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Transition-metal-free allylation of 2-azaallyls with
allyl ethers through polar and radical mechanisms
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Allylation of nucleophiles with highly reactive electrophiles like allyl halides can be conducted
without metal catalysts. Less reactive electrophiles, such as allyl esters and carbonates,
usually require a transition metal catalyst to facilitate the allylation. Herein, we report a
unique transition-metal-free allylation strategy with allyl ether electrophiles. Reaction of a
host of allyl ethers with 2-azaallyl anions delivers valuable homoallylic amine derivatives (up
to 92%), which are significant in the pharmaceutical industry. Interestingly, no deprotonative
isomerization or cyclization of the products were observed. The potential synthetic utility and
ease of operation is demonstrated by a gram scale telescoped preparation of a homoallylic
amine. In addition, mechanistic studies provide insight into these C(sp3)-C(sp3) bond-
forming reactions.
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ince the importance of the medicinal chemistry concept

“escaping from the flatlands” gained appreciation, greater

research efforts have been devoted to the formation of
bonds between two C(sp?) carbons!:2. The allylation of nucleo-
philic carbon centers is one of the most useful methods for the
formation of C(sp3)-C(sp?) linkages®>-8. As a result, it has been
widely applied in the synthesis of bioactive compounds and
natural products® 1>, For decades, tremendous effort has been
devoted to developing new and efficient methods for allylic
alkylation. Most allylic alkylations fall into one of the two classes
based on the nature of the allylic electrophile. When the elec-
trophile possesses a potent leaving group, such as an allylic halide
or pseudohalide, allylation reactions can be conducted in the
absence of a catalyst. The drawback of these reactions, however, is
the high reactivity of the electrophile, making selective reactions
difficult. In cases where the allylic electrophile is less reactive,
such as allylic acetates or carbonates, allylic alkylations can be
performed with the assistance of a catalyst. This latter method has
the advantage of more stable electrophilic substrates and has
been widely employed with enantioenriched transition-metal
catalysts!©=2>, most notably in the Tsuji-Trost reaction26-32. The
shortcoming of this approach is it generally relies on precious
metal catalysts. Recent advances on radical allylation reactions
have also been reported33.

Allylic alkylation of carbanions can be used to prepare
homoallylic amines. In particular Kauffmann and co-workers
have prepared homoallylic amines by allylation of 2-azaallyl
anions using allyl bromide as an electrophile3*. Homoallylic
amines are incredibly useful precursors for the synthesis of a vast
number of biologically active molecules!!»3>=48. Economical
methods to prepare homoallylic amines remain in demand. The
use of allylic alkylations4*->¢ or decarboxylative allylic alkylation
reactions”®-%! to prepare homoallylic amines has been demon-
strated with various transition-metal catalysts, including Ni, Pd,
Cu, Zn, Ir, Rh, and Yb (Fig. 1a, b).

Our team%2-70 and other groups’!-8* have been interested in the
functionalization of 2-azaallyl anions through an umpolung strategy.
Recently, we discovered and developed a unique radical generation
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Fig. 1 General strategies for homoallylic amine synthesis. a Transition-
metal-catalyzed allylation of imines. b Pd-catalyzed decarboxylative allylic
alkylations.

approach®” for the transition-metal-free C(sp)-C(sp?) (Fig. 2a) and
C(sp®)-C(sp®) bond formations enabled by 2-azaallyl species8:87,
We found that deprotonation of N-benzyl imines 1 generated semi-
stabilized 2-azaallyl anions that readily undergo single electron
transfer (SET) with a variety of electrophiles®®, generating 2-azaallyl
anion intermediates that are persistent radicals®®. These species have
now been isolated and characterized by electrochemical methods and
X-ray crystallography®. Inspired by the work of Murphy and co-
workers on organic super electron donors (SEDs)%9-%, we demon-
strated that 2-azaallyl anions served as SEDs and enabled transition-
metal-free C—C bond formation via reduction of aryl or alkyl iodides
followed by radical recombination with the resulting 2-azaallyl radical
(Fig. 2a). This SED approach was further used for the preparation of
benzofurylethylamines (Fig. 2b) and isochromene derivatives via SET
from the 2-azaallyl anion, radical cyclization, and finally inter-
molecular radical-radical coupling reactions®’*8. Based on the
unusual reactivity of 2-azaallyl anions, we were curious about their
ability to react with allyl electrophiles that bear leaving groups that
were generally categorized as poor in both organic chemistry and in
the presence of transition-metal allylation catalysts®®-103,

Herein, we report a rare transition-metal-free C(sp3)-C(sp?)
coupling of allyl phenyl ethers with 2-azaallyl anions (Fig. 2c).
Specifically, we describe coupling of 2-azaallyl species with allyl
phenyl ether electrophiles to furnish Sx2- and Sy2'-type allylation
products in good yields. This allylation approach enables the
synthesis of homoallylic amines bearing various functional groups
(38 examples, up to 92% vyield). It is noteworthy that the simple
combination of base and solvent enable the transition-metal-free
allylation to proceed efficiently. Furthermore, no deprotonation
and isomerization or cyclization of products was detected.
Mechanistic studies provide insight into these C(sp?)-C(sp?)
coupling reactions and suggest that reactions can proceed by
either polar or radical mechanisms, depending on the substitution
pattern of the electrophile.
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Fig. 2 Transition-metal-free reactions of 2-azaallyl anions. a SET with aryl
or alkyl iodides followed by radical-radical coupling. b SET from 2-azaallyl
anions, cyclization and radical-radical coupling to afford benzofurans. ¢
Allylation of 2-azaallyl anions (this work).
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Table 1 Optimization of coupling of ketimine 1a and allyl phenyl ether 2a?b,
Ph N Ph
Ph._N_Ph Base . N
Y * PhO Solvent, Conc. Ph
Ph rt, 12 h |
1a 2a 3aa

Entry Base (equiv.) Solvent Conc. Assay yield (%)
1 NaN(SiMes), (3.0) MTBE 02M 64
2 NaN(SiMes), (3.0) DME 02M 10
3 NaN(SiMes), (3.0) CPME 02M 74
4 NaN(SiMes), (3.0) THF 02M 20
5 NaN(SiMe3), (3.0) Dioxane 02M 0
6 NaN(SiMes), (3.0) DMSO 02M 0
7 NaN(SiMe3), (3.0) DMF 02M 0
8 NaN(SiMe3), (3.0) Toluene 02M 84
9 LiO!Bu (3.0) Toluene 02M 0
10 NaOBu (3.0) Toluene 02M 0
n KO!Bu (3.0) Toluene 0.2M 0
12 LiN(SiMe3), (3.0) Toluene 02M 23
13 KN(SiMes), (3.0) Toluene 02M 8
14 NaN(SiMes), (2.0) Toluene 0.2M 74
15 NaN(SiMe3), (4.0) Toluene 02M 89 (86)°¢
164 NaN(SiMes), (4.0) Toluene 02M 73
17¢ NaN(SiMes), (4.0) Toluene 02M 70
18 NaN(SiMes), (4.0) Toluene 0.1M 63
@Reaction conditions: 1a (0.2 mmol, 2.0 equiv.), 2a (0.1 mmol, 1.0 equiv.), room temperature, 12 h.
bAssay yields determined by TH NMR spectroscopy of the crude reaction mixtures using CH,Br as an internal standard.
CIsolated yield.
d1a (1.5 equiv.).
6 h.
MTBE methyl tert-butyl ether, DME dimethoxyethane, CPME cyclopentyl methyl ether, THF tetrahydrofuran, DMSO dimethyl sulfoxide, DMF N,N-dimethylformamide.

Results
Reaction optimization. We initiated our reaction optimization
using N-benzyl benzophenone imine la and commercial allyl
phenyl ether 2a as coupling partners with 3.0 equiv. NaN(SiMe3;),
in MTBE (methyl fert-butyl ether) at room temperature for 12 h.
To our delight, the allylation product 3aa was generated in 64%
assay yield (AY, as determined by 'H NMR integration against an
internal standard Table 1, entry 1). We previously discovered that
solvent can play an important role in modulating reactivity of 2-
azaallyl anions by coordination to the main group cation of the
base®®. Therefore, a variety of solvents, including DME (1,2-
dimethoxyethane), CPME (cyclopentyl methyl ether), THF (tet-
rahydrofuran), 1,4-dioxane, DMSO, DMF, and toluene, were
examined (entries 2-8). CPME and toluene provided the target
product 3aa in 74% and 84% AY, respectively, while other sol-
vents either gave reduced yields or led to no reaction. Using
toluene, we next screened bases (LiOBu, NaO'Bu, KO'Bu, LiN
(SiMes), and KN(SiMe;),, entries 9-13). Of these, only LiN
(SiMe;), and KN(SiMej;), afforded product 3aa in 23% and 8%
AY. Other bases did not result in the desired product. When 2.0
equiv. of NaN(SiMes), (entry 14) was employed, the vyield
dropped to 74%. However, the yield increased to 89% (with 86%
isolated yield) when 4.0 equiv. of NaN(SiMej;), (entry 15) was
used. Further decreasing the amount of la (from 2.0 to 1.5
equiv.), reaction time (from 12 h to 6 h), and concentration (from
02M to 0.1 M) led to a decrease of yields to 63-73% (entries
16-18). Based on this optimization, the standard conditions for
the allylic alkylation are those in entry 15 of Table 1.

Following the reaction optimization with allyl phenyl ether, we
surveyed other allylic electrophiles. Under the optimized conditions,
allyl substrates possessing leaving groups, such as allyl methyl ether

(18% AY), allyl benzyl ether (14% AY), allyl benzoate (0% AY), allyl
acetate (19% AY), allyl bromide (66% AY), allyl tert-butyl silyl ether
(16% AY), and allyl tert-butyl diphenylsilyl (14% AY) provided the
desired product in lower AY than allyl phenyl ether (89% AY). Thus,
we selected allyl phenyl ether 2a as the allylating agent, which was
easily synthesized from phenol.

Reaction scope of imines. With the optimized conditions in hand
(Table 1, entry 15), we initiated investigation of the scope of N-benzyl
ketimines 1 (Fig. 3a). In general, we found that a wide variety of
ketimines with neutral, electron-rich, and electron-deficient Ar
groups provided good to excellent yields. Electron-donating sub-
stituents 4-Me (1b) and 4-'Bu (1¢) generated allylic products 3ba and
3ca in 83% and 78% yields, respectively. 4-Methoxy and 3.4-
methylenedioxy groups (1d and 1e) delivered products 3da and 3ea
in 63% and 70% yields, respectively. N-benzyl ketimines bearing
electronegative and electron-withdrawing groups, such as 4-F, 4-Cl,
4-Br, and 3-CF;, were also suitable coupling partners, providing the
products 3fa, 3ga, 3ha, and 3ia in 73%, 45%, 35%, and 54% yields,
respectively. Coupling with a ketimine possessing a biphenyl group
(1j) produced the product 3ja in 59% yield. The influence of more
sterically hindered N-benzyl ketimines was explored. Interestingly, 1-
naphthyl (1k) and 2-Tol (11) ketimines reacted with the allyl ether in
good yields (92% and 73%, respectively), despite the increased steric
hindrance. Finally, the heterocyclic ketimine bearing a 3-pyridyl (1m)
and 2-thiophenyl (2n) were also competent coupling partners, fur-
nishing product 3ma at 60 °C in 64% yield and 3na in 32% yield.
With imines bearing 4-C¢H,-CN, 4-CsH,-COOMe, 2-pyridyl, 4-
pyridyl, or 2-thiazolyl were employed, no reaction occurred and the
allyl ethers were recovered in >90% yields. In addition to the ally-
lation products in Fig. 3a, minor regioisomeric allylation products
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a Scope of ketimines in the allylation
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Fig. 3 Substrate scope of imines?®, a Scope of ketimines in the allylation. b Scope of aldimines in the allylation. 2Reactions were conducted on a 0.6 mmol
scale using 2.0 equiv. ketimine, 1.0 equiv. 2a, and 4.0 equiv. NaN(SiMe3), at 0.2 M. bYield of isolated product after chromatographic purification. €At 60 °C.
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Fig. 4 Substrate scope of allyl phenyl ethers®b, 2Reactions were
conducted on a 0.6 mmol scale using 2.0 equiv. ketimine 1a, 1.0 equiv. ally!
ether, and 4.0 equiv. NaN(SiMe3), at 0.2 M and 110 °C. bYield of isolated
product after chromatographic purification. €3.0 equiv. NaN(SiMes),. 41.0
equiv. ketimine 1a. dr, diastereomeric ratio.

3aa’-3ma’ were detected in these reactions with yields ranging from
7% to 18% (see Supplementary information for details). This phe-
nomenon is similar to the transition-metal-free arylation of 2-
azaallyls reported previously by our group®3.

In an effort to fully explore the scope of this transformation, we
next investigated aldimine substrates. In our past work, the
aldimines have generally proven to be inferior starting materials
to their ketimine isomers, despite generating the identical 2-
azaallyl anions. This is attributed to the challenging deprotona-
tion of the more hindered diphenylmethyl C-H bond. The
advantage of aldimines, however, is that there are many
commercially available benzaldehyde precursors®’. As shown in
Fig. 3b, the optimized conditions for ketimines accommodated
aldimines bearing various substituted aryl groups in yields slightly
below those reported in Fig. 3a. The parent aldimine (1a’) and
those with Ar groups supporting alkyl substituents, such as 4-Me

a Gram-scale reaction
NH,

DCM, rt
10 mmol 12h

NH Remove

)J\ solvent

Ph Pho ™7 pn__N__Ph
5 mmol = Ph. _N —
— > + A AN
oS pn| NaNSMeR); Ph o’
1a (4.0 equiv) || Ph

Ph” “Ph Toluene, rt 3aa 3aa’
o
10 mmol 12h,02M 1-189,76%  109.0mg, 7%
b Hydrolysis of product 3aa
Ph N\th 1MHCL, MeOH PN~ -NH:
9/ Ph then NaOH 9/
3aa 4aa, 89%

Fig. 5 Synthetic applications. a Gram-scale sequential one-pot imine
generation/allylation process. b Allylated product hydrolysis to homoallylic
the amine. DCM, dichloromethane.

(1b) and 4-Bu (1¢’), furnished the desired products 3aa, 3ba,
and 3ca in 86%, 63%, and 53% yields, respectively. Aldimine
substrates bearing electron-donating (4-OMe and dioxol),
electronegative (4-F, 4-Cl, and 4-Br) and electron-withdrawing
(3-CF3) groups led to products 3da, 3ea, 3fa, 3ga, 3ha, and 3ia in
31-66% vyields. Coupling with biphenyl substrate (1j) proceeded
in 59% yield. The sterically hindered 1-naphthyl and 2-Me
derivatives reacted with allyl phenyl ether to form the desired
products 3ka and 3la in 89% and 84% yields. The higher yield of
the aldimine 11’ over its ketimine counterpart 11 may be due to
the increased steric hindrance about the benzylic C-H’s of the
ketimine 1, causing a lower conversion to the 2-azaallyl anion
and subsequent yield of the products. Similarly, a few
regioisomeric allylation products with yields ranging from 6%
to 23% were obtained when aldimines were used as 2-azaallyl
anion sources (see Supplementary information for details).

Encouraged by the results with ketimine and aldimine
substrates, we turned our attention to surveying the scope in
the allyl phenyl ether-coupling partner. Although the substrates
examined were more sterically hindered and required higher
temperature (110 °C), the scope was found to be broad (Fig. 4).
Mono- or 1,1-disubstituted allyl ethers, such as 2-methylbut-3-
en-2-yl (2b), 1-vinylcyclohexyl (2c), 2-methylallyl (2d), but-3-en-
2-yl (2e), and pent-1-en-3-yl (2f) groups, were coupled with N-
benzyl ketimine 1a at the least hindered position of the allyl ether
to generate coupling products 3ab, 3ac, 3ad, 3ae, and 3af in 82%,
79%, 88%, 85%, and 64% yields, respectively. 1,2-Disubstituted
allyl ethers, such as 3-methylbut-2-en-1-yl (2g), E-4-methylpent-
2-en-1-yl (2h), E-2-methylpent-2-en-1-yl (2i), and E-but-2-en-1-
yl (2j) groups, furnished linear coupling products 3ab, 3ah, 3ai,
and 3ae in 76%, 64%, 71%, and 83% vyields, respectively.
Interestingly, the 1,2-disubstituted allyl bromide 3-methylbut-2-
en-1-yl (2g) provided product 3ab in a lower yield (44%)
compared to the phenolic electrophile (76% yield). Allyl ethers
with substituents both on the terminal and allylic positions, such
as (E)-5-methylhex-3-en-2-yl (2k), (E)-3-methylpent-3-en-2-yl
(21), and (E)-1-cyclohexylbut-2-en-1-yl (2m) provided the less
sterically hindered coupling products 3ak, 3al, and 3am in 43%,
52%, and 64% yields, respectively. The moderate yields may be
due to increased steric hindrance in the C-C bond-forming step.
In addition, regioisomeric allylation products 3ab’ and 3ah’ were
obtained with yields in 7% and 23%, respectively (see Supple-
mentary Information for details). Notably, deprotonative iso-
merization or cyclization of allylated products was not detected
for any of the coupling reactions in Figs. 3 and 4.

It is vital for a synthetic approach to be straightforward and
scalable. Hence, we explored the scalability of this coupling
reaction by a telescoped imine preparation/allylation process on
gram scale (Fig. 5a). Treatment of the benzyl amine with
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benzophenone imine in DCM at room temperature for 12 h was
followed by removal of the solvent under reduced pressure to
form N-benzyl ketimine 1a. Next, the unpurified 1a was coupled
with allyl phenyl ether 2a following the standard procedure. After
12 h at room temperature, workup, and purification 1.18 g of 3aa
(76% over 2 steps) and 3aa’ (109.0 mg, 7%) were generated.
Hydrolysis of the allylated product 3aa was performed to deliver
the homoallylic amine 4aa in 89% yield (Fig. 5b).

Mechanistic studies. To obtain insight into the allylation reaction
pathway, we carried out preliminary mechanistic investigations.
In order to isolate the leaving group, we switched to an allyl aryl
ether that would generate a less volatile phenolic product. When
an allyl ether bearing a 2-naphthyl group 5a was employed for
coupling with N-benzyl ketimine la, naphthalen-2-ol 6a was
isolated in 90% yield together with the allylated products 3aa and
3aa’ in 82% and 7% yields, respectively. This result indicates that
2-napthoxide was generated under the reaction conditions, fol-
lowed by protonation upon workup (Fig. 6a).

To further probe the mechanism of the allylation reaction, a
Hammett study was performed using intermolecular competition

a Isolation of the leaving group

Ph NaN(SiMes),
4.0 equiv)
Ph™ "N” "Ph O/v/ Toluene, rt
12h,02M
1a ba
(2.0 equiv) (1.0 equiv)

b Competition experiments

R
\©\O/\/

experiments (Fig. 6b). At the outset of these experiments, we were
aware that the correlation of the relative rates might be impacted
by concurrent reaction mechanisms (Sy2, Sy2', and radical). In
the event, the Hammett plots show a loose correlation with
typical polar substituent constant parameters (R = 0.55 for o, R?
=0.53 for o). The fit was improved by employing the o°
parameter (R2=0.62) (see Supplementary information for
details). The experimental data could be better fitted to a two-
parameter Hammett relationship!%4-19°. For example, plotting
log(kye) versus a combination of ¢ (33%) and o* (67%) provided a
better fit (R* = 0.70) (Fig. 6¢), which reflects the character of the
selectivity-determining and rate-limiting step that might be
expected from a combination of radical character with polar
influences. The p value determined (p=+1.4), with this
combination of o scales, is smaller than would be expected for
a SET mechanism, though still consistent with the buildup of
negative chargel%>.,

To probe the presence of radical intermediates in the allylation
reaction, two radical-clock-containing cyclopropanes were pre-
pared (see Supplementary Information, Synthesis of radical clock
7a and 11a for details). In the case of allylic ether radical clock 7a,

N\ Ph B "
: Phastioe n
o I o
3aa, 82% 3aa’, 7% 6a, 90%

Ph. _N_ _Ph 2 NaN(SiMes), o N e
e Y + (0.5 equiv) (8.0 equiv) Y
Ph Toluene, rt L
R'\©\ 3h,02M |
1a g
(4.0 equiv) » o -
(0.5 equiv)
R, R'=H, Me, Ph, F, Br, CN, NO,

¢ Hammett plot of experimental log(k,e) vs. calculated 0.336+0.67c°

0.6 -
p=14 (9.330-0.6/00 p-CN
0.4 R*=0.70 °
P-NO,

= o
&
)
L -01 04 0.5 0.6 0.7

-Q6

p-F(‘ oV -Me
-0.8 -
0.336+0.67¢"

Fig. 6 Mechanistic probes. a Isolation of the leaving group. b Competition experiments. ¢ Plot of log(k,e)) versus a combination of o (33%) and ¢® (67%).

Scatter in the plot is likely due to mixed mechanisms.
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the Sy2 and Sy2’ reaction pathways are hindered by the bulky
substituents. The reaction of the cyclopropane radical clock 7a
(2.0 mmol) with ketimine la in the presence of NaN(SiMes),
provided the allylated product 8aa in 32% and the cyclopropane
ring-opened product 9aa in 15% yield (Fig. 7a). It is noteworthy
that radical clock 7a is expected to favor ring-closed products,
because ring opening produces a high-energy primary radical
(Fig. 7a). Nonetheless, these results suggest that the coupling of
hindered allyl phenyl ethers proceed, at least in part, through
radical intermediates. A control experiment was carried out with
7a at 110 °C and NaN(SiMe;),, but in the absence of ketimine 1a.
Only the Claisen rearrangement product 10a was obtained (96%
yield, Fig. 7b). No ring-opened product was observed. This
result suggests that NaN(SiMe;), alone is not reacting as a
reducing agent and the ketimine is necessary to generate radical
intermediates.

The radical clock 11a was designed with a terminal double
bond to facilitate the Sy2’ reaction and with a phenyl cyclopropyl
moiety that would give a benzylic radical if this substrate
proceeded through radical ring-opened intermediates. When 11a
(2.0 mmol) was subjected to ketimine la and NaN(SiMe;), at
110 °C, the allylated product 12aa was afforded in 83% yield with
the cyclopropane intact. This observation suggests that, in the
case of unhindered pathways for S\2’, the two-electron process
prevails. The cyclopropane ring-opened product 13aa was
isolated in 15% yield (Fig. 8a). Crystals were obtained of the
minor product 13aa and the structure confirmed by X-ray
crystallography (CCDC 2039076).

A proposed mechanism for the formation of 13aa is provided
in Fig. 8b. Based on DFT calculations, we previously proposed
that the 2-azaallyl anion (S1) could undergo SET with ketimine
la to generate the 2-azaallyl radical (S3) and the ketiminyl radical
anion (S2). Here, the resulting 2-azaallyl radical (S3) undergoes
addition to the double bond to generate a C-C bond and a new
radical (S4). This radical can eliminate the phenoxy radical,
which can abstract He from the benzylic hydrogen in $4.
Formation of phenol is accompanied by generation of radical S5
and its resonance form S6. The radical character in $6 can add to
the m-system of the newly formed double bond to generate S7.
This addition places the radical alpha to the cyclopropyl group,
which opens to give the stabilized benzylic radical S8.
Intermediate S8 then gains a hydrogen and an electron, possibly
through reduction of the benzylic radical by the ketiminyl anion
(S2) and proton transfer from HN(SiMes),. This mechanism is
reminiscent of our previous work®, in which vinyl bromides
reacted with 2-azaallyl species via either an anionic substitution
pathway with the 2-azaallyl anion or a radical pathway with the 2-
azaallyl radical.

In order to probe this system for radical behavior, an additional
set of experiments were performed (Fig. 9a). First, the allylation
product 3aa (0.4 mmol) was reacted in the presence of NaN
(SiMe3), (4.0 equiv.) for 0.5 h at room temperature (Fig. 9a). This
resulted in the formation of a dark purple solution, consistent
with deprotonation of the ketimine to generate the 2-azaallyl
anion. Next, ketimine 1a was added at 110 °C. After heating at
this temperature for 12 h, the reaction was worked up following
the standard procedure. Dihydropyrrole product 14aa was
isolated in 38% yield. A proposed mechanism for the formation
of 14aa is provided that is based on the notion that the 2-azaallyl
anion can undergo SET with ketimine la to generate the
ketiminyl anion and 2-azaallyl radical, as we previously
reported®®. One could imagine that the ketimines and aldimines
are in equilibrium with the 2-azaallyl anions. Under such
circumstances, SET from 2-azaallyl anion S9 to ketimine la
would generate ketiminyl anion S2 and the 2-azaallyl radical
(S10). Resonance form S11 could then undergo addition to the
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double bond to generate a C-C bond and a new radical (S12).
Intermediate S12 gains a hydrogen and an electron, possibly via
HAT from S2 to form the dihydropyrrole 14aa. While the exact
mechanism of this transformation is not clear, it does have the
hallmarks of a radical process rather than a two-electron addition
of the 2-azaallyl anion to the double bond, which would give rise
to a primary carbanion. When the reaction is carried out by
combining both 3aa and 1a at the same time, the yield of the
dihydropyrrole increased to 47%. We note that when the reaction
is conducted in the absence of 1a, no major product is observed
and less than 5% 14aa is detected by NMR.

Spin trapping experiments using phenyl N-fert-butylnitrone
(PBN) as the spin trap support the proposed radical-type
mechanism. Heating a mixture of la, 2g, NaN(SiMes), in the
presence of PBN led to the formation of a PBN-trapped carbon-
centered radical, as detected by EPR spectroscopy (Fig. 9b, ¢). The
resulting EPR signal (g=2.0040, Ax=149G, Ag=24G) is
strong and similar to other reported PBN-trapped carbon-
centered radicals!1%!11. The cationic signal of radical 15 can be
detected in the reaction mixtures by high-resolution mass
spectroscopy (HRMS calculated for C,¢H,4NO* T 246.1852, found
246.1851 [M]*1).

Discussion

We have outlined reactivity of 2-azaallyl anions that is founded in
their ability to behave as super electron donors. This chemistry
represents a unique transition-metal-free allylation of 2-azaallyls
with allyl ethers to prepare homoallylic amine derivatives, which
are of value in the pharmaceutical industry. In this reaction,
simple, readily prepared allyl phenyl ethers coupled with azaallyl
anions or azaallyl radicals to construct new C(sp?)-C(sp>) bonds
in excellent yields. Notably, the simple combination of base and
solvent enabled the metal-free allylation to proceed efficiently, in
which no deprotonative isomerization or cyclization of products
was detected. A gram-scale telescoped homoallylic amine pre-
paration was carried out, demonstrating the potential synthetic
utility of this chemistry. In addition, mechanistic studies provide
insight into these C(sp)-C(sp?) bond-forming reactions and
support substrate-dependent radical and anionic pathways.
Unlike past advances, this allylation approach enables the
synthesis of a diverse array of homoallylic amines without the
addition of transition-metal catalysts, photocatalysts, or organo-
metallic reagents. These attributes increase the attractiveness of
this method for applications in the pharmaceutical industry!!2.

Methods

General procedure. An oven-dried 8 mL reaction vial equipped with a stir bar was
charged with ketimine 1 (1.2 mmol) or aldimine 1’ (1.2 mmol) and allyl phenyl
ether 2 (0.6 mmol) under a nitrogen atmosphere in a glove box. A solution of NaN
(SiMe3), (2.4 mmol) in 3 mL dry toluene was added to the reaction vial. The
reaction mixture turned to a dark purple solution. Then the vial was sealed with a
cap, removed from the glove box, and stirred for 12 h at room temperature (Fig. 3)
or 110 °C (Fig. 4). The room temperature reaction mixture was opened to air,
quenched with three drops of H,O, diluted with 3 mL of ethyl acetate, and filtered
over a 2cm pad of MgSO, and deactivated silica. The pad was rinsed with ethyl
acetate (3 x 2 mL), and the combined organic solutions were concentrated in vacuo.
The crude material was purified on an Agilent HPLC 1260 system using acetoni-
trile:H,O (75:25 vol./vol.) as the mobile phase and flow rate of 3.5 mL/min with
monitoring at 254 nm to give product 3.

Data availability

The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary information files. For the experimental
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Supplementary Methods. For 'H and !3C{'H} NMR spectra of compounds, see
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