. elegans microbiome— Enterobacteriaceae, Pseudomonadaceae, 
Xanthomonadaceae, Sphingomonadaceae, Sphingobacteriaceae, Flavobacteriaceae, 
Weeksellaceae, Acetobacteraceae, Moraxellaceae, Oxalobacteraceae, Comamonadaceae, 
Rhodobacteraceae, Microbacteriaceae, and Actinomycetales. The resulting community, 

termed BIGbiome001 (referred to as ‘BIGbiome’ hereafter), comprises 63 strains from 23 

genera (10 of 14 core families). Together, it represents 50–80% of the biomass in natural 

microbiomes of wild C. elegans [Table 1; see strain origins in Data S1AA; Figure S1A–B]. 

We also sought to model the functional redundancy observed in natural communities by 

including several taxonomically related bacterial strains from distinct wild C. elegans strains 

or habitats (range of 2–22 strains). BIGbiome complements simplified microbiomes like the 

recently developed 12-member CeMbio community 20 as it reflects the extensive strain level 

microbial diversity found in C. elegans natural microbiomes while still remaining 

experimentally tractable.

Development of distinct gut microbiome types in adult C. elegans

We next tested the robustness of the BIGbiome community for microbiome studies by 

profiling how it is acquired in the lab strain (N2) and a wild C. elegans strain (JU1218). To 

achieve this, we established a phenotyping pipeline for microbiome-based measures that 
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include gut colonization density and composition [Figure 1A]. These methods allow for 

high-throughput determination of both the levels of overall bacterial colonization and 

proportions of bacteria that colonize the C. elegans gut. In this approach, strains are first 

made ‘germ-free’ by bleaching eggs followed by synchronization at the L1 stage. L1 

animals are then exposed to the BIGbiome community (proportional mixture of each strain) 

on agar plates and monitored over their development and into adulthood. Using this 

approach, we found that appreciable C. elegans gut colonization could not be observed until 

day 1 of adulthood (48 hours post-L1). Differences between N2 and JU1218 host strains 

were observed by day 3 of adulthood and appeared to stabilize at that time [Figure S1C–D]. 

These results are consistent with previous studies of bacterial colonization of the C. elegans 
N2 intestine by E. coli 21. For these reasons, we chose days 1 and 3 of adulthood for further 

studies.

To assess the impact of host genetic variation on microbiome selection, we next used a 

genetically tractable but diverse host community. We selected 38 well characterized, fully 

genome sequenced and genetically distinct C. elegans strains 18 [Table S1]. Together with 

the lab strain (N2), these wild strains were first made ‘germ-free’ by bleaching eggs, and 

synchronized L1 animals were exposed to the BIGbiome community on agar plates. 

Animals from each strain were collected in bulk as adults at early (day 1) and later (day 3) 

stages of microbiome establishment and then assayed for differences in microbiome 

composition and gut colonization density. All of the worm strains exhibited both low levels 

of colonization and a comparable, lawn-like composition of their gut microbiomes at day 1 

[Figure S2]. By day 3 of adulthood, however, the gut microbiomes became largely distinct 

from the surrounding bacterial lawn, and hosts exhibited up to a 30-fold range in levels of 

colonization [Figure 1, Figure S2].

We next asked whether particular microbiome representations were favored more than 

others. We performed weighted UniFrac-based clustering of the animals by microbiome 

types on day 3 of adulthood and found that gut microbiome composition robustly separated 

into three microbiome types. Clustering was driven by dominant microbial taxa, and we 

termed the host clusters as Type 1, 2, or 3 [Figure 1A–B, Figure S4A–B]. The Type 1 hosts 

contained the largest group of C. elegans strains, harboring 28 strains. Notably, these strains 

were dominated by Ochrobactrum pituitosum BH3 [>40% relative abundance; Figure 1B], a 

microbe previously identified as a common beneficial member of the C. elegans microbiome 

in the wild 22–24. The microbiomes of Type 2 strains (lab strain N2 and four wild strains) 

were dominated by several Bacteroidetes taxa (e.g., Myroides, Chryseobacterium and 

Sphingobacterium). These animals displayed reduced levels of Ochrobactrum in the gut [10–

40% relative abundance; Figure 1B] and higher levels of gut colonization overall [2 to 30-

fold higher than Type 1 or Type 3 strains; Figure 1C, Figure S2C]. Type 3 animals (five wild 

worm strains) were nearly devoid of gut Ochrobactrum and instead were dominated by high 

levels of Bacteroidetes, Pseudomonas and Stenotrophomonas [Figure 1B]. Overall, the 

microbiome of Type 3 strains resembled that of the bacterial lawn [Figure 1C, Figure S4]. 

Analyses of overall gut microbiome alpha-diversity within samples indicates that the 

dominance of Ochrobactrum in the Type 1 strains had a tempering impact on microbiome 

diversity [Faith’s phylogenetic diversity of 6.3±0.9 in Type 1 vs. 8.9±0.7 in Type 3; Figure 

S4C]. Enrichment of otherwise rare microbes like Ochrobactrum from the lawn in the gut 
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microbiome also increased beta-diversity between samples. The highest enrichment 

differential between the host microbiome composition relative to the lawn was observed for 

Type 1 animals, with more moderate enrichment observed in Types 2 and 3 [Figure 1C, 

Figure S4D].

We next capitalized on the inherent transparency of C. elegans to assess microbial 

enrichment on a single animal basis in order to examine individual variation within a given 

host strain. To accomplish this, we created BIGbiome mixtures where Ochrobactrum BH3 
was replaced by an isogenic GFP-expressing strain. Both microscopy- and large particle 

flow cytometry (Biosorter)-based analyses supported our finding that Ochrobactrum 
enrichment was greater in individuals from Type 1 strains (CB4856), particularly when 

compared to Type 3 animals (ED3017) that have limited Ochrobactrum colonization 

[P<0.0001; Figure 1DE]. Type 2 animals (N2 or LKC34) exhibited a broader distribution of 

Ochrobactrum levels on a per animal basis [Figure 1E]. This may be due to an inherent 

stochasticity in microbial levels and composition during the colonization process, as has 

been shown for the lab strain of C. elegans (N2) under certain conditions 25. Together, our 

results highlight three robust modes of microbiome regulation by host strains that vary in 

their selectivity for the microbes that colonize and their relative levels within the gut.

C. elegans natural genetic variation is associated with adult microbiome composition

Through our analysis of these microbiome communities, we found that the majority of the 

strains within the BIGbiome community colonized the guts of at least two independent 

worm strains [91.6%, 55 strains]. For example, Enterobacteriaceae exhibit significant 

genomic plasticity and are common in wild C. elegans microbiomes 19,26. Though resolution 

of this family in our samples is limited due to high identity of small subunit (SSU) rRNA 

genes, Enterobacteriaceae were consistent colonizers as a group (5–10% relative 

abundance). Other consistent colonizers included Pseudomonas, Stenotrophomonas, and 

Comamonas; the rarer Leucobacter was also enriched 30–60 fold in the worm gut relative to 

the bacterial lawn [Data S1AB]. Meanwhile, we also observed those that exhibit more strain-

specific or stochastic colonization of the C. elegans gut [Figure 2A–B; Data S1AB]. The 

assemblages and proportions of microbes observed in each worm strain were unique.

To explore the potential for specific natural variation in host genetics in driving the selection 

of particular microbiome communities, we used the extensive genomics resources available 

through the Million Mutation Project for our wild C. elegans panel [>3.8M single nucleotide 

variants, ~65,000 missense mutations versus N2 reference genome 18. We performed GWAS 

analyses (see Methods) to identify regions of the genome associated with taxa abundance, 

colonization level, alpha diversity and beta diversity as trait values per strain. We identified 

several regions that were associated with taxa abundance of Chryseobacterium, 

Enterobacteriaceae, Gluconobacter, Acinetobacter, Curtobacterium and Leucobacter across 

host strains [17–56% variance explained per taxa (relative and/or absolute abundance); 1308 

total genes in 9 loci; Figure 2C–D; see full list in Table S2]. As a whole, nine loci were 

enriched for genes with previously unknown functions [419 genes; Q=0.0039; WormCat tool 
27], suggesting that microbiome studies may help ascribe phenotypes for these genes and the 

40% of the genome that remains without ascribed functions no doubt due to limited 
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exposure its microbes 22. Notably, the most significant overlap between the loci was 

observed for genes that are upregulated in insulin receptor (daf-2/IGFR) mutants [316 genes; 

Q=1.3e-32 to dataset 28; WormExp tool 29]. Together, these analyses indicate that natural 

genetic variation may drive microbiome compositional differences.

C. elegans growth rates and body size correlate with adult microbiome composition.

We next examined representative C. elegans strains from each microbiome type for changes 

in growth rates or body sizes after development. Each of the strains were grown on agar 

plates containing either BIGbiome or E. coli OP50 lawns from L1 until adulthood (46–

58hrs). Notably, all strains tested exhibited faster growth rates on the BIGbiome community 

compared to those grown on E. coli OP50 alone [Figure 3A–B]. The extent of the growth 

promotion did differ by microbiome type, however. Type 1 strains (JU1400) exhibited 75% 

faster growth versus 65% and 40% for Type 2 and 3 strains, respectively [Figure 3A–B]. 

Type 3 (ED3017) animals were also significantly smaller than the other microbiome types 

after 48hrs of development, although these differences did normalize by day 3 of adulthood 

[Figure 3C, Figure S4A]. Both faster developmental growth rates and/or larger body sizes at 

the L4 stage correlated with higher gut colonization of Ochrobactrum [Pearson of 0.74 and 

0.49, respectively, P<0.002; Figure 3D–E] and lower Enterobacter [~3% relative abundance; 

Pearson of 0.45 with body size only, P<0.005] and Leucobacter colonization [~5% relative 

abundance; Pearson = 0.49 with growth rate only, P<0.005; Table S3]. Conversely, slower 

growth rates and smaller body size were associated with more permissive colonization by 

nine other genera: Bacteroidetes (Chryseobacterium and Myroides), Betaproteobacteria 

(Limnohabitans, Ramlibacter, and Delftia), Gammaproteobacteria (Acinetobacter and 

Stenotrophomonas), and Actinobacteria (Arthrobacter and Curtobacterium) [P<0.05; Table 

S3]. No significant correlations were observed between the overall gut microbiome load and 

either growth rates or body size [Figure S4B–C]. These results indicate that the microbiome 

can influence host growth and development and may drive acquisition of a selected 

microbial community in adulthood.

Type 1 animals express a broad repertoire of microbial response pathways to create 
selectivity.

To more specifically identify the host signaling networks regulating selection of the gut 

microbiome, we transcriptionally profiled the host responses to colonization of a panel of 

representative C. elegans strains from each of the three microbiome types [Type 1, JU1400 

and ED3040; Type 2, N2, LKC34, and CB4853; and Type 3, ED3017, MY14, and ED3042] 

[Figure 4A, Data S1AC]. At day 3 of adulthood, we observed a large set of differentially 

expressed genes between Types 1 and 3 [1507 higher in Type 1 (‘Type 1 Up’), 1706 higher 

in Type 3 (‘Type 3 Up’); Figure 4B, Data S1AC], consistent with the differences in 

microbiome composition between these strains. We first tested for correlations between 

transcript and taxa abundance across all of the C. elegans strains. We identified 2844 genes 

that were differentially expressed by microbiome type and significantly correlated with taxa 

abundance of one or more microbes [Figure 4C]. Interestingly, Ochrobactrum-correlated 

genes dominated the taxa-specific signatures, and genes that were positively correlated with 

Ochrobactrum were negatively correlated with Bacteroidetes Myroides (259 genes) and vice 

versa (857 genes). Smaller subsets of genes were correlated with the abundance of 16 other 
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taxa, and these genes sets were largely distinct from those of Ochrobactrum and Myroides 
[Figure 4C]. These data could indicate that similar transcriptional networks coordinate the 

enrichment Ochrobactrum and the exclusion of Myroides. To begin to identify the function 

of these and other host genes that were upregulated in association with particular microbial 

communities, we used the WormExp tool 29. We observed broad increases in expression in 

genes involved in three main pathways: microbial and immune response, general stress 

response, and insulin signaling [Figure 4D–G].

Microbial response pathway genes varied significantly between the strain groups. We found 

that genes more highly expressed in Type 1 animals were broadly enriched in genes altered 

in response to a wide array of microbes [60.4% (81/134 datasets) for ‘Type 1 Up’ versus 

42.9% (27/63 datasets) for ‘Type 3 Up’; Figure 4E–F]. Interestingly, ‘Type 1 Up’ genes 

overlap with those upregulated upon exposure to pathogens [Figure 4E] (e.g., B. 
thuringiensis, S. marcescens, E. faecalis, P. aeruginosa and others 30–32) while ‘Type 3 Up’ 

genes overlap more with those downregulated upon pathogen exposure [Figure 4F]. Though 

no pathogens are included in the BIGbiome, Type 1 animals seem to be using similar 

responses to related microbes to exclude most everything but Ochrobactrum from the gut. 

Consistent with this idea, ‘Type 1 Up’ genes overlap with 13 datasets of upregulated genes 

in response to the pathogen P. aeruginosa PA14 [162 genes in total; e.g., 39 genes from 33, Q 

= 1.8e-8]. Under these conditions, the twelve Pseudomonas strains in the BIGbiome are 

excluded from the guts of Type 1 animals [1.2% relative abundance compared to 6.4% and 

7.4% for Type 3 and lawns, respectively]. Further, several canonical C. elegans immune 

effectors from multiple pathways 34 were expressed more highly in Type 1 animals [Figure 

4I, Data S1AC]— e.g., irg-5 [2.81-fold and Pearson=0.75 to Ochrobactrum; p38/MAPK and 

FSHR-1], lys-5 [2.80-fold; Wnt/β-catenin and HLH-30/TFEB], and irg-2 [2.9-fold; ZIP-2]. 

These specific responses are likely to promote Ochrobactrum colonization in the process. In 

contrast, more limited immune pathway expression was observed in Type 3 animals which 

instead more highly express general stress-related pathways [Figure 4I–J, Data S1AC]— 

e.g., gcn-1 [3.2-fold; SKN-1/Nrf2, oxidative stress] and hsp-6 [2.4-fold; ATFS-1, unfolded 

protein stress]. Type 3 animals did express a subset of c-type lectins more significantly than 

the other microbiome types [Figure 4I]. Thus, Type 1 animals appear to employ a suite of 

immune pathways in parallel to create the highly selective environment within the gut for 

Ochrobactrum colonization, which are largely absent in Type 3 animals.

Transcriptional variation in insulin signaling networks distinguish microbiome types

Among the pathways enhanced in the microbiome types, we observed a particular 

enrichment for insulin signaling. Both ‘Type 1 Up’ and ‘Type 3 Up’ gene sets were highly 

enriched for DAF-2- and/or DAF-16-dependent genes, though overlap was more extensive in 

Type 1 animals [47 datasets for ‘Type 1 Up’ and 20 datasets for ‘Type 3 Up’; both high- and 

low-insulin conditions observed; Figure 4C–D]. In addition, the vast majority of the 

microbially responsive genes identified above are also associated with changes in insulin 

signaling pathways in the lab strain N2 [1066 genes (80%) in Type 1 versus 464 genes 

(46%) overlap with insulin signaling datasets; Data S1AC, Figure 4C–D]. Interestingly, the 

enrichment observed for ‘Type 1 Up’ genes have been associated with both low- and high-
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insulin signaling conditions in the lab strain N2, which may reflect plasticity in gene 

expression driven by natural genetic variation in these wild strains.

To more clearly gauge the insulin signaling balance in these animals, we examined the 

expression of the nearly 40 insulin-like peptides (ILPs) that compete for binding of DAF-2/

IGFR. The mixture of ILPs serves to activate (agonists) or repress (antagonists) downstream 

insulin signaling pathways to provide phenotypic specificity and coordination of responses 

across tissues 35,36. There was a notable shift in ILP expression between Type 1 and Type 3 

animals: 9 of the 40 ILPs were expressed significantly higher in Type 1 strains compared to 

minimal ILP expression in Type 3 strains [Figure 4H]. Type 2 animals expressed 

intermediate levels and a mix of agonist and antagonist ILPs, consistent with the 

intermediate expression of insulin pathway genes [Figure S6A]. Nearly all of the genes in 

the canonical insulin signaling pathway, including daf-2/IGFR, age-1/PI3K, akt-1/AKT, 
daf-18/PTEN and daf-16/FOXO were expressed higher in Type 3 than Type 1 animals 

[Figure S6A].

Insulin signaling pathways drive microbiome composition and its impact on host 
physiology.

We next sought to test directly whether host insulin signaling mediates microbiome selection 

and its resulting effects on host physiology. To do this, we used RNAi to knock down daf-2/
IGFR and daf-16/FOXO gene expression in representative strains for each microbiome type: 

Type 1, JU1400; Type 2, N2; and Type 3, ED3017. If high levels of insulin signaling 

positively select for Type 1 microbial communities, then reducing the activation of these 

pathways may result in these hosts adopting communities and host physiological attributes 

that more closely resemble those in Type 3 strains. Indeed, this is what we observed. 

Knockdowns of daf-2 resulted in slower development [Figure S5AB] and reduced body size 

in JU1400 [Figure S5C] when grown on BIGbiome lawns versus vector controls. 

Conversely, knockdowns of the transcription factor daf-16/FOXO generally accelerated 

development [Figure S7A,B] and increased animal body size [Figure S5C]. In Type 2 

animals (N2), we observed lower Ochrobactrum colonization in daf-2 RNAi (P<0.001) and 

higher in daf-16 RNAi, as shown via microbiome sequencing and fluorescence 

quantification of GFP-Ochrobactrum [P<0.001, Figure 5A–C]. The impact of these 

knockdowns was most dramatic in Type 1 and 3 strains: daf-2 RNAi reduced the recruitment 

of Ochrobactrum in Type 1 (JU1400) animals by 30–50% compared to vector controls 

[P<0.001, Figure 5A–C], while daf-16 RNAi increased Ochrobactrum colonization by more 

than 20-fold in non-selective Type 3 animals (ED3017) [P<0.001, Figure 5A–C].

Since Type 2 animals are intermediate in their selectivity for Ochrobactrum, we next sought 

to test whether Type 2 insulin signaling mutants exhibit altered phenotypic responses 

reflective of other microbiome types. Loss-of-function mutants of the insulin peptide 

receptor daf-2(e1370) in the lab strain (N2) mimic low agonist insulin levels. On BIGbiome 

lawns, daf-2/IGFR mutants exhibited Type 3-like developmental delays and smaller body 

size compared to wild type animals [P<0.001; Figure S5D–E]. The daf-2/IGFR mutants had 

lower Ochrobactrum colonization at the population level by microbiome sequencing 

[P<0.001; Figure 5E] and at individual level by fluorescence quantification of GFP-
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Ochrobactrum [P<0.001; Figure 5G]. Conversely, loss-of-function mutants of the 

downstream transcription factor daf-16(mgDf50) developed much faster, had larger body 

sizes in early adulthood [P<0.001; Figure S5D–E], and had greater Ochrobactrum 
colonization [P<0.001, Figure 5D–G]. Finally, double-mutants of daf-16;daf-2 increased 

Ochrobactrum colonization by one-third compared to daf-16 mutants [P<0.001; Figure 5D–

G], suggesting other potential regulators may be acting in the low insulin signaling 

conditions to suppress Ochrobactrum colonization. Together, these data indicate that under 

low insulin signaling, DAF-16 regulated processes either limit Ochrobactrum colonization or 

fail to effectively exclude other microbiome members.

To test the generalizability of these responses, we then expanded our RNAi analyses to both 

additional representative strains [ED3042 (Type 3), CB4856 (Type 1) and N2 (Type 2)] and 

additional genes in the canonical insulin signaling pathway. We observed that RNAi-

mediated knockdown genes that activate the insulin signaling like daf-2/IGFR, age-1/PI3K 
and akt-1/AKT all reduced Ochrobactrum colonization levels in Type 1 and 2 animals 

[Figure S6C]. Conversely, knockdowns of akt-2/AKT and pathway suppressor daf-18/PTEN 
increased Ochrobactrum colonization [Figure S6C] in Type 2 and 3 animals, which is a rare 

phenotypic separation of the largely redundant AKT orthologs. Further, through RNAi of 

each of the 20 insulin-like peptides in the intestine of Type 2 (N2) animals, we identified 

increased Ochrobactrum colonization for 6 of the 9 antagonist ILPs [ins-1, −11, −18, −21, 
−24, −31; P<0.001, Figure S6B]; many of these are upregulated in daf-2 mutant background 
37. Together, these data indicate that subsets of canonical insulin signaling pathways regulate 

microbiome composition and, in turn, impact host physiology and growth.

Interplay of downstream insulin signaling transcription factors drives microbiome 
regulation.

We next sought to determine what genes in the insulin signaling regulons influence 

microbiome composition. To achieve this, we examined two mutually exclusive transcription 

factors known to orchestrate insulin signaling in C. elegans, DAF-16/FOXO and PQM-1/

SALL2. PQM-1 has also previously been associated with regulation of both development 

and immunity into adulthood 38,39. To directly test its role in regulation of the microbiome 

we knocked down pqm-1 by RNAi in representative strains of each microbial community 

type: JU1400 (Type 1), N2 (Type 2) and ED3017 (Type 3). We observed significantly 

delayed development and reduced body sizes on BIGbiome in Type 1 animals [P = 0.02 and 

0.004, respectively; Figure 6A–B]. Consistent with the effect on development, we observed 

a decrease of Ochrobactrum colonization after pqm-1 knockdown by RNAi [P<0.001; 

Figure 6E–F]. Knockdowns of pqm-1 in Type 2 (N2) and Type 3 (ED3017) animals showed 

similar but non-significant decreases in developmental rates [Figure S7A–B], and the 

already low levels of Ochrobactrum colonization were decreased to the limit of detection for 

both strains [Figure S7C].

To further dissect the genetic interaction of pqm-1 with daf-2 and daf-16, we knocked down 

pqm-1 in daf-2(e1370) mutants by RNAi and observed significantly slower developmental 

rates [40% less, P<0.001; Figure S7D] and reduced body sizes [13%, P<0.001; Figure S7E], 

but Ochrobactrum colonization remained similar to the empty vector at a low level. RNAi 
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knockdown of pqm-1 in daf-16(mgDf50) mutants also delayed development by 10% 

[P<0.001; Figure 6C] and significantly lowered Ochrobactrum colonization compared to the 

empty vector [Figure 6E,G]. These data suggest that pqm-1 promotes Ochrobactrum 
colonization independent of daf-16.

Finally, we examined the transcriptional networks themselves based on promoter binding 

elements for each of these transcription factors. DAF-16 activates genes that contain a 

DAF-16 binding element (DBE; Class I) under stressful or low insulin conditions, while 

PQM-1 activates genes under favorable or high insulin conditions containing the DAF-16 

associated element (DAE; Class II) 38. Analysis of the transcriptional datasets identified 170 

(10.2%) Class I and 219 (12.6%) Class II genes that were differentially regulated between 

Types 1 and 3. WormCat analyses of these genes highlighted two very different responses in 

Type 1 and Type 3 animals. The Class II genes from the ‘Type 1 Up’ set [Figure 6H] are 

enriched for multiple detoxification and immune responses against pathogens, including 

cytochrome P450 genes (cyp-13A3, cyp-32A1, cyp-25A1), which can metabolize toxic 

compounds, and c-type lectins (clec-57, clec-49, clec-204), which are involved in 

antimicrobial immunity 40 . In contrast, the Class I genes from the ‘Type 3 Up’ set are 

enriched for general oxidative and heat stress responses rather than pathogen specific 

responses. Metabolism categories also differed between Types 1 and 3, with Type 3 

enrichment for glycolysis, lipid (fatty acid and phospholipid), short chain dehydrogenase, 

and carbohydrates. Favorable insulin signaling may therefore promote the selection of more 

specialized microbial communities via regulation of immune and xenobiotic response genes 

that may help establish a selective environment for Ochrobactrum to colonize the gut. We 

further compared PQM-1::GFP and DAF-16::GFP reporter strains grown on BIGbiome and 

E. coli OP50. We observed both greater PQM-1::GFP expression and nuclear localization 

[Figure 6IJ] for adults grown on BIGbiome than on E. coli OP50, while DAF-16::GFP 

expression also increased but no differences in nuclear localization were observed. Together, 

our results suggest higher insulin signaling activates PQM-1 to promote microbial specific 

immune response in microbiome selection from the environment, while lower insulin 

signaling levels drive DAF-16 mediated broad stress responses that suppress microbiome 

selection.

DISCUSSION

Insulin signaling shapes the microbiome landscape in C. elegans.

C. elegans flourish in natural habitats of rotten fruit and plant matter, an environment with 

abundant and diverse microbes. They rapidly respond to environmental fluctuation and 

adjust growth, defense and reproduction strategies to ensure their success in the wild. To 

learn more about the genetic circuits in microbiome response from this widely used model 

organism, we reunite wild C. elegans with microbial consortia isolated from their natural 

habitats. Although grown on the same microbiome mixture BIGbiome, 38 C. elegans strains 

established distinct gut microbiome types in adulthood. Wild C. elegans with faster growth 

and development showed stronger recruitment of Ochrobactrum, a commensal member of 

their core microbiome in nature. Transcriptomic analysis suggested host insulin signaling 

was driving establishment of the Ochrobactrum dominant gut microbiome. We used RNAi 

Zhang et al. Page 10

Curr Biol. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knockdowns and mutants to confirm that IIS modulates the Ochrobactrum-driven 

microbiome type variation through downstream transcription factors of DAF-16/FOXO and 

PQM-1/SALL2.

Insulin signaling mediated selection of Ochrobactrum dominates among wild C. elegans 
strains.

The influences of highly conserved insulin signaling pathways are found in nearly all 

aspects of animal physiology, including development, fertility, stress resistance and 

longevity 41–43. Our findings underscore a distinct role for insulin signaling in establishing a 

selective environment for microbiome enrichment among Type 1 strains. Insulin-like 

peptides (ILPs) represent the most upstream components of insulin signaling and we show 

that they act in the intestine to mediate the microbiome composition. ILPs are important in 

regulating the balance energy expenditure in growth, reproduction, and defense as a function 

of animal age 35, suggesting their critical roles in modulating insulin signaling during 

adulthood and coordinating across tissues activities. INS-7 is an agonist of DAF-2/IGFR and 

is regulated by DAF-2/IGFR and DAF-16/FOXO in the intestine to provide positive 

feedback regulation in coordination of animal physiology across tissues 35,37. Thus, we 

hypothesize that the observed high expression of ins-7 and other ILPs in Type 1 keeps 

DAF-16 activity low to prevent overstimulation of general stress responses, or indiscriminate 

microbial response leading to commensal exclusion. On the other hand, antagonistic ILPs 

like ins-11 could suppress host insulin signaling to reduce host selection of commensals, 

forming the microbiome Types 2 and 3 we observed. While the differences in ILPs 

landscape are likely driven by natural variation among wild worms, it is also possible that 

the BIGbiome community may shape ILP production, as some studies have found pathogen 

infections induced antagonist ins-11 expression 44.

Downstream of DAF-2/IGFR there two orthologs of the AKT are observed in C. elegans, 

akt-1 and akt-2, which act redundantly to regulate most physiologic processes in part by 

preventing DAF-16 nuclear localization 45. Surprisingly, we observed different responses in 

Ochrobactrum colonization when akt-1 and akt-2 were knocked down. Although both 

AKT-1 and AKT-2 are activated by insulin signaling, they may compensate each other since 

dauer-c phenotype requires knockdown of akt-1 and akt-2 simultaneously 46. Thus, it is 

possible that knocking down akt-2 promotes akt-1 expression in Type 2 and Type 3 animals, 

thus promoting Ochrobactrum colonization in Type 2 and 3 animals. Some studies have 

indicated individual roles for akt-1 and akt-2 in regulation of lifespan and reproduction in C. 
elegans 47,48. Therefore, the roles of akt-1 and akt-2 in differentially regulating microbiome 

deserve further investigation.

Insulin signaling-regulated PQM-1/SALL2 activates downstream targets by binding DAE 

promoter elements 49, likely contributing to gut microbiome selection. In the Ochrobactrum-

dominant microbiome Type 1, up-regulated PQM-1 targets are enriched in host immune 

response genes, including C-type lectins and antimicrobial peptides 50. C-type lectins are 

known to recognize microbial molecular patterns, implying their roles in bacterial specific 

immunity 40. Antimicrobial peptides like the saposin genes spp-2 and −5 have been shown 

to be induced by Ochrobactrum MYb71 colonization 23. In addition, the Ochrobactrum-
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dominant microbiome type is associated with elevated xenobiotic response gene families 

like CYP, GST, and UGT. These enzymes can detoxify microbial products and act as a sink 

of reactive oxygen species (ROS), thus reducing oxidative stress for cellular protection and 

maintenance. Taken together, elevated insulin signaling in Type 1 strains may establish a 

suitable gut environment for increased colonization of commensal microbes, establishing an 

Ochrobactrum-dominant microbiome type in adulthood.

Trade-offs in microbiome regulation in wild C. elegans with reduced insulin signaling.

Our studies indicate that Type 3 strains with reduced insulin signaling upregulated broad-

spectrum stress responses that limit microbiome colonization, but also abolished the ability 

to select commensals from the environment. Without selection, Type 3 gut microbiomes 

mirror the lawn in composition. The non-selective microbiome Type 3 also mimics the long-

lived daf-2 mutant in higher expression of catalase genes, as well as mitochondria and ER 

stress markers like hsp-4 and hsp-6 43,51. Other signatures of daf-2 mutants include shift of 

lipid metabolism and reduced brood size. Similarly, Type 3 strains increased the expression 

of mitochondrial β-oxidation genes like acdh-2 and glycogen synthesis genes like gsy-1, 

indicating a switch from lipid metabolism to carbohydrate storage. In addition, transcription 

factors (lin-11, lin-13b, mep-1) that negatively regulated reproduction were highly expressed 

in non-selective Type 3 strains and, suggesting a reduced investment in reproduction. As the 

worm ages, reduced insulin signaling during adulthood activates DAF-16 dependent immune 

response to defend against microbes, compensating for the immune-senescence in other 

protective pathways like the MAP kinase 52. Although reduced insulin signaling provides 

benefit to the host in pathogen resistance and lifespan extension, the trade-off in adulthood 

might be loss of commensal colonization and reduced reproduction. Interestingly, increased 

fertility was observed in C. elegans colonized by Ochrobactrum, driven by genes with 

enriched GATA motifs 23. Since GATA-like sequences are overrepresented in PQM-1 

activated DAE genes, therefore it is possible that PQM-1 activates these Ochrobactrum-

responsive genes in adulthood, boosting commensal recruitment for the benefit of enhanced 

host reproduction or because of concomitant impacts on reproduction. The evolutionary 

benefits of microbiome selection in long term phenotypes like lifespan and healthspan 

remain to be explored.

Potential for microbiome modulation of insulin signaling networks in C. elegans

The gradient of Ochrobactrum colonization among wild strains reflects their various degrees 

of insulin signaling activation. There are a large number of SNPs that contributed to intrinsic 

natural genetic variation in the insulin signaling regulatory network among wild worm 

strains 53, many were found in our microbiome GWAS analysis and are differentially 

expressed in insulin receptor (daf-2/IGFR) mutants. The fact that prior to colonization as 

adults C. elegans grew and developed faster on the BIGbiome community versus E. coli 
OP50 suggests that it may stimulate host insulin signaling that accelerated their growth and 

development. PQM-1/SALL2 has been shown to influence developmental growth rates 38, 

and may therefore be responding to these BIGbiome cues both in development and in 

adulthood. Gut microbes have been shown to engage insulin signaling pathways in several 

other animals, including hydra, Drosophila, zebrafish, mice, and humans 1,54–56.
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Further, individual natural microbes from this community have been shown to have a 

dramatic impact on the physiology and development of C. elegans as well 13,16. For 

example, many Alphaproteobacteria and Enterobacteriaceae strains generally promote 

growth, while most Bacteroidetes and Stenotophomonas strains delay the growth of N2 

worms 16,17. This could indicate either that Type 3 animals that have slower growth rates and 

higher levels of Bacteroidetes colonization due to impaired responses to these bacteria, or 

that Type 1 strains are more resistant and are therefore able to restrict their colonization. 

Taken together, microbial engagement of insulin signaling could potentially form a feed 

forward loop during development that could influence distinct microbiome composition in 

adulthood.

Broader signaling networks in regulation of the microbiome

Acting in the same direction of insulin signaling, TGF-β signaling was also up-regulated in 

the Ochrobactrum dominant microbiome Type 1 animals, likely the result of extensive 

crosstalk between the two pathways 57. TGF-β signaling from neurons and epidermis can 

activate ILPs secretion that feed into insulin signaling to modulate DAF-16 activities in the 

intestine 58,59. C. elegans TGF-β mutants dbl-1 were highly colonized by Enterobacter with 

enhanced pathogenicity when grown on a synthetic natural microbiome, and though these 

genes remain unchanged in our studies of this pathway in microbiome regulation 60.

Similar to DAF-16, transcription factor SKN-1 was also enriched in the intestine and acts 

downstream of insulin signaling as an AKT-1 phosphorylation target 61. Under reduced 

insulin signaling in the microbiome Type 3 strains, SKN-1 likely synergized with DAF-16 to 

induce oxidative and heat shock stress that suppress microbiome selection and colonization, 

which explained why daf-16;daf-2 double mutants only partially reduced Ochrobactrum 
colonization compared to daf-2 mutants. Interestingly, the longevity effect of SKN-1 was 

dependent on the type of E. coli strains, suggesting the pathway is under the influence of 

microbial content 62. SKN-1 may be also responsible for higher expression of collagen 

genes in microbiome Type 3, as these extracellular matrix (ECM) genes were known to up-

regulated by SKN-1 and play critical roles in pathogen defense as weakened cuticles were 

associated with increased susceptibility to Microbacterium nematophilum infection 63,64.

Prospectus

Animals have partnered with microbes throughout evolution to extend their genetic 

repertoire and metabolic capacity 65. This partnership is now deeply imprinted in animal 

physiology and the disruption of this commensal relationship can compromise animal 

health. Here, we presented a genetically tractable platform that integrates a natural 

microbiome with the rich molecular tools in C. elegans. Our results demonstrated that 

natural variation in insulin signaling drives microbiome selection, suggesting that the 

regulation of DAF-16/FOXO and PQM-1/SALL2 play major roles in the formation of C. 
elegans microbiome types. From the microbial side, increasing genomic information from 

natural microbiomes 20 will undoubtedly aid in discovery of microbial factors that engage 

host pathways like insulin signaling. Exposure to natural microbes and their products may 

help to ascribe phenotypes and functions to the over 40% of microbiome type enriched 

genes in the C. elegans genome, many of which have orthologs in other animals as well. In 
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addition, external factors like nutrients, temperature, pH, and liquid growth can modulate the 

metabolic state of C. elegans hosts and associated microbiome, contributing to shifting 

response in host signaling pathways like insulin signaling and altered outcomes of gut 

microbiome colonization 20,66,67. Ultimately, we believe that this system will allow for 

greater understanding of the interplay of host, microbial and environmental factors that 

regulate microbiome impact on broad aspects of host physiology.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Buck Samuel (buck.samuel@bcm.edu).

Materials Availability—All microbial strains and other materials used in these studies are 

available upon request.

Data and Code Availability—All datasets have been included as raw data [Data S1]. 

Sequencing based datasets have been deposited at NCBI Sequence Read Archive database 

(Bioproject PRJNA540192) with the following sample accession numbers for RNAseq reads 

(SAMN13050735–13050742) and microbiome sequencing reads (SAMN13068200–

13068238, 13071563–13071602, 16597785–16597833, 16611296–16611371, 17054579–

17054627). All code used in the analysis of datasets is available through the Bitbucket link, 

including those for overall microbiome compositional analyses 

(‘Microbiome_analysis_scripts.txt’), processing and analysis of RNAseq datasets 

(‘Kallisto_bbmap_bbduk_Script.txt’ and ‘DifferentialExpression_Script.txt’), correlation of 

microbial taxa with gene expression profiles 

(‘MicrobialAbundance_vs_GeneExpression_Correlation_Script.txt’) and figure generation 

in R environment (‘R_plot_figures.txt). (https://bitbucket.org/the-samuel-lab/natural-

variation/src/master/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Maintenance of Caenorhabditis elegans strains—Caenorhabditis elegans strains 

utilized in this study can be obtained from the Caenorhabditis Genetics Center (CGC), 

including N2-Bristol, CB1370 [daf-2(e1370)], GR1307 [daf-16(mgDf53)], HT1890 

[daf-2(e1370);daf-16(mgDf53)], OP201[unc-119(ed3);wgIs201(pqm-1::TY1 EGFP FLAG 

C;unc-119)], HT1889[daf-16(mgDf50);unc-119(ed3);lpIs14(daf-16f::GFP;unc-119)] and 

several natural isolates: AB1, AB3, CB4853, CB4854, CB4856, ED3017, ED3021, ED3040, 

ED3042, ED3052, ED3072, GXW0001, JU1088, JU1171, JU1218, JU1400, JU1401, 

JU1652, JU258, JU263, JU300, JU312, JU322, JU323, JU360, JU361, JU397, JU533, 

JU642, JU775, KR314, LKC34, MY1, MY14, MY16, MY2, and PX174 [Table S1]. The 

intestinal RNAi strain JM45 (rde-1(ne219); Is[Pges-1::RDE-1::unc54 3′UTR; 
Pmyo2::RFP3]) was a gift from Dr. Meng Wang. All C. elegans strains were grown and 

maintained on nematode growth media (NGM; Research Products International) seeded with 

Escherichia coli strain OP50 at 20°C. E. coli OP50 and HT115 RNAi strains can be 

requested from the CGC.
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Preparation of C. elegans populations—Prior to each experiment, worm populations 

were rendered ‘germ-free’ and synchronized to L1 stage79 by treating gravid hermaphrodites 

with bleach solution (mixture of Clorox bleach and 5M NaOH in 2:1 volume ratio), 

followed by multiple washes with M9 buffer79 to remove bleach solution. Germ-free L1s 

were then allowed to hatch and synchronize in sterile M9 buffer 15–18 hours rotating at 

20°C.

Preparation of microbiome mixtures—All microbial strains used were originally 

isolated from C. elegans natural isolates or habitats [Data S1AA] and stored at −80°C as 

glycerol stocks 16. Ochrobactrum pituitosum BH3 and an isogenic strain expressing GFP 

[Tn7 insertion of GFP on the chromosome 68] were generous gifts from Dr. Emily Troemel. 

JUb strains were originally isolated by Dr. Marie-Anne Félix.

To begin all experiments, we stamped out fresh cultures from glycerol stocks onto a 

rectangular LB plate, then incubated overnight at 28°C. The colonies on the plate were then 

used to inoculate a 1 ml 96 deep well plate (Axygen) filled with 300 µl lysogeny broth (10g 

Tryptone, 5g yeast extract, 10g NaCl in 1L distilled water adjust to pH=7.5) in each well. 

After overnight growth (14–16 h) at 28°C and 250 rpm shaking, bacterial cells were pelleted 

down by centrifuge at 4000 x g for 10 min. Supernatants were discarded and replaced with 

200 µL sterile M9 buffer in each well. Pellets were then fully resuspended by pipetting then 

transferred to a clear bottom 96 well plate (Costar, Corning). Growth of each microbe was 

assessed by measurement of optical density (OD) readings at 600nm using a Multiskan FC 

Microplate Photometer (Thermo Scientific). Bacterial density in each well in the parent plate 

was then normalized individually to an OD600 of 1.0 using sterile filtered M9 buffer. 

BIGbiome001 master mixes (referred to as ‘BIGbiome’ throughout) were created by 

combining equal volumes of each bacterial strain, which was then used to seed (30 µL) 

Nematode Growth Medium (NGM) agar in 12 well plates (Costar, Corning). Seeded plates 

were grown overnight at 20°C (80% humidity) before use.

METHOD DETAILS

Measurement of gut microbiome colonization in C. elegans—Existing methods 

that use surface sterilization with antibiotics, pestle-based disruption of animals and 

enumeration of bacterial colonies on agar plates21, though robust, were optimized for 

determination of bacterial densities of an individual strain or small set bacteria of interest 

rather than communities. Discrimination of bacteria by colony morphologies is similarly 

intractable within complex communities. We addressed these challenges by: (i) replacing 

antibiotic treatment, which is ineffective in a large community that contains variable 

antibiotic resistance profiles, with a more consistent dilute bleach treatment to kill surface 

associated microbes; and (ii) replacing the mortar-and-pestle with bead-based, multi-well 

format disruption of C. elegans to release gut microbes into solution. Further, to quantify 

live bacteria in the gut, we also adapted a liquid-based CFU quantification method to remove 

the need for laborious colony counting on plates.

Creation of standard curves for CFU estimations:  Overnight grown BIGbiome lawn was 

sampled and resuspended in M9 buffer. The mixture was subjected to a serial dilution from 
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10−1 to 10−6. The number of live bacteria from the dilution series were determined by 

counting CFU from 10 µL of each dilution onto a LB plate. The same dilution was 

inoculated into a 96 well flat bottom plate containing 100 µL LB medium in each well. The 

plate was incubated at 28 °C and bacterial growth curve in each dilution was recorded by 

measuring OD600 every 15 min for 18 h. Within the range of linear portion of growth, OD600 

equal to 0.2 was used as a threshold to interpolate the corresponding growth time, designated 

as CGT 80. Exponential regression between CFU number and CGT (R² = 0.99) was used to 

infer the CFU number from sample CGT at OD600 threshold of 0.2. Regression derived 

trendline equation was applied: total bacterial cells = (8E+11)*e(−1.114 * CGT).

Collection, surface sterilization and lysis of animals:  Around 100 L1 animals were 

seeded in duplicate on the BIGbiome lawn at 20°C with 80% humidity. Worm populations 

were assayed at 48 h and 120 h post seeding. On sampling day, worms were washed from a 

bacterial lawn with 600 µL of M9 buffer (0.01% triton X-100) to a sterilized 2 ml 96-well 

deep plate (Axygen). The deep well plate was centrifuged at 300 g for 1 minute to pellet 

down worms, bacteria in the liquid were removed by an aspirating manifold (VP1171A, 

V&P scientific). These washing steps were repeated 5 times with M9 buffer (0.01% triton 

X). 100 µL of 10 mM levamisole in M9 buffer (0.01% triton X) was then added to paralyze 

the worms for 5 min. Then 200µl of 4% bleach solution (diluted from of Clorox bleach and 

5M NaOH in 2:1 mixture) in M9 treatment for 2 min, further eliminate residual bacteria in 

liquid and on worm cuticle. 2 more washing with M9 buffer (0.01% triton X) was done to 

remove bleach and levamisole solution. After the last wash, an aliquot of liquid volume from 

each well was transferred to a new flat bottom 96 well plate (Costar 3370, Corning) for 

bright field imaging under a Nikon TiE Inverted Microscope. Generated images were used to 

estimate the number and size of adult animals in each well. An aliquot of supernatant from 

the imaging plate was taken as a negative control to assess background residual live bacteria 

before host lysis. The remaining worms were then lysed by adding 1.0 mm sterilized garnet 

beads (Biospect) in a Mixer Mill (Restch) at 25 Hz for 5 min to release live bacteria into 

solution.

Quantification of bacterial densities using growth curve estimations:  Worm lysates 

were diluted 10-fold with M9 buffer to reduce debris, and 20 µL of the lysate dilution was 

inoculated into a 96 well flat bottom plate with 100 µL LB medium. The plate was incubated 

at 28°C for 18 h. OD600 values were recorded every 15 min to generate bacterial growth 

curves for each well. Threshold growth time (CGT) at OD600 equal to 0.2 was derived from 

the corresponding growth curve. Total bacterial cells in each well were calculated based on 

the BIGbiome equation with corresponding CGT number. Colonization level per animal was 

then calculated using the following formula:

Estimated   CFUs/animal = Total   bacterial   cells * Dilution   factor /Number   of   adult   animals

Measurement of gut microbiome composition in C. elegans

Collection and lysis of animals:  Worm lysate from the previous step by centrifuged at 

4000 x g for 10 min. extraction, a freeze-thaw process in −80°C freezer overnight was first 

applied, then 0.1 mm sterile zirconia/silica beads (BioSpec products) were added (enough to 
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cover well bottom), bead-beating in Mixer Mill (Restch) at 25 Hz for 5 min to disrupt 

bacterial cells. Immediately followed by enzymatic treatment of 1 mg/mL proteinase K 

(NEB) at 60°C for 60 min, then 95°C for 15 min to deactivate the proteinase K. After the 

treatment, samples were centrifuged at 4000 g for 10 min to pellet down cellular fractions.

Amplicon library construction and sequencing:  Supernatant from lysate was transferred 

to a clean 96 well PCR plate as DNA template. 16S rRNA gene primer set (515F/806R) 

targeting variable region 4 in bacteria 81. Barcode information was added to the reverse 

primer 806r. Amplicons for each library were normalized based on the PCR product 

quantified by image processing package in Fiji, then pooled into a single tube for Illumina 

MiSeq. A detailed protocol for high throughput colonization assay can be found on 

protocols.io (DOI: dx.doi.org/10.17504/protocols.io.rtzd6p6).

Analysis of gut microbiome composition:  Fastq files for each library were split by 

barcode and quality trimmed in the QIIME software package (v1.9.0) 76 with an average 

quality score of 30. Chimeras were removed by usearch61 and Greengenes 13.8 database. 

Resulting fasta files were imported to Deblur 75 with default parameters with all sequences 

trimmed to 250 bp and positive filter based on 16S rRNA sequences of the 63 strains in the 

core microbiome. A phylogenetic tree with all Amplicon Sequence Variant (ASV) detected 

was generated using maximum likelihood method in Mega7 with default parameters. 

Diversity indices were computed in QIIME using core_diversity_analyses.py with default 

parameters and rarefied to 3,000 sequences. Alpha diversity was determined using Faith’s 

phylogenetic diversity and Beta-diversity (between samples) distance matrices were 

computed within QIIME using default parameters. Phylogenetic-based weighted UniFrac 

metric was used to compare compositional overlap between worm microbiomes and 

BIGbiome lawns; the weighted UniFrac metric refers to the degree of overlap in two 

communities as a function of taxa abundance and shared branches on a combined 

phylogenetic tree 82. Large ‘distances’ indicate less overlap and distinct community 

compositions. A detailed working pipeline can be found in Bitbucket [See Key Resource 

Table for link].

GWAS analyses of genetic associations with gut microbiome abundance—The 

Caenorhabditis elegans Natural Diversity Resource (CeNDR) was used to perform GWAS 53 

using the EMMA algorithm via the rrBLUP package 83,84. The EMMA algorithm used 

within CeNDR takes into account prevalent linkage disequilibrium observed in C. elegans 
85. The gut microbiome taxa abundance values and C. elegans strain names were used as 

input for GWAS. The CeNDR version used was 1.2.9, with data release 20180527 and 

cegwas version 1.01. Version WS263 of the worm genome was used in this data release. 

Representative strains for isotypes with more than one strain tested were randomly selected 

prior GWAS analyses in CeNDR.

RNAi knockdown of C. elegans genes—L1 animals were grown on NGM plates with 

25 µg/ml carbenicillin and 1 mM IPTG and seeded with 30 µL (OD=1) of E. coli HT115 

expressing dsRNA to C. elegans target genes. To separate exposures to E. coli and 

BIGbiome communities, RNAi treated gravid adults were treated with bleach solution to 
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generate synchronized L1 progeny. Around 100 L1 animals (RNAi F1s) were transferred to 

NGM plates with BIGbiome lawn to assess gut microbiome colonization and composition 

after 120 hrs. Previous studies have shown that progeny typically maintain the RNAi-

mediated silencing for at least one generation 86. Natural variation in RNAi effectiveness in 

wild strains of C. elegans was also assessed by measuring adult body size following dpy-13 
RNAi knockdowns, and no significant differences were observed [JU1400(vector): 

1360±154 µm n=16, JU1400(dpy-13): 632±156 µm n=15, N2(vector): 1373±199 µm n=30, 

N2(dpy-13): 655±185 µm n=25, ED3017(vector): 1396±236 µm n=25, ED3017(dpy-13): 

687±173 µm n=22, Data S1N].

Transcriptional profiling of C. elegans animals

RNA isolation, library preparation and sequencing:  C. elegans strains [CB4853, 

ED3017, ED3040, ED3042, JU258, JU775, JU300, JU1400, LKC34, MY14, and N2] for 

RNAseq were grown on BIGbiome in triplicate for 120 hrs at 20ºC. Animals were then 

washed off plates using M9 buffer (plus 0.01% triton X-100), and progeny were removed by 

filtering through a sterile 40 µm Nylon mesh (Fisher Scientific). Approximately 500 adult 

worms were aliquoted in 1.5 mL Eppendorf tubes and placed on ice for 1 min to settle 

animals, then combined with 200µL of Trizol and 10–20 1.0mm garnet beads. Animals were 

lysed using a Mixer-mill (Restch) at 25 Hz for 5 min and then incubated at 4ºC for 5 min. 

200 µL of chloroform was then added to each tube and vortexed for 30 s to mix, and allowed 

to incubate at room temperature for 3 minutes. Debris was removed by centrifugation at 

13,800 x g for 15 minutes at 4ºC, and supernatants (~200 µL) were transferred into RNase-

free Eppendorf tubes and stored at −80 ºC until extraction. Frozen supernatants were thawed 

at room temperature and loaded to a KingFisher flex purification system (Thermo Scientific) 

for automatic RNA processing using MirVANA total RNA kit (Thermo Scientific) following 

the manufacturer’s protocol. Purified RNAs were stored at −20ºC in elution buffer until use. 

Aliquots of RNA (0.5–2 µg) were used for creation of RNA sequencing libraries and 

sequenced by Illumina HiSeq4000 (paired end 150bp reads; QuickBiology).

RNAseq processing and analysis:  An average of 19,638,470 reads were obtained from 

each dataset, and samples with less than 2 replicates were not utilized in analyses. RNAseq 

result quality was examined using FASTQC (https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/; 71 ), and reads were filtered and trimmed using bbmap (https://jgi.doe.gov/

data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/) and bbduk, respectively (https://

jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/; https://sourceforge.net/

projects/bbmap/). Reads that did not map to the C. elegans genome (build WBcel235) with 

high quality were removed from the analysis [3.8–5.6% of reads for each dataset]. This was 

based on an internal evolutionary probability model score ‘minid’, which was set to 0.92, 

and described in more detail in the bb tools user guide referenced above. Acceptable reads 

were trimmed using bbduk with the following parameters: ktrim=r, k-23, mink=11, and 

hdist=1. These and other parameters are described in detail in the bb tools user guide 

referenced above. Filtered and mapped reads (average 19,586,505 per dataset) were 

pseudoaligned to the WBcel235 genome assembly using kallisto [https://

pachterlab.github.io/kallisto/; 72] with default settings [89.0–93.3% aligned for each dataset]. 

DESeq2 was used to estimate differential expression in an R workspace [https://
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bioconductor.org/packages/release/bioc/html/DESeq2.html; 73]. Briefly, DESeq2 models 

raw counts, normalizes to library depth, estimates and shrinks gene-wise dispersions, and 

fits a negative binomial model to estimate differential expression based on a Likelihood 

Ratio Test. Genes with an adjusted p-value of 0.05 or smaller and expressional change 

greater than two-fold were considered differentially expressed and used in further analyses.

Gene set enrichment analyses:  WormExp [https://wormexp.zoologie.uni-kiel.de/

wormexp/; 29] was used for gene set enrichment analyses compared to a comprehensive 

database of over 1700 curated gene expression datasets in C. elegans. Significance for 

enrichment scores are calculated using the method developed for the program EASE 87 and 

reported as uncorrected p-value, Bonferroni-corrected p-value, and False Discovery Rate. 

Terms were considered significant if the WormExp-reported FDR score was less than 0.05. 

WormCat [http://wormcat.com; 27] is a similar nematode-specific enrichment analysis and 

visualization tool that allows for easy categorization and interpretation of datasets based on 

gene ontology (GO) terms. WormCat is designed for identification of gene sets that are 

coexpressed or cofunctioning, allowing for drilled-down analysis of specific pathways. 

Significance scores are reported as Fisher’s exact test p-values. Terms were considered 

significant if the WormCat-reported P-Value score was less than 0.05.

Quantification of animal body size and Ochrobactrum gut colonization

Microscopy-based quantification:  GFP expressing Ochrobactrum were used to visualize 

the colonization of this bacterium. Brightfield and fluorescent images taken by a Nikon TiE 

Inverted Microscope were imported to MATLAB based WorMachine74. A mask was 

generated for individual worms with default parameters from brightfield images. Worm 

length and GFP intensity for each mask were measured and compared using one-way 

ANOVA and Tukey HSD post hoc test in R packages.

Biosorter-based quantification:  Animals on Day 3 adulthood were collected, washed, 

paralyzed, and surface bleached as described in the gut microbiome colonization steps, then 

transferred with 150 µl M9 buffer to a flat bottom 96 well plate (Costar 3370, Corning). 

Individual body size (time of flight, TOF) and level of GFP intensity were measured by a 

COPAS Biosorter (Union Biometrica) with a 250 micron flow cell and Sapphire488 laser at 

310 volt and 1.0 pmt gain settings. Individual events were gated by a combination of TOF 

and extinction coefficient to filter adult animals from the population. GFP values normalized 

by TOF from each host strains and RNAi knockdown conditions were compared using one-

way ANOVA and Tukey HSD post hoc test in R packages.

Developmental timing assays—Approximately 40 synchronized L1 worms were added 

to the plates containing BIGbiome mixtures or OP50. Animals were scored every 2 hrs for 

the number of adult animals on plate from 44 to 60 h at 20°C. Four replicates were scored 

for each condition, n > 100 animals were scored per strain/condition. Percentages of adults 

between the three microbiome types from the same time points were compared using one-

way ANOVA and Tukey HSD post hoc test R packages.
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QUANTIFICATION AND STATISTICAL ANALYSIS

RNAseq analyses—See Method Details for explanation of software and programs used. 

In brief, reads were checked for quality with FASTQC, filtered for quality with bbmap, 

trimmed with bbduk, aligned with kallisto, and analyzed for differential expression with 

DESEQ2 73. Genes were considered differentially expressed between microbiome types if 

the Benjamini-Hochberg adjusted p-value was less than 0.05. The work was completed 

locally using a Late 2013 Mac Pro (3.5 GHz 6-Core Intel Xeon E5) and software including 

Mac Terminal (fastqc, bbmap, bbduk, kallisto) and Rstudio (DESeq2).

Gene set enrichment analyses—The WormExp tool uses a statistical approach 

designed for gene list interpretation, EASE 87 to determine statistical significance. Default 

parameters were used and produced adjusted p-values based on False Discovery Rate (FDR) 

estimations. Adjusted P-values less than 0.05 were considered significant.

Rationale for statistical tools used within the WormCat tool are described in detail in 

Holdorf, et al., 27. Briefly, WormCat produces Fisher’s exact test p-values. The method was 

chosen after providing few false positives without being too stringent in a randomized test of 

100, 500, 1000, or 1500 genes. In our analyses, results were considered significant if the P-

value score output from the WormCat online tool was less than 0.05.

Correlation analyses of microbial taxa abundance and gene expression—
Pearson correlation was calculated between absolute abundance of each microbial taxa and 

expression of each gene for every strain of C. elegans using the ‘stats’ package within 

RStudio using default parameters. Correlations were considered significant if the Benjamini-

Hochberg adjusted p-value was less than 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Natural genetic variation in C. elegans drives distinct gut microbiome types.
Schematic diagram illustrating the pipeline to measure gut microbiome and host phenotypes 

of 38 C. elegans strains grown on microbiome mixture. Worm samples were collected at 48 

h (day 1 adults) and 120 h (day 3 adults) after exposing synchronized L1 populations to 

BIGbiome. B. Gut microbiome composition of the 38 C. elegans strains in day 3 adulthood. 

Relative microbiome abundance was presented here as the mean of biological duplicates for 

each strain. C. The 38 strains were clustered into three distinct microbiome types based on 

their gut microbiome load per animal (y-axis) and phylogenetic distances to BIGbiome lawn 

(x-axis). Solid symbols showed samples collected in day 3 adulthood and open symbols 

showed samples in day 1 adulthood. Inset: Box-whisker plot of microbiome load per animal 

in three microbiome types. Type 2 strains (n=10) carried significantly higher gut 

microbiome load than Type 1 (n=56) and Type 3 strains (n=10). Box-whisker plot of 

phylogenetic distances to BIGbiome for the three microbiome types. Phylogenetic distances 
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between each strain and BIGbiome lawn were calculated by weighted UniFrac. Type 1 

strains (n=56) showed further distance to the BIGbiome lawn than Type 2 (n=10) and Type 3 

strains (n=10). n represents the number of independent worm populations. See also Figure 

S3 and Data S1A. D. Representative images of C. elegans strains in day 3 adulthood from 

each of the three microbiome types grown on BIGbiome with an isogenic GFP expressing 

Ochrobactrum strain. Bar = 500 µm. E. Box-whisker plot of GFP intensity quantified from 

fluorescent images of C. elegans strains grown on BIGbiome (GFP-Ochrobactrum) showed 

higher GFP-Ochrobactrum colonization in Type 1 (n=55) and 2 (n=94) strains than Type 3 

strains (n= 73). n, individual animals quantified by microscopic images; P-values were 

generated from one-way ANOVA, followed by Tukey posthoc test with 95% confidence 

level and adjusted for multiple comparisons (***p<0.001, **p<0.01). See also Data S1B. 

See also Table S1, plus Figures S2 and S3.
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Figure 2. Microbial taxa are associated with natural genetic variation in C. elegans gut 
microbiome types.
A. Box-whisker plot of enrichment factors for microbial taxa for 38 C. elegans strains on 

day 3 adulthood colored by microbiome types. Enrichment factors for each microbial taxa 

were generated by log 2 transformation of fold changes of relative abundance in worm 

samples to BIGbiome lawn. B. Bar plot of commonality for each microbial taxa is calculated 

as the percentage of worm strains that was colonized by the corresponding microbial taxon 

at a minimum threshold of 0.01% in relative abundance. See also Data S1AB. C. GWAS 

analyses identify genetic loci that are associated with gut microbiome abundance. GWAS 

plot for traits of absolute abundance of specific microbiome members. Points represent 

significance and genome region and are colored by microbe. Dashed lines indicate genomic 

region enriched for microbe-specific trait and are similarly colored by microbe. D. GWAS 

plot for traits of relative abundance of specific microbiome members. Points represent 

significance and genome region and are colored by microbe. Dashed lines indicate genomic 
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region enriched for microbe-specific trait and are similarly colored by microbe. See also 

Table S2 for a full list of genomic positions and associated microbial taxa.
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Figure 3. C. elegans developmental growth rates and body size during development correlate 
with adult microbiome.
A. Developmental growth rates of representative strains from each microbiome type [Type 1 

(JU1400 and CB4856), Type 2 (N2 and LKC34) and Type 3 (ED3017)] grown on BIGbiome 

and E. coli OP50. Percentage of adults are represented as mean ± SD with 4 replicates for 

each condition; representative of 3 independent experiments. See also Data S1F. B. Box-

whisker plots of percent adults at 52 h post L1 stage (from A). Number of individual 

animals: BIGbiome (JU1400: n=145, CB4856: n=141, N2: n=132, LKC34: n=176, ED3017: 

n=157); E. coli OP50 (JU1400: n=173, CB4856: n=166, N2: n=142, LKC34: n=142, 

ED3017: n=153). C. Box-whisker plot of C. elegans body size by microbiome types at 48 h 

and 120 h post L1 stage. Type 1 strains (n=1076) had longer body size than Type 2 (n=168) 

and Type 3 strains (n=158) at 48 h. No significant difference among Type 1 (n=501), 2 

(n=68), and 3 (n=56) at 120 h. P-values (for B and C) were generated from: one-way 

ANOVA, followed by and post hoc Tukey Honest Significant Difference test with 95% 
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confidence level and adjusted for multiple comparisons (*** p<0.001, ** p<0.01,* p<0.05, 

n.s not significant). See also Data S1G for body size at strain level. D. Pearson correlations 

of microbial taxa abundance (day 3 adults) with host developmental rates (52 h post L1) and 

body size (48 h post L1). The test statistic is based on Pearson’s product moment correlation 

coefficient and follows a t distribution with length(x)-2 degrees of freedom at the level of 

95% confidence interval. Ochrobactrum (colored in red) is the only microbial taxa with 

positive correlation with both host phenotypes (p<0.05). 9 microbial taxa (colored in blue) 

show negative correlations with both host phenotypes (p<0.05). See also Table S3 and 

Figure S4.
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Figure 4. Transcriptional changes in insulin signaling, microbial and stress response genes define 
microbiome types.
Representative strains from each of the microbiome types grown on BIGbiome to Day 3 

adulthood were collected for RNAseq. B. Volcano plots displaying genes differentially 

expressed between Types 1 and 2 and Types 1 and 3. Type 1 vs Type 2; Significantly 

differentially expressed genes (Benjaminii-Hochberg adjusted p-value < 0.05) are colored 

red if they are upregulated in Type 1, or log2FC > 1, or colored blue if upregulated in Type 2, 

or log2FC < −1. Type 1 vs Type 3; Significantly differentially expressed genes (Benjamini-

Hochberg adjusted p-value < 0.05) are colored red if they are upregulated in Type 1, or 

log2FC > 1, or colored orange if upregulated in Type 3, or log2FC < −1. See also Data S1AC 

for a full gene list. C-F. Significant (FDR < 0.05) WormExp enrichments from Type 1 Up 

gene set (C) and Type 3 Up gene set (D). Barplots represent counts of unique genes for each 

category. ‘Multiple’ category includes daf-16;daf-2 double mutants. ‘Microbes’ category 

subset separated into specific terms in the Type 1 Up set (E) and Type 3 Up set (F). G. 
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Heatmap depicting genes that are significantly differentially expressed between microbiome 

types and significantly correlated (Pearson correlation, Benjamini-Hochberg adjusted p-

value < 0.05) with the absolute abundance of at least one BIGbiome member. H-J. Ternary 

plots illustrating the microbiome type enrichment patterns of genes belong to insulin-like 

peptides (H), immune (I) and stress responses (J). Each dot is an individual gene and dot 

sizes are proportional to normalized read counts in the transcriptional dataset. Due to a large 

number in the immune and stress response gene, only genes with significant changes (p< 

0.05) in expression between the microbiome types are shown. Only one gene (ctl-1) is 

expressed almost exclusively in Type 2 (in J). See also Figure S6.
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Figure 5. Insulin signaling pathways mediate recruitment of Ochrobactrum.
A-C. Ochrobactrum colonization in JU1400(Type 1) decreased with daf-2(RNAi) and 

increased in N2(Type 2) and ED3017(Type 3) with daf-16(RNAi). Similar trends are shown 

in representative images of Day 3 adults grown on BIGbiome with GFP-Ochrobactrum (A, 

Bar = 500 µm), GFP signal per individual animal (B, JU1400(vector): n=290, 

JU1400(daf-2): n=274, JU1400(daf-16): n=97, N2(vector): n=233, N2(daf-2): n=202, 

N2(daf-16): n=79, ED3017(vector): n=103, ED3017(daf-2): n=247, ED3017(daf-16): 

n=292, see also Data S1K), and bulk gut microbiome sequence of the corresponding 

population (C, see also Data S1J). D,G. Ochrobactrum colonization decreased in 

daf-2(e1370), increased in daf-16(mgDf50) and by a lesser extent in 

daf-16(mgDf50);daf-2(e1370);daf-16(mgDf50) mutants. Similar trends are shown in 

representative images of Day 3 adults grown on BIGbiome with GFP-Ochrobactrum (D, Bar 

= 500 µm), bulk gut microbiome sequence of the corresponding population (E, see also Data 
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S1J), and GFP signal per individual animal (G, N2: n=216, daf-2: n=198, daf-16: n=184, 

daf-16;daf-2;daf-16: n=207, see also Data S1M). F. N2 and insulin signaling mutants daf-2, 

daf-16, daf-16;daf-2 host distinct microbiome types based on gut microbiome load per 

animal (y-axis) and phylogenetic distances to BIGbiome lawn (x-axis). Inset: Box-whisker 

plot of phylogenetic distances to BIGbiome for the three microbiome types. (B,G) 

n=individual animals; P-values were generated from one-way ANOVA, followed by and post 

hoc Tukey test with 95% confidence level and adjusted for multiple comparisons 

(***p<0.001, **p<0.01, *p<0.05). See also Figure S5.
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Figure 6. PQM-1 regulates microbiome impact on host physiology and recruitment of 
Ochrobactrum to the gut microbiome.
A. Box-whisker plot of adult percentage of vector (n=4) and pqm-1 (n=4) RNAi knockdown 

mutants in Type 1 JU1400 background at 54 h post L1 stage. B. Box-whisker plot of body 

size of vector (n=66) and pqm-1 (n=85) RNAi knockdown mutants in Type 1 JU1400 

background at 48 h post L1 stage. C. Box-whisker plot of adult percentage of vector (n=4) 

and pqm-1 (n=4) RNAi knockdown mutants in daf-16(mgDf50) background at 54 h post L1 

stage. D. Box-whisker plot of body size of vector (n=136) and pqm-1 RNAi knockdown 

mutants (n=179) in daf-16(mgDf50) background at 48 h post L1 stage. (B,D) n represents 

the number of independent worm populations. (C,E) n represents the number of individual 

animals quantified by microscopic images. See also Figure S7A,B,D,E. E-G. Ochrobactrum 
colonization in JU1400(Type 1) and daf-16(−) decreased with pqm-1(RNAi). Similar trends 

are shown in representative images of day 3 adults grown on BIGbiome with GFP-

Ochrobactrum (E, Bar = 500 µm) and GFP signal per individual animal (F,G). (G,H) n 

Zhang et al. Page 37

Curr Biol. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



represents the number of individual animals quantified by Biosorter. P-values were 

generated from student’s t-test (***p<0.001, **p<0.01,*p<0.05). See also Figure S7C,F,G. 

H. Sunburst plot illustrating significantly enriched (WormCat-reported padj < 0.05) 

WormCat subcategories from Class II targets upregulated in Type 1 strains and Class I 

targets upregulated in Type 3 strains. I. Representative images show nuclear localization of 

PQM-1 GFP in day 3 adults grown on BIGbiome, compared to no nuclear localization on E. 
coli OP50. No nuclear localization of DAF-16 GFP in day 3 adults grown on BIGbiome and 

E. coli OP50 (Bar = 100 µm). J. Day 3 adults grown on BIGbiome express higher 

PQM-1::GFP and DAF-16::GFP than on E. coli OP50, quantified by GFP signal per 

individual animal. K. Schematic diagram of insulin signaling targets drives Ochrobactrum 
colonization (Type 1, red arrows; Type 3, blue arrows). See also Figure S7.
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Table 1.

Summary of microbial strains in the BIGb iome model microbiome

Division Family Genera Strains

Proteobacteria Brucellaceae Ochrobactrum BH3

Acetobacteraceae Gluconobacter BIGb0611

Rhizobiaceae Rhizobium JUb45

Comamonadaceae Delftia JUb8

Limnohabitans JUb58, BIGb0172

Ramlibacter BIGb0124

Moraxellaceae Acinetobacter JUb89, BIGb0102, BIGb0196

Pseudomonadaceae Pseudomonas BIGb0272, BIGb0273, BIGb0404, BIGb0408, BIGb0470, BIGb0473, 
BIGb0477, BIGb0525, JUb28, JUb52, JUb85, JUb96

Xanthomonadaceae Stenotrophomonas JUb19, JUb23, BIGb0145, BIGb0219

Enterobacteriaceae Raoultella JUb54, BIGb0138. BIGb0399

Erwinia BIGb0193, BIGb0393, BIGb0435

Enterobacter JUb30, JUb66, JUb101, BIGb0359, BIGb0383

Citrobacter BIGb0149, BIGb0188, BIGb0211, BIGb0267

Buttiauxella BIGb0552

Yersinia JUb53, BIGb0156, BIGb0236

Providencia JUb39, JUb102, BIGb0506

Bacteroidetes Flavobacteriaceae Chryseobacterium JUb44, BIGb0186, BIGb0215

Myroides BIGb0243

Sphingobacteriaceae Sphingobacterium JUb20, JUb56, JUb78

Actinobacteria Microbacteriaceae Curtobacterium JUb34, JUb65

Leucobacter JUb18, BIGb0106, BIGb0117

Micrococcaceae Arthrobacter JUb115

Nocardiaceae Rhodococcus JUb83

Firmicutes Streptococcaceae Lactococcus BIGb0210

See also Figure S1 and Data S1AA
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial Strains

Escherichia coli OP50 Caenorhabditis Genetics Center OP50

Ochrobactrum pituitosum BH3 Buck Samuel 68 BH3

Acinetobacter sp. BIGb0102 Buck Samuel 16 BIGb0102

Leucobacter sp. BIGb0106 Buck Samuel 16 BIGb0106

Leucobacter sp. BIGb0117 Buck Samuel 16 BIGb0117

Ramlibacter sp. BIGb0124 Buck Samuel 16 BIGb0124

Raoultella sp. BIGb0138 Buck Samuel 16 BIGb0138

Stenotrophomonas sp. BIGb0145 Buck Samuel 16 BIGb0145

Citrobacter sp. BIGb0149 Buck Samuel 16 BIGb0149

Yersinia sp. BIGb0156 Buck Samuel 16 BIGb0156

Limnohabitans sp. BIGb0172 Buck Samuel 16 BIGb0172

Chryseobacterium sp. BIGb0186 Buck Samuel 16 BIGb0186

Citrobacter sp. BIGb0188 Buck Samuel 16 BIGb0188

Erwinia sp. BIGb0193 Buck Samuel 16 BIGb0193

Acinetobacter sp. BIGb0196 Buck Samuel 16 BIGb0196

Citrobacter sp. BIGb0211 Buck Samuel 16 BIGb0211

Chryseobacterium sp. BIGb0215 Buck Samuel 16 BIGb0215

Stenotrophomonas sp. BIGb0219 Buck Samuel 16 BIGb0219

Lactococcus sp. BIGb0220 Buck Samuel 16 BIGb0220

Yersinia sp. BIGb0236 Buck Samuel 16 BIGb0236

Myroides sp. BIGb0244 Buck Samuel 16 BIGb0244

Citrobacter sp. BIGb0267 Buck Samuel 16 BIGb0267

Pseudomonas sp. BIGb0272 Buck Samuel 16 BIGb0272

Pseudomonas sp. BIGb0273 Buck Samuel 16 BIGb0273

Enterobacter sp. BIGb0359 Buck Samuel 16 BIGb0359

Enterobacter sp. BIGb0383 Buck Samuel 16 BIGb0383

Erwinia sp. BIGb0393 Buck Samuel 16 BIGb0393

Raoultella sp. BIGb0399 Buck Samuel 16 BIGb0399

Pseudomonas sp. BIGb0404 Buck Samuel 16 BIGb0404

Pseudomonas sp. BIGb0408 Buck Samuel 16 BIGb0408

Erwinia sp. BIGb0435 Buck Samuel 16 BIGb0435

Pseudomonas sp. BIGb0470 Buck Samuel 16 BIGb0470

Pseudomonas sp. BIGb0473 Buck Samuel 16 BIGb0473

Pseudomonas sp. BIGb0477 Buck Samuel 16 BIGb0477

Providencia sp. BIGb0506 Buck Samuel 16 BIGb0506

Pseudomonas sp. BIGb0525 Buck Samuel 16 BIGb0525
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REAGENT or RESOURCE SOURCE IDENTIFIER

Buttiauxella sp. BIGb0552 Buck Samuel 16 BIGb0552

Gluconobacter sp. BIGb0611 Buck Samuel 16 BIGb0611

Enterobacter sp. JUb101 Marie-Anne Félix 16 JUb101

Providencia sp. JUb102 Marie-Anne Félix 16 JUb102

Arthrobacter sp. JUb115 Marie-Anne Félix 16 JUb115

Leucobacter sp. JUb18 Marie-Anne Félix 16 JUb18

Stenotrophomonas sp. JUb19 Marie-Anne Félix 16 JUb19

Sphingobacterium sp. JUb20 Marie-Anne Félix 16 JUb20

Stenotrophomonas sp. JUb23 Marie-Anne Félix 16 JUb23

Pseudomonas sp. JUb28 Marie-Anne Félix 16 JUb28

Enterobacter sp. JUb30 Marie-Anne Félix 16 JUb30

Curtobacterium sp. JUb34 Marie-Anne Félix 16 JUb34

Providencia sp. JUb39 Marie-Anne Félix 16 JUb39

Chryseobacterium sp. JUb44 Marie-Anne Félix 16 JUb44

Neorhizobium sp. JUb45 Marie-Anne Félix 16 JUb45

Pseudomonas sp. JUb52 Marie-Anne Félix 16 JUb52

Yersinia sp. JUb53 Marie-Anne Félix 16 JUb53

Raoultella sp. JUb54 Marie-Anne Félix 16 JUb54

Sphingobacterium sp. JUb56 Marie-Anne Félix 16 JUb56

Limnohabitans sp. JUb58 Marie-Anne Félix 16 JUb58

Curtobacterium sp. JUb65 Marie-Anne Félix 16 JUb65

Enterobacter sp. JUb66 Marie-Anne Félix 16 JUb66

Sphingobacterium sp. JUb78 Marie-Anne Félix 16 JUb78

Delftia sp. JUb8 Marie-Anne Félix 16 JUb8

Rhodococcus sp. JUb83 Marie-Anne Félix 16 JUb83

Pseudomonas sp. JUb85 Marie-Anne Félix 16 JUb85

Acinetobacter sp. JUb89 Marie-Anne Félix 16 JUb89

Pseudomonas sp. JUb96 Marie-Anne Félix 16 JUb96

Experimental Models: Organisms/Strains

C. elegans: Natural isolate: AB1 Caenorhabditis Genetics Center 18 AB1

C. elegans: Natural isolate: AB3 Caenorhabditis Genetics Center 18 AB3

C. elegans: Natural isolate: CB4853 Caenorhabditis Genetics Center 18 CB4853

C. elegans: Natural isolate: CB4854 Caenorhabditis Genetics Center 18 CB4854

C. elegans: Natural isolate: CB4856 Caenorhabditis Genetics Center 18 CB4856

C. elegans: Natural isolate: ED3017 Caenorhabditis Genetics Center 18 ED3017

C. elegans: Natural isolate: ED3021 Caenorhabditis Genetics Center 18 ED3021

C. elegans: Natural isolate: ED3040 Caenorhabditis Genetics Center 18 ED3040

C. elegans: Natural isolate: ED3042 Caenorhabditis Genetics Center 18 ED3042

C. elegans: Natural isolate: ED3052 Caenorhabditis Genetics Center 18 ED3052
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C. elegans: Natural isolate: ED3072 Caenorhabditis Genetics Center 18 ED3072

C. elegans: Natural isolate: GXW0001 Caenorhabditis Genetics Center 18 GXW0001

C. elegans: Natural isolate: JU1088 Caenorhabditis Genetics Center 18 JU1088

C. elegans: Natural isolate: JU1171 Caenorhabditis Genetics Center 18 JU1171

C. elegans: Natural isolate: JU1218 Caenorhabditis Genetics Center 18 JU1218

C. elegans: Natural isolate: JU1400 Caenorhabditis Genetics Center 18 JU1400

C. elegans: Natural isolate: JU1401 Caenorhabditis Genetics Center 18 JU1401

C. elegans: Natural isolate: JU1652 Caenorhabditis Genetics Center 18 JU1652

C. elegans: Natural isolate: JU258 Caenorhabditis Genetics Center 18 JU258

C. elegans: Natural isolate: JU263 Caenorhabditis Genetics Center 18 JU263

C. elegans: Natural isolate: JU300 Caenorhabditis Genetics Center 18 JU300

C. elegans: Natural isolate: JU312 Caenorhabditis Genetics Center 18 JU312

C. elegans: Natural isolate: JU322 Caenorhabditis Genetics Center 18 JU322

C. elegans: Natural isolate: JU323 Caenorhabditis Genetics Center 18 JU323

C. elegans: Natural isolate: JU360 Caenorhabditis Genetics Center 18 JU360

C. elegans: Natural isolate: JU361 Caenorhabditis Genetics Center 18 JU361

C. elegans: Natural isolate: JU397 Caenorhabditis Genetics Center 18 JU397

C. elegans: Natural isolate: JU533 Caenorhabditis Genetics Center 18 JU533

C. elegans: Natural isolate: JU642 Caenorhabditis Genetics Center 18 JU642

C. elegans: Natural isolate: JU775 Caenorhabditis Genetics Center 18 JU775

C. elegans: Natural isolate: KR314 Caenorhabditis Genetics Center 18 KR314

C. elegans: Natural isolate: LKC34 Caenorhabditis Genetics Center 18 LKC34

C. elegans: Natural isolate: MY1 Caenorhabditis Genetics Center 18 MY1

C. elegans: Natural isolate: MY14 Caenorhabditis Genetics Center 18 MY14

C. elegans: Natural isolate: MY16 Caenorhabditis Genetics Center 18 MY16

C. elegans: Natural isolate: MY2 Caenorhabditis Genetics Center 18 MY2

C. elegans: Natural isolate: PX174 Caenorhabditis Genetics Center 18 PX174

C. elegans: Wild-type: N2 Caenorhabditis Genetics Center N2

daf-2(e1370) Caenorhabditis Genetics Center CB1370 43

daf-16(mgDf50) Caenorhabditis Genetics Center GR1307 69

daf-16(mgDf50);daf-2(e1370) Caenorhabditis Genetics Center HT1890 47

unc-119(ed3);wgIs201 Caenorhabditis Genetics Center OP201 70

daf-16(mgDf50);unc-119(ed3);lpIs14 Caenorhabditis Genetics Center HT1889 47

Chemicals and Commercial Assays

Triton X-100 Sigma-Aldrich Cat#: T8787

Trizol Thermo-Fisher Cat#: 
15596026

Garnet beads (1.0 mm) Biospect Cat#: 
11079110gar
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Silica beads (0.1 mm) Biospect Cat#: 
11079101Z

Proteinase K New England Biolabs Cat#: P8107S

Nematode Growth Medium RPI Cat#: 
N81800–
1000.0

Levamisole Fisher Cat#: 
AC187870100

Carbenicillin Sigma-Aldrich Cat#: C1389

IPTG Sigma-Aldrich Cat#: I6758

MirVANA total RNA kit Thermo-Fisher Cat#: A27828

Miseq (paired-end 250bp) Illumina N.A.

Hiseq4000 (paired-end 150bp) Illumina N.A.

Deposited Data

Code for data analysis Bitbucket https://
bitbucket.org/
the-samuel-
lab/natural-
variation/src/
master/

Original 16S rRNA amplicon of gut 
microbiome sequences

NCBI Bioproject 
PRJNA54019
2 
(SAMN13068
200–
13068238, 
13071563–
13071602, 
16597785–
16597833, 
16611296–
16611371, 
17054579–
17054627)

Original RNAseq data from wild 
worms

NCBI Bioproject 
PRJNA54019
2 
(SAMN13050
735–
13050742)

Software and Algorithms

RStudio GNU Version 
1.3.1093

ggplot: Various R Programming Tools 
for Plotting Data.

R package Version 3.3.2

ggbeeswarm R package Version 0.6.1

ggtern R package Version 3.1.0

FASTQC 71 Version 0.11.9

bbmap JGI-DOE N.A.

bbduk JGI-DOE N.A.

kallisto 72 Version 0.45.0

DESeq2 73 Version 1.30.0
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WormExp 29 Version 1.0

WormCat 27 N.A.

Worm machine 74 N.A.

CeNDR 53 Version 1.2.9

ImageJ NIH Version 2.0.0

Deblur 75 Version 1.0.2

QIIME 76 Version 1.8.0

Oligonucleotides

primer set (515F/806R) for 16S rRNA 77,78 N.A.
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