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Epistatic interactions of genetic 
loci associated with age‑related 
macular degeneration
Christina Kiel1,3, Christoph A. Nebauer1,3, Tobias Strunz1,3, Simon Stelzl1 & 
Bernhard H. F. Weber  1,2*

The currently largest genome-wide association study (GWAS) for age-related macular degeneration 
(AMD) defines disease association with genome-wide significance for 52 independent common and 
rare genetic variants across 34 chromosomal loci. Overall, these loci contain over 7200 variants and 
are enriched for genes with functions indicating several shared cellular processes. Still, the precise 
mechanisms leading to AMD pathology are largely unknown. Here, we exploit the phenomenon 
of epistatic interaction to identify seemingly independent AMD-associated variants that reveal 
joint effects on gene expression. We focus on genetic variants associated with lipid metabolism, 
organization of extracellular structures, and innate immunity, specifically the complement cascade. 
Multiple combinations of independent variants were used to generate genetic risk scores allowing 
gene expression in liver to be compared between low and high-risk AMD. We identified genetic 
variant combinations correlating significantly with expression of 26 genes, of which 19 have not been 
associated with AMD before. This study defines novel targets and allows prioritizing further functional 
work into AMD pathobiology.

A first successful genome-wide association study (GWAS) was reported in 2005 and identified with genome-
wide significance genetic variants at the CFH locus associated with age-related macular degeneration (AMD), 
a complex disease which is a frequent cause of progressive vision loss in the elderly population1. Since then, the 
list of AMD-associated genetic variation has grown exponentially, presently bringing the total to 52 independent 
common and rare variants across 34 chromosomal loci2. In an initial effort to extract biological meaning from 
the latter association data, enrichment analyses were done to determine molecular pathways from the 368 genes 
located within the immediate AMD loci as defined by index variants and proxies at r2 ≥ 0.5 within ± 100 kb of 
the lead signal. This broadly emphasized the lipid metabolism, extracellular matrix organization and assembly 
as well as the complement pathway to play a critical role in AMD pathogenesis2.

A more refined dissection of the biological mechanisms triggering AMD disease is challenging, although 
it is a crucial step to translate genetic findings into a clinical context. Understanding the functional impact of 
synonymous or non-synonymous variants in exonic sequences appears rather straightforward as they likely exert 
a direct effect on protein translation or stability3. However, in AMD over 90% of associated genetic variation is 
estimated to be located in intronic or intergenic regions2, which hampers an intuitive access to understanding 
their pathological impact. A growing number of studies now suggests that variation in noncoding regions likely 
affect mRNA expression of nearby or distal genes through promoter, enhancer or silencer effects, or modulate 
transcription factor binding affinities, alternative splicing, and/or other epigenetic modifications4. To some extent, 
such an altered gene expression can be addressed by mapping expression quantitative trait loci (eQTL)5. In AMD, 
eQTL analyses were conducted in several tissues. For example, Ratnapriya and colleagues investigated eQTL in 
the retina, and detected altered gene expression for 20 potentially AMD-associated genes6, while in liver a total 
of 15 genes were identified7. Further, a transcriptome-wide association study included 27 different tissues and 
identified 106 genes with an expression profile linked to the genetic risk of AMD8. Although primary pathology 
of AMD manifests in the back of the eye, eQTL findings in various tissues reveal genes potentially influencing 
general tissue integrity and homeostasis9–11. This is strengthened by pleiotropy analyses, demonstrating a com-
mon genetic basis of AMD and several other phenotypes, such as cardiovascular diseases or metabolic traits12,13. 
Although the retinal pigment epithelium (RPE) may be the cell type of interest in AMD pathology14, it is likely 
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that circulating molecules ultimately contribute to local manifestations15–17. Against this background, liver tis-
sue is of particular interest as it is the major expression site for secreted proteins involved in at least two major 
pathways of AMD pathology, including the lipid metabolism and the complement system18–20. Finally, a gene 
expression dataset with nearly 600 individuals is available for liver tissue providing sufficient statistical power 
to perform advanced analyses.

So far, eQTL mapping in AMD was directed exclusively on studying effects of single genetic variants6,7. Addi-
tive models including the integration of combinations of genetic variation on gene expression have not been 
considered. Here, we focused on genetic variation in loci which were assigned to one of three likely biological 
pathways in AMD aetiology, including lipid metabolism, extracellular matrix organization, and the complement 
cascade2,9. We combined customized genetic risk scores (GRS) and eQTL mapping and evaluated an influence 
on gene expression in liver tissue for genetic variants individually or in combination with each other. Such an 
approach more closely resembles a true biological situation, where AMD patients likely harbor multiple risk 
variants with possible synergistic or antagonistic effects on a defined outcome. Taken together, exploiting possible 
epistatic interactions of AMD-associated variants on gene expression regulation has revealed at least 19 genes of 
interest which have not been found in the available AMD datasets so far. This could open new avenues to learn 
about biological pathways and mechanisms underlying AMD disease.

Results
Defining pathway‑related clusters of independent AMD‑associated variants.  To search for 
epistatic effects of independent AMD-associated genetic variants on gene expression in liver tissue, we first 
selected tentative biological routes to disease mechanisms represented by three likely AMD-associated pathways 
including the lipid metabolism, extracellular matrix organization, and the complement cascade2. We used the 
g:Profiler database21 to assign gene ontology terms (GO-terms) to the 386 genes within the 34 genome-wide 
associated AMD loci as defined by Fritsche et al. (index variants and proxies at r2 ≥ 0.5 within ± 100 kb of lead 
variants)2. GO-terms used for locus categorization were “cholesterol transport” (GO:0030301), “regulation of 
plasma lipoprotein” (GO:0097006), “extracellular structure organization” (GO:0043062), and “immune system 
process” (GO:0002376). Loci were assigned to multiple pathways, if the corresponding genes mapped to several 
GO-terms. In total, seven of the 34 independent AMD loci were assigned to the lipid metabolism pathway, 16 
to the extracellular matrix term, and 23 to the complement system (Fig. 1a). Six of the 34 AMD loci were not 
assigned to any of the selected GO-terms.

We then filtered the liver eQTL dataset reported by Strunz et al.7 for independent lead variants within the 
28 pathway-associated AMD loci. This resulted in 21 loci for further analysis, corresponding to 31 independent 
genetic variants. Specifically, seven variants at 5 loci were assigned to the lipid metabolism pathway, 15 vari-
ants at 13 loci to the extracellular matrix pathway, and 19 variants at 16 loci to the complement system pathway 
(Fig. 1b and Supplementary Table S1). Interestingly, the five loci assigned to the lipid metabolism pathway are 
also associated with the extracellular matrix pathway.

Defining test parameters in liver tissue.  The category “lipid metabolism” was used to initially define 
the test parameters for the identification of significant variant combinations (eCombinations) with a joint effect 
on gene expression regulation in liver tissue. In total, 5 loci containing 7 independent variants were included in 
this category (Fig. 2a). The 7 variants were organized in 127 unique combinations.

Effects on the regulation of gene expression were determined based on the GRS approach, which categorizes 
individuals into low and high-risk groups for the respective variant combination. Subsequently, gene expression 
was compared between low and high-risk individuals (Fig. 2b). Group size was defined based on the ability to 
detect differently expressed genes, which were previously reported to be influences by AMD-associated variants 
(eGenes)7. For this purpose, a GRS including all seven variants assigned to the “lipid metabolism” category was 
calculated. Afterwards, different risk group sizes, ranging between 5 and 35% of the corresponding lowest or 
highest risk quantiles, were tested for the ability to detect four known eGenes, including LIPC, CETP, ALDH1A2 
and ADAM107, after correction for multiple testing by a false discovery rate (FDR, Q-value) smaller than 5%. 
Consequently, low and high-risk groups were defined at the 30% highest and lowest quantiles, respectively (Sup-
plementary Figure S1). These two groups each contain 176 liver tissue samples.

To define the significance threshold, we considered the expression of 24,123 genes for 127 combinations 
requiring over 3 million tests in the category “lipid metabolism” (Table 1). Quantile–quantile plots with all 
P-values of tests performed in the respective categories allow adjustment for multiple testing (Supplementary 
Figure S2a). We defined the FDR to be under 5%, as this threshold produces comparable results to the thresholds 
that can be derived from the quantile–quantile plots.

Interaction of assigned variants in the lipid metabolism pathway.  We identified two eCombina-
tions (rs2070895/rs17231506; rs2043085/rs2070895/rs17231506) in the lipid metabolism pathway significantly 
influencing gene expression in liver. Both eCombinations correlate with the expression of the LIPC gene (Sup-
plementary Table  S2). The eCombination with the highest significance include the variant rs2070895 (LIPC 
locus, independent signal 23.2 in ref.2) and rs17231506 (CETP locus) (Fig. 3a,b). Based on the two variants indi-
viduals with a high GRS showed a significantly increased expression of LIPC, in comparison to individuals with a 
low GRS (effect size (ES) = 0.92, standard error (SE) = 0.15, Q-value = 7.7 × 10–3). The second eCombination with 
a significant impact on LIPC expression includes the same variants as the first eCombination, and additionally 
rs2043085 (LIPC locus, independent signal 23.1 in ref.2). Again, individuals with a high GRS have a higher LIPC 
expression (ES = 0.89, SE = 0.15, Q-value = 1.65 × 10–2).
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Next, we investigated additional eCombinations and their effect on gene expression differences between risk 
groups. We modified the combinations step-wise by adding or removing genetic variants. This identified less 
strong, and less significant effects (Fig. 3b). Of note, in our dataset the single variant rs2070895, which contributes 
to a known liver eQTL with LIPC7, revealed no significant effect after correcting for multiple testing.

Interaction of assigned variants in the extracellular matrix pathway.  Fifteen independent genetic 
variants were assigned to the extracellular matrix pathway (Fig. 1b), resulting in 32,767 unique combinations. 
We then analyzed the effect of each combination on the expression of 24,123 genes, which required over 790 
million tests (Table 1). Applying the same threshold as described above, no significant correlation was observed 
(Q-value < 0.05) (Supplementary Table S3). This was confirmed by a quantile–quantile-plot, which showed no 
P-value differing from those expected by chance (Supplementary Figure S2b). Interestingly, the two eCombina-
tions significant in the lipid metabolism pathway were included in this analysis, but failed to remain significant 
due to the higher burden of multiple testing.

Interaction of assigned variants in the complement pathway.  The 19 variants assigned to the com-
plement pathway category result in 524,287 unique combinations which would require over 12 billion tests. A 
quantile–quantile-plot demonstrated that P-values smaller than 10–5 did not occur by chance (Supplementary 
Figure  S2c). Altogether 641,016 significant results were observed, including 326,144 unique eCombinations 
and 1725 eGenes, whereby eCombinations could influence the expression of more than one eGene (Table 1, 
Supplementary Table S4). To focus on the most significant effects, the significance threshold was lowered to a 
P-value < 10–7 and only eGenes detected by at least three different eCombinations were analyzed (Supplementary 

Figure 1.   Categorizing independent AMD-associated variants. (a) AMD-associated loci as defined in ref. 
2 were assigned to three biological pathways discussed to be relevant in AMD pathobiology, particularly the 
“Extracellular structure organization”, “Cholesterol transport” and “Regulation of plasma lipoprotein”, and 
“Immune system process”. A locus was assigned to a pathway if a gene located in this locus (locus definition: 
index variant(s) and proxies (r2 > 0.5; +/- 100 kb)2 is functionally associated by GO-Terms. Subsequently, the 
independent signals within these loci were correlated with the liver eQTL dataset reported by Strunz et al.7. 
(b) Distribution of independent AMD-associated variants over the three biological pathways identified. 
Overlapping circles indicate independent variants that were assigned to more than one category. Details are 
given in Supplementary Table S1.
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Figure 2.   Schematic project workflow. (a) AMD-associated genetic variants were used to generate unique 
variant combinations. (b) Based on each combination, a genetic risk score (GRS) was calculated for 588 
individuals represented in the liver eQTL dataset7. According to the individual genetic risk profile, each person 
was graded into risk groups, with a low-risk group containing the 30%-quantile of the lowest scores and a high-
risk group containing the 30%-quantile of the highest scores. Consequently, expression of 24,123 genes in liver 
tissue were compared between the risk groups.

Table 1.   Statistical overview of variant interactions investigated. a Independent signals = independent AMD-
associated genetic variants as defined by Fritsche et al.2

Lipid metabolism pathway Extracellular matrix pathway Immune pathway

Independent signalsa 7 15 19

Combinations 127 32,767 524,287

Tests (24,123 genes) 3 M 790 M 12.6 B

Significance threshold Q-value < 0.05 Q-value < 0.05 P-value < 10–5

Significant results 2 0 641,016

eUnique eCombinations 2 0 326,144

Unique eGenes 1 0 1725
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Table S5). The filtering reduced the significant results to 438,219, including 243,302 unique eCombinations and 
25 eGenes (Fig. 4a). Interestingly, over 99% of all significant results correspond to expression alterations of the 
complement factor H related genes 1, 3 and 4 (CFHR1: 242,652 eCombinations, CFHR4: 124,372 eCombina-
tions, and CFHR3: 70,362 eCombinations). To further evaluate significant eCombinations, we initially focused 
on the number of variants included in the various combinations. This defined three categories of genes (Fig. 4b):

eGenes influenced by single variants and combinatory effects with almost any variant.  This group refers to CFH-
related genes CFHR1, CFHR3, and CFHR4, which also show the strongest differences in expression between 
low and high-risk individuals (highest absolute ES > 1.8) (Fig. 4b). To identify effect-driving variants, we exam-
ined how often each variant is represented among all eCombinations for the respective eGene (Supplementary 
Table S6). For example, CFHR4 expression is significantly altered by 124,372 eCombinations, and each one of 
these combinations includes the AMD-associated variant rs10922109 (CFH locus) (Fig. 4c). In contrast, variant 
rs3750846 (locus ARMS2/HTRA​) contributes to 103 of the 124,372 eCombinations while all other variants in 
this category contribute to approximately 50% of eCombinations, including variants rs570618 and rs61818925 
located at the CFH locus (Supplementary Table S6).

eGenes influenced by single variants and combinations including a maximum of 10 variants.  The second group 
of eGenes includes the genes PILRA, PILRB, and TSPAN10. Overall, the observed ESs are smaller than in the first 
group of eGenes (highest absolute ES < 1). A single variant (rs7803454, PILRB/PILRA locus) drives the strong-
est effect on expression of PILRA (ES = 0.66, SE = 0.09, Q-value = 9.21 × 10–11) and PILRB (ES = 0.59, SE = 0.04, 
Q-value = 7.97 × 10–29) (Supplementary Table S5). Also, this variant contributes to every eCombination identify-
ing PILRA (Fig. 4d), although the ES decreases when additional variants join the eCombination (Fig. 4b). In con-
trast, an eCombination of 5 variants shows the strongest effect on TSPAN10 expression (ES = − 0.93, SE = 0.14, 
Q-value = 2.77 × 10–9) (Fig. 4b).

eGenes exclusively influenced by combinatorial effects.  Nineteen eGenes within the third group reveal changes 
in gene expression due to eCombinations of at least 4 and a maximum of 14 variants (Fig. 4b). BRCA1 and ASNS 
show the highest ESs in this group with downregulation of BRCA1 (ES = − 1.18, SE = 0.21, Q-value = 1.55 × 10–7; 

Figure 3.   eCombinations altering expression of LIPC. (a) The boxplot compares LIPC expression between 
the AMD low and high-risk groups based on the genetic profile of the two genetic variants rs2070895 (orange, 
located in the LIPC locus) and rs17231506 (blue, located in the CETP locus). The y-axis corresponds to 
the relative level of gene expression. (b) The tree chart shows related variant combinations influencing the 
expression of LIPC. The chart starts with a single variant combination at the top and adds one variant per step 
downwards. Every box represents a set of variants used to determine risk groups. The P-value (P) and the effect 
size (ES) display the relationship between calculated risk groups and gene expression. Combinations highlighted 
with an asterisk remain significant after adjustment for multiple testing (Q-value < 0.05). Color code of variants 
refer to their locus affiliation.
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Figure 4.   Interaction of genetic variants assigned to the immune pathway. (a) Number of eCombinations 
(P-value < 10–7) influencing the expression of the respective eGene given on the Y-axis. eCombinations were generated 
from genetic variants assigned to the immune pathway by Fritsche et al.2 and only eGenes which were detected at least 
three times are shown. Applying these thresholds, 438,219 significant results were obtained and related to expression 
changes of 25 eGenes. Black bars highlight eGenes that overlap with a known AMD locus2. (b) Color-coded effect 
sizes (ES) reflecting the correlation of eCombinations and gene expression. Colored fields show the absolute ES of an 
eCombination. White fields indicate a non-significant combination. The X-axis displays the number of genetic variants 
included in the respective eCombination. The orange line separates three subtypes of results, specifically one group 
including the CFH-related genes with one genetic variant being sufficient for eQTL detection and high absolute ES 
(highest absolute ES > 1.8), one group with a single genetic variant being sufficient for eQTL detection but lower ES 
(highest absolute ES < 1), and one group where an effect on gene expression can be observed by combining several 
genetic variants. (c,d) Contribution of different genetic variants to combinatory effects on gene expression of CFHR4 
(c, 124,372 eCombinations) and PILRA (d, 20 eCombinations). (e) Comparison of testing combinatory effects of all 
31 AMD-associated variants and testing combinatory effects of 19 variants assigned to the category immune system 
process. The heatmap functionally refers to (b). (f,g) Contribution of different variants to combinatory effects on gene 
expression of BRCA1 (f, 40,903 eCombinations) and ASNS (g, 192 eCombinations) with all 31 variants included in the 
analysis. Results refer to a P-value threshold < 10–7.
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12 variants), and upregulation of ASNS (ES = 1.17, SE = 0.20, Q-value = 9.36 × 10–8; 10 variants) (Supplementary 
Table S5).

Validation of regulatory effects of variants assigned to the complement pathway.  To validate 
the methodological approach, we established a two-step protocol based on data of the genotype-tissue expres-
sion (GTEx) project. In a first step, we tested whether our findings are liver-specific. Consequently, we selected 
the five eCombinations with the strongest absolute ES for the 25 eGenes identified (Fig. 4a) and analyzed their 
regulatory effect on the respective gene in three tissues with comparable sample sizes to the liver data, namely 
skeletal muscle (584 samples), whole blood (556 samples) and subcutaneous adipose tissue (477 samples) (Sup-
plementary Table S7). Out of the 25 genes, four (CFRH4, SLC25A31, GPR22 and MRGPRX1) were not expressed 
in the selected tissues. Of the remaining 21 genes, the regulatory effects on genes known for their local eQTL 
(CFHR1, CFHR3, PILRA, PILRB and TSPAN10) were regularly detectable with the exception of PILRA in whole 
blood for any of the tested eCombinations including the single eVariant rs7803454 (representing a local eQTL). 
Regulatory effects on the remaining genes, which are not known for their local eQTL and mostly exhibited 
smaller ESs in the initial analysis in liver tissue, were observed only sporadically in the three additional tissues 
examined, and not always with the same effect direction. This indicates that the observed regulatory interaction 
effects of AMD-associated variants on gene expression represent mainly tissue-specific effects.

The second validation step applied an undirected approach. Essentially, we repeated the interaction analysis 
to identify eGenes influenced by interaction of complement pathway assigned variants in the GTEx tissue skel-
etal muscle. Applying a threshold of P < 10–5, we observed 160,466 significant results, including 102,293 unique 
eCombinations and 1425 unique eGenes (Supplementary Table S8). A direct comparison with the results obtained 
at the same threshold in liver tissue (P-value < 10–5, Supplementary Table S4) revealed 80 eGenes identified in 
both tissues (out of 1725 unique eGenes in liver and 1425 unique eGenes in muscle). Moreover, screening for the 
eGenes with the most robust effects in liver (25 eGenes, P-value < 10–7 and detected by at least three eCombina-
tions, Supplementary Table S5), three eGenes were also detected in muscle (Supplementary Table S8), namely 
PILRA, PILRB and IRAK2. While PILRA and PILRB both represent eGenes with known strong local eQTL effects, 
IRAK2 was solely detected in liver when a risk profile including 7 to 12 AMD-associated variants was examined 
(Supplementary Table S5, Fig. 4b). In muscle, a regulatory effect on IRAK2 was detected by 4 eCombinations, 
including 4 to 6 variants (Supplementary Table S8).

Applying the same critical thresholds for muscle tissue as was done for liver to address the strongest effects 
(P-value < 10–7 and only eGenes detected by at least three eCombinations), 41,206 significant results were 
obtained, including 17,836 unique eCombinations and 17 unique eGenes (Supplementary Table S9). Comparing 
these results with liver data for the same thresholds (Supplementary Table S5), identified two eGenes detected 
in both tissues, namely PILRA and PILRB.

Together, the methodological validation demonstrates that the combination of GRS and eQTL analyses 
represents a valid approach to investigate regulatory effects of a defined genetic risk profile on gene expression 
in independent datasets and multiple tissues.

Resolution of regulatory effects on BRCA1 and ASNS expression in liver.  The combination of 
GRS and eQTL analyses has the power to identify novel potentially disease-relevant eGenes based on epistatic 
effects of available eCombination data. In liver tissue strongest effects for novel AMD eGenes were observed 
for BRCA1 and ASNS. These genes become evident when testing variant combinations for a joint effect on gene 
expression within the complement pathway. There is currently no known involvement of the BRCA1 or ASNS 
gene in this pathway, or more specifically in AMD pathology. To gain a deeper insight by refining the risk pro-
file required for a change of expression, we assessed combinations of all 31 AMD-associated genetic variants 
included in our dataset (Fig. 4e) and restricted testing for combinations consisting of a maximum of 9 variants 
due to the large computational and multiple testing burden. A P-value threshold of < 1 × 10–7 resulted in 40,903 
eCombinations with impact on BRCA1 expression (Supplementary Table S10), and 192 eCombinations with 
impact on ASNS expression (Supplementary Table  S11). Interestingly, the analysis including the 31 variants 
demonstrates even stronger ESs when compared with the results exclusively obtained with the complement-
related variants (Supplementary Table S5). For example, BRCA1 expression reveals an ES of − 1.61 (SE = 0.22, 
Q-value = 5.04 × 10–6) in contrast to the initially strongest ES of − 1.18 (SE = 0.21, Q-value = 1.55 × 10–7). ASNS 
also shows a small increase of ESs from the initially strongest ES of 1.17 (SE = 0.20, Q-value = 9.36 × 10–8) to an 
ES of 1.25 (SE = 0.20, Q-value = 8.99 × 10–6) (Fig. 4e).

Regarding BRCA1 expression, our analysis identifies two effect-driving variants with rs2043085 (LIPC locus) 
in 98.7% (40,366) and rs10033900 (CFI locus) in 90.2% (36,873) of the 40,903 eCombinations (Fig. 4f). 25 vari-
ants appear less often (0.10–57.31%) and 4 variants do not contribute to any significant eCombination, namely 
rs10922109 (CFH locus), rs570618 (CFH locus), rs3750846 (ARMS2/HTRA1 locus) and rs2230199 (C3 locus). 
Interestingly, the odds ratios (ORs) in the AMD GWAS of contributing variants vary between 1.09 and 1.49 while 
the ORs of non-contributing variants vary between 1.47 and 2.932.

ASNS expression is mostly driven by eCombinations containing rs10033900 (CFI locus) (182 eCombinations, 
94.8%), followed by rs1142 (KMT2E/SRPK2 locus) (170 eCombinations, 88.54%) (Fig. 4g). The frequency of the 
other 23 variants in the eCombinations vary between 75% (144 eCombinations) and 1.56% (3 eCombinations). 
Six variants exert no influence on ASNS expression, including rs2070895 (LIPC locus) and rs429358 (APOE 
locus) as well as the same 4 variants which also do not contribute to BRCA1 expression.
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Discussion
Within the past 15 years, GWAS have deepened our knowledge on the genetic factors conferring risk to develop 
complex phenotypes. Still, enormous challenges remain to better understand the complexities and interactions 
of the genetic contributions to disease. Specifically, functional consequences arising from multiple genetic vari-
ants, individually often contributing only small effects, need to be addressed. The latter issue is key insofar as it 
reflects a situation where a person almost always harbors various combinations of multiple risk variants. With 
this in mind, we aimed for an approach which tests epistatic effects of independent GWAS variants associated 
with AMD. We used variant combinations to generate genetic risk models in a dataset of 588 individuals with 
unknown AMD status. The genetic information was then correlated with gene expression in a model tissue, 
namely liver. This approach revealed 26 genes with a significantly altered expression in high-risk versus low-
risk variant combinations. Of these, seven eGenes, namely LIPC, CFHR1, CFHR4, CFHR3, PILRA, PILRB, and 
TSPAN10 were previously reported to be regulated by single AMD-associated variants7 while 19 eGenes repre-
sent exciting new candidates becoming evident only due to additive effects of AMD-associated genetic variant 
combinations.

Choosing three biologically relevant pathways in AMD2,6,14,20, we interrogated previous GWAS data to deter-
mine 21 functionally associated loci corresponding to 31 independent genetic variants. Testing all possible com-
binations would have generated a multiple testing burden of over 52 trillion tests, likely obscuring true positive 
signals22. Even reducing the number of genetic variants by pathway allocation only remotely reduces the impact 
of multiple testing. For example, the analysis of seven variants within the lipid metabolism pathway-related loci 
required around 3 million tests which, after correction for multiple testing, resulted in two eCombinations cor-
related with LIPC expression. Already the combination of 15 variants located in extracellular matrix pathway-
related loci resulted in 790 million tests and revealed no significant result, even though all combinations of the 
lipid metabolism pathway approach were included in this analysis. This demonstrates the need to initially define 
a precise hypothesis to keep the number of tests within a reasonable magnitude consequently avoiding false-
negative results due to excessive test corrections.

The correlation of LIPC expression and AMD pathology was established before7,23. One study showed an 
increased LIPC expression in AMD by applying a machine learning approach known as PrediXcan, which pre-
dicts gene expression based on genetic variation23. This approach, however, does not allow a resolution of the 
association down to a distinct variant. In a second study applying eQTL analysis in liver tissue, LIPC expression 
was directly correlated with local risk variant rs20708957. Interestingly, the current analysis revealed a significant 
correlation between an increased LIPC expression and a risk genotype containing rs2070895 (LIPC locus, chro-
mosome 15q21.3) and rs17231506 (CETP locus, chromosome 16q13). The combination of these two variants 
displayed an even higher ES than rs2070895 alone. The mechanism of the combined effect of these two variants 
on LIPC expression needs to be clarified, specifically since LIPC and CETP are attributed to distinct processes 
within the lipid metabolism pathway7,24–26.

Gene expression regulation by genetic variants at immune-related loci initially revealed a remarkably high 
number of over 1700 eGenes. We therefore focused on the most significant results with P-value < 1 × 10–7 and 
filtered for eGenes which are correlated with at least three eCombinations leaving 25 eGenes of interest. Remark-
ably, three of these 25 eGenes were also detected by applying our two-step approach in an independent dataset of 
skeletal muscle tissue from the GTEx project. This suggests that combining GRS and eQTL analyses yield valid 
and robust results. Six of the eGenes identified in liver have been linked to AMD before and are well-known 
eQTL genes, namely CFHR1, CFHR3 and CFHR4, as well as PILRA, PILRB, and TSPAN106,7,23,27. The major effect 
driving variant for the three CFH-related genes is rs10922109 which is located within the CFH locus. The addi-
tion of further variants to the genetic risk model reveals only little impact on ESs. In fact, including rs3750846, a 
variant localized within the ARMS2/HTRA1 locus, eliminates the effect on the expression of CFH-related genes. 
This could suggest that CFH-related genes and relevant genes in the ARMS2/HTRA1 interval are involved in 
independent mechanisms leading to AMD pathology.

Of the 26 eGenes with differential expression in high-risk versus low-risk variant combinations, 19 eGenes 
have not been associated with AMD pathogenesis before. We speculate that the novel findings are the result of a 
summation of small unidirectional effects of single genetic variants. Of note, the corresponding variants are often 
located in distant (trans) loci, such as eCombination rs2043085 (chromosome 15) and rs10033900 (chromosome 
4), which in combination with further variants influence the expression of BRCA1 (chromosome 17). Some of 
such distant variant combinations have ESs on gene expression that are even stronger than previously reported 
cis-eQTL variants7. Of note, a validation of our approach in different tissues available in the GTEx dataset high-
light that most of the 19 eGenes associated with AMD for the first time, likely represent liver-specific findings.

Following our eCombination risk approach, the unexpected findings for BRCA1 and ASNS expression were 
substantiated by generating combinations from the full set of 31 independent AMD-associated variants included 
in our dataset. Considering the burden of multiple testing, we explored a maximum of nine variants per com-
bination. This resulted in even stronger effects than in our initial findings which were limited to results from 
loci pre-assigned to the complement pathway. Loss of function mutations in BRCA1 are foremost known to be 
correlated with an increased risk to develop breast and ovarian cancer28. Functionally, BRCA1 is involved in 
repairing double strand breaks but has also been reported to regulate telomere length and stability29. Shortened 
telomere length is related to cell senescence, and double strand breaks are considered to be highly relevant in 
aging30,31. As age is a major risk factor for the development of AMD, this is a potential confounder which was 
adjusted for in the current study. Our data now point to downregulation of BRCA1 expression as part of the AMD 
pathomechanism which is further supported by a previous study that implicated DNA damage and a reduced 
DNA repair potential in AMD etiology32. Another remarkable finding in our analysis relates to the eGene ASNS, 
whose protein product catalyzes the conversion of aspartate to asparagine in the presence of glutamine33. A recent 
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study examined the role of asparagine and glutamine in angiogenesis, and demonstrated that silencing of ASNS 
inhibited endothelial cell sprouting34. Our data now demonstrate that an increased AMD risk is significantly 
correlated with an upregulation of ASNS expression. This could make ASNS a pro-angiogenic factor possibly 
involved in neovascular complications of late-stage AMD.

It is important to note that the present study is not suited to identify novel genetic variants associated with 
AMD as conventional GWAS usually do. In fact, our approach facilitates the detection of effects on so far unde-
tected gene expression that only becomes apparent if an individual carries a distinct combination of known 
AMD-associated risk variants. This represents a unique approach to find disease-associated genes that are poten-
tially hidden in existing GWAS data. It allows the identification of individuals at risk who might especially benefit 
from a certain prevention strategy or therapy. Although most of our findings show small to moderate ES, the 
altered regulation of gene expression likely exerts a lifetime effect and it is conceivable that the effects on gene 
expression even increase in combination with other factors, like ageing or smoking.

Taken together, our study presents a novel approach to investigate joint effects of genetic variants on gene 
expression by combining GRS and eQTL mapping. We replicate a number of previous eQTL findings in AMD 
GWAS data, and report 19 novel genes correlating with the genetic risk to develop AMD. All genes were identi-
fied by jointly analyzing several seemingly independent AMD-associated signals, which is perfectly in-line with 
the idea that the signals underlying GWAS associations contribute to shared biological mechanisms.

Methods
AMD risk variants and dataset.  52 independent genetic variants associated with AMD and their respec-
tive ORs were extracted from the most recent GWAS dataset2. Genotype and gene expression data of liver tissue 
from 588 individuals of European ancestry were provided by Strunz and colleagues7. The latter study combined 
data from four different studies35–38 and contains expression information on 24,123 genes. From genotype data, 
variants with (1) unavailable information, (2) a minor allele frequency less than 5% and (3) multi-allelic variants, 
were excluded. Thus, genotypes of 31 of the 52 AMD-associated variants were available for our study (Supple-
mentary Table S1).

Category definition.  The independent AMD variants were assigned to three superordinate biological pro-
cesses according to biological pathways relevant in AMD pathology. To this end, 368 genes located in AMD 
loci as defined by Fritsche and colleagues (index variant and proxies (r2 > 0.5 and ± 100  kb) were included2. 
Functional profiling21 of these genes revealed 48 significantly enriched biological processes (g:SCS algorithm 
corrected for multiple testing, user threshold: 0.05). The superordinate biological processes were detected by 
connecting all significant processes in ancestor charts (https://​www.​ebi.​ac.​uk/​Quick​GO/, accessed November 
2019). Two processes, “Cholesterol transport” and “Regulation of plasma lipoprotein”, were located in independ-
ent ancestor trees and were merged to one category (“lipid metabolism pathways”) due to their high similarities. 
An AMD locus was assigned to a category when at least one gene overlapping with the locus was assigned to the 
respective biological process.

Variant combination and GRS calculation.  To generate the variant combinations, we used the R39 func-
tion combn39. Every combination consists of a sequence of variants that is unique in its composition. The number 
of variants in a combination varies between 1 and the total number of variants used for calculation. For every 
combination of variants a unique GRS was calculated as reported elsewhere40. In short, the GRS is defined as the 
sum of risk alleles of one individual weighted by the respective ES of each variant, which was obtained from the 
latest AMD GWAS2. As a consequence, the OR was transformed by the natural logarithm. Instead of centering 
the GRS, we normalized it by dividing it through the average ES of all included variants as reported elsewhere13.

Determination of risk group sizes.  To determine the risk group sizes, all seven variants assigned to the 
superordinate biological process “Cholesterol transport/Regulation of plasma lipoprotein” were used to gener-
ate a GRS. According to their GRS, individuals were classified into risk groups. To determine the size of the risk 
groups ensuring sufficient power for subsequent tests, we performed eQTL analysis in low and high-risk groups 
with different group sizes (5%, 10%, 15%, 20%, 25%, 30% and 35%) of the entire dataset. eQTL analysis were 
performed with Matrix eQTL41. The group size was regarded to be sufficient in cases in which a replication could 
be shown for four previously detected eGenes, specifically LIPC, CETP, ALDH1A2 and ADAM10, in the same 
tissue7 with a FDR42 smaller than 5%. A proportion of 30% (176 samples) of the total cohort size (588 samples) 
was determined to be the minimal group size (Supplementary Figure S1).

Regression analysis, adjustment for multiple testing and trans‑eQTL analysis.  A multivariate 
linear regression was performed using Matrix eQTL41 to examine the relationship between AMD risk group 
and gene expression. The covariates age, gender, the original study representing the data source, and the first 
five genotype based principle components were included as provided by Strunz and colleagues7. The variants 
included in each initial category were analyzed in independent test series. We adjusted for multiple testing in 
every test series separately by controlling the FDR to be smaller than 5%. The FDR was calculated using the R 
function p.adjust (method “fdr”)39.

Validation of approach in GTEx.  To validate our combined approach of GRS and eQTL, we used the gen-
otype and gene expression data of the GTEx project (version 8). Whole genome sequencing data were retrieved 
from dbGaP (accession ID: phs000424.v8.p2) in VCF format43. Detailed information about the genotype pro-

https://www.ebi.ac.uk/QuickGO/
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cessing and quality control (QC) protocols are provided elsewhere44. To determine ethnicity of samples, a prin-
cipal component analysis (PCA) was carried out in R (version 3.3.1)45 using the snpgdsPCA46 function based 
on 100,000 random genetic variants of each sample and the corresponding genotype information of the 1000 
Genomes Project reference panel (Phase 3, release 20130502)47. The first two principal components were plotted 
to determine the ethnicity. Only samples clustering next to the European reference individuals were included to 
consider the known variation of haplotype structures between populations. Gene expression and covariate data 
of three tissues were downloaded from the GTEx Portal48 and filtered for European individuals based on the 
genotype PCA. Altogether, genotype, gene expression, and covariate data from 584 muscle skeletal, 556 whole 
blood, and 477 adipose subcutaneous samples were included in the validation step. The AMD-associated variant 
rs61818925 (AMD signal 1.6)2 was not covered in the GTEx dataset and was replaced by the proxy rs61818924, 
which shows a R2 to rs61818925 of 0.8 in Europeans.

Data availability
Genotype and gene expression data of the liver eQTL dataset were provided by Strunz and colleagues and are 
available in public databases as reported7. GWAS information for genetic variants, locus names and ORs were 
taken from Fritsche et al.2. Genotype, gene expression, and covariate data of the GTEx project are available in 
dbGaP (accession ID: phs000424.v8.p2) or the GTEx portal (http://​www.​gtexp​ortal.​org).
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