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Tumor cells may share some patterns of gene expression with their cell of origin, providing

clues into the differentiation state and origin of cancer. Here, we study the differentiation

state and cellular origin of 1300 childhood and adult kidney tumors. Using single cell mRNA

reference maps of normal tissues, we quantify reference “cellular signals” in each tumor.

Quantifying global differentiation, we find that childhood tumors exhibit fetal cellular signals,

replacing the presumption of “fetalness” with a quantitative measure of immaturity. By

contrast, in adult cancers our assessment refutes the suggestion of dedifferentiation towards

a fetal state in most cases. We find an intimate connection between developmental

mesenchymal populations and childhood renal tumors. We demonstrate the diagnostic

potential of our approach with a case study of a cryptic renal tumor. Our findings provide a

cellular definition of human renal tumors through an approach that is broadly applicable to

human cancer.
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As cancer cells evolve from normal cells, they may retain
patterns of messenger RNA (mRNA) characteristic of the
cell of origin. In such cases, the cancer cell transcriptome

may contain information that can identify the cancer cell of
origin, its differentiation state, or trajectory towards a cancer cell.
It is therefore conceivable that tumor transcriptomes can be used
to identify the cells from which tumors arise and test fundamental
hypotheses regarding tumor’s differentiation states, such as the
“fetalness” of childhood tumors or the dedifferentiation of adult
tumors towards a fetal state.

Single cell transcriptomics allows for a direct quantitative
comparison to be made between single tumor and relevant nor-
mal cell transcriptomes. For example, single cell transcriptomes
identified that a specific subtype of proximal tubular cells are the
normal cell correlate of clear cell renal cell carcinoma (ccRCC)
cells1. Such experiments can also reveal more precise information
about normal cells within the tumor microenvironment. How-
ever, the high resource requirements of single cell transcriptomics
preclude investigations of large patient cohorts, which are
required to study rare subtypes, test the generalizability of such
signals and determine associations with clinical parameters. An
alternative approach is to identify the presence of single cell
derived mRNA signals in bulk tumor transcriptomes, utilizing
normal single cell transcriptomes as a reference. Smaller numbers
of single cancer cell experiments can then be used to validate
cellular signals identified.

Tumor bulk transcriptomes for most types of human cancer have
been generated in the context of cancer genomics efforts of recent
years, such as those conducted by the International Cancer Genome
Consortium (ICGC) and The Cancer Genome Atlas (TCGA)2,3.
Single cell reference data, generated by efforts collectively known
as the Human Cell Atlas4,5, have begun to provide quantitative
transcriptional definitions of the normal cells that constitute
the developing and mature human kidneys1,6–10. By combining
these bulk tumor transcriptome databases with single cell reference
data, we may therefore be able to identify single cell signals in bulk
transcriptomes across large cohorts of kidney tumors.

Here, we study normal single cell mRNA signals in bulk kidney
tumor transcriptomes (n= 1258; Fig. 1A, Supplementary Data 1)
and validate our findings using targeted single cell experiments
(n= 10, Fig. 1A, Supplementary Table 1). There are three central
aims of our analyses. Firstly, we test the fundamental presump-
tion that childhood renal tumors exhibit fetal cell signals whilst
adult tumors dedifferentiate towards a fetal state. Next, we define
for each tumor type its normal cell correlate which may represent
its cell of origin and provide diagnostic cues. Finally, we explore
the tumor micro-environment across different tumor types.

Results
An integrated single cell reference map of the kidney. The
nephron is the functional unit of the kidney and together with its
associated vasculature and support cells make up the majority of
kidney cells. The nephron is derived from the mesoderm and
forms from a combination of mesenchymal cell populations that
mature into the epithelial cells of the nephron via mesenchymal
to epithelial transition (MET)11. To precisely define these
mesenchymal populations and the populations they mature into,
we created a refined fetal kidney reference map combining pre-
viously generated1,8 and newly generated human fetal kidney
single cell data (Fig. 1B, S1).

This reference revealed 4 key mesenchymal populations:
mesenchymal progenitor cells (MPCs), cap mesenchyme (CM),
and two populations of specialized interstitial cells: smooth
muscle-like cells (ICa), and cortical stromal cells (ICb) (Fig. 1B,

S1A–C)8,11. The cap mesenchyme condenses on the ureteric bud
and forms the tubular structures of the nephron via mesenchymal
to epithelial transition. The mesenchymal cells which do not form
cap mesenchyme and remain in the interstitial space form
interstitial support cells for the nephron, such as mesangial cells.
The final mesenchymal population, which we termed mesench-
ymal progenitor cells, was not present in sufficient numbers to be
reported in earlier single cell transcriptomic studies of the
developing kidney. These MPCs are enriched for early time points
(Fig. 1C), strongly resemble mesenchymal cells in the fetal
adrenal (Supplementary Fig. 1D)12, and both populations
resemble primitive mesodermal populations in the post gastrula-
tion mouse embryo (Supplementary Fig. 1D)13. Developmentally,
both the adrenal cortex and the kidney are derived from the same
mesodermal lineage.

We combined this refined map of the developing kidney with
previously generated maps of the mature kidney1, the developing
adrenal gland12, and the post-gastrulation mouse13 (Fig. 1A).
Together these provide a complete single cell reference map of the
kidney across developmental time.

Quantification of reference cellular mRNA signals in bulk
transcriptomes. Our single cell reference map of the kidney
provides a cellular mRNA signal for each population of cells. To
measure the abundance of these reference cellular signals in bulk
tumor transcriptomes, we devised a method that fits raw bulk
mRNA counts for the entire transcriptome—not just marker
genes—to a weighted linear combination of transcriptomic sig-
nals derived from reference single cell data.

A number of bulk deconvolution tools exist that aim to identify
the cellular composition of bulk tissues using a single cell
reference14–16. However, the aim of our analysis was not to
identify and quantify the number of cells present in the
microenvironment, but to identify the major cellular signals (or
transcriptional programs) used by tumor cells. As such, we do not
expect any of our single cell reference populations to exactly
match the tumor cells’ transcriptome. We therefore designed our
method to identify the major transcriptional signals (defined
using single cell data) present in bulk transcriptomic data, with
the expectation that the provided reference signals would not
perfectly match the transcriptomes of the cells in the tumor. We
term this approach “cellular signal analysis” to differentiate it
from “deconvolution analysis”, the inference of the cellular
composition of bulk transcriptomes.

To validate our approach we applied cellular signal analysis
and published deconvolution methods, MuSiC15 and BSeq-SC14

to human bulk transcriptomes of known origin: purified normal
leucocytes, pre-B cell leukemia, and peripheral blood mono-
nuclear cells17,18. For this comparison we used a reference that
combined single cell transcriptomes from peripheral blood cells
with a negative control population; proximal tubular kidney cells.
As proximal tubular cells are completely absent from the source
material for these bulk transcriptomes, an ideal method would
not assign any contribution from this population.

We first considered those bulk transcriptomes which we
expected to be well described by the provided reference (e.g., bulk
B cell transcriptomes should be well modeled by a B cell signal).
All three methods identified the correct cellular signal in most
cases (Fig. 1D, S2A). However, MuSiC found a small but
implausible renal tubular signal in most bulk transcriptomes,
which was mostly absent from cellular signal analysis. This
difference was even more pronounced for bulk transcriptomes
where an adequate reference was not available (Fig. 1E, S2B).
Here, MuSiC identified a substantial contribution from renal
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proximal tubular cells to pre-B cell leukemia, while BSeq-SC was
unable to differentiate pre-B cell leukemia transcriptomes from
normal mature B cells (Supplementary Fig. 2B). Cellular signal
analysis identified pre-B cell leukemia as most similar to B cells,
but with a substantial part of the signal unexplained by the given
reference (Fig. 1E, Supplementary Fig. 2B).

As a further test, we applied all three methods to 766 ccRCC
transcriptomes from The Cancer Genome Atlas19 to assess whether
the known cellular identity of these cancer cells could be identified.
Cellular signal analysis best identified the signal of a specific
proximal tubular cell population as the predominant cell signal in
ccRCC bulk cancer transcriptomes (Supplementary Fig. 3).
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To test the methods on a more traditional “deconvolution”
metric, we applied cellular signal analysis and MuSiC to 100
pseudo-bulk transcriptomes constructed from the reference single
cell data. We then estimated how accurately the known number
of cells of each type that was used to construct the pseudo-bulk
transcriptome could be recovered (Supplementary Fig. 2C, D).
This comparison found that while cellular signal analysis had
reasonable accuracy, MuSiC was consistently the best performing
method (Supplementary Fig. 2C, D). This highlights that the cost
of the flexibility built into cellular signal analysis in accommodat-
ing unexplained signals is lower accuracy in determining the
cellular composition of bulk transcriptomes.

Taken together, these comparisons demonstrate the need for a
bespoke approach to identify the main cellular signals in bulk
transcriptomes where the reference data is incomplete. Cellular
signal analysis quantifies the inadequacy of the reference through
the allocation of “unexplained signal”. Mathematically, this
“unexplained signal” represents an intercept term, included to
limit the assignment of spurious signals when a bulk transcrip-
tome differs from all signals in the reference (see Methods).
As the reference becomes progressively less suited to the bulk
transcriptome being modeled, the “unexplained signal” contribu-
tion becomes steadily larger (Supplementary Fig. 2C).

Childhood tumors, but not adult tumors, exhibit a fetal tran-
scriptome. For each tumor, we determined whether it exhibited a
fetal or mature (i.e., post-natal) transcriptome, to guide the choice of
reference in subsequent analyses. This analysis also enabled us to test
two fundamental hypotheses about the differentiation state of tumors
—that childhood tumors represent fetal cell types and that adult
cancers, especially epithelial malignancies, dedifferentiate towards a
fetal state. We define dedifferentiation to be the reversion of a mature
cell to a fetal state, at the level of the whole transcriptome.

We calculated the immaturity by fitting each bulk transcrip-
tome to a combined reference set composed of cellular signals
from both mature and fetal kidney reference populations. The
immaturity score was the fractional contribution of the develop-
mental signals to the bulk transcriptome. Using this approach, we
established a reference range of mature normal kidneys (Fig. 2A).
We demonstrated the validity of this range by scoring fetal kidney
transcriptomes which lay significantly outside the mature range
(p= 0.015, Wilcoxon rank sum test).

We next calculated the same maturity score for individual
tumors, which showed a clear signal of “fetalness” across all types
of childhood kidney tumors (Fig. 2B, C). Although all childhood
kidney tumors had a significant enrichment for developmental
cellular signals, pretreated Wilms tumor had a significantly lower

score than other childhood kidney tumors, including untreated
Wilms. The comparison between treated and untreated Wilms
suggests that chemotherapy reduces the developmental signal in
Wilms tumor, a notion we explore in detail in a later section.

A significant developmental signal was absent from almost all
adult tumors (Fig. 2B). This suggests that global “dedifferentia-
tion” to a developmental state does not occur in adult kidney
tumors. One obvious exception to the ubiquitous lack of a strong
developmental signal in adult tumors (p < 10−4, Wilcoxon rank
sum test) was a cohort of lethal chromophobe RCC, classified
previously as metabolically divergent due to their comparatively
low expression of genes associated with the Krebs cycle, electron
transport chain, and the AMPK pathway19.

Motivated by this observation, we tested whether other clinical
markers such as somatic genotype, morphology, or molecularly
defined subgroup were predictive of immaturity score. We found
that clear cell renal cell carcinomas with two independent somatic
mutations in PTEN had a significantly higher immaturity score
(Fig. 2D; t-test, FDR < 0.01). As with lethal chromophobe tumors,
PTEN mutated ccRCCs conferred a far worse prognosis, with all
samples belonging to the TCGA defined m3/ccB subgroup with
the worst prognostic outcome of all groups20. Investigating
further, we found an association between immaturity score and
the m3 transcriptional subgroup (Fig. 2E; t-test, FDR < 0.01). No
other clinical covariate had a statistically significant association
with immaturity score at a 1% significance level (Supplementary
Tables 2 and 3).

Congenital mesoblastic nephroma resembles mesenchymal
progenitor cells. Congenital mesoblastic nephroma (CMN) is a
renal tumor of infants that has low metastatic potential. There are
two morphological subtypes of CMN, classical and cellular
variants21. Cell signal analysis in CMN bulk transcriptomes
(n= 18) revealed a uniform signal of mesenchymal progenitor
cells across tumors (Fig. 3A, S4), irrespective of morphological
subtype. Of note, these mesenchymal progenitor cells were
characterized by expression of NTRK3 and EGFR genes (Fig. 3B),
the principal oncogenes that drive CMN through activating
structural variants22. To verify that this signal was not a generic
consequence of fibroblast-like cells, we repeated the analysis of
bulk CMN transcriptomes using a developmental reference
combined with mature fibroblasts. This comparison revealed the
same match to mesenchymal progenitor cells, with a low con-
tribution from mature fibroblasts (Fig. 3C).

To validate this mesenchymal stem cell signal in CMN, we
subjected cells dissociated from a fresh CMN tumor specimen, to
single cell mRNA sequencing using the Chromium 10x platform.

Fig. 1 Methodology overview and validation. A Overview of methodology: Single cell reference atlases (left) define cellular signals. These are used to
calculate the contribution of each cellular signal to bulk transcriptomes (top, Supplementary Data 1), where signal contributions are normalized to give a
score between 0 and 1 for each bulk transcriptome, cellular signal pair (top right). These findings are validated by comparing the same cellular signals (left)
to single cell tumor transcriptomes (bottom, Supplementary Table 1), where logistic regression generates a similarity score for each single cell
transcriptome, cellular signal pair (bottom right). B Combined fetal kidney reference map: Contours and colors indicate the labeled cell type. CapMes Cap
Mesenchyme, RVCSB Renal vesicle and comma-shaped body, SSBpod S-shaped body podocyte, SSBpr S-shaped body proximal tubules, SSBm.d S-shaped
body medial and distal, Pod Podocytes, ErPrT Early proximal tubules, DTLH Distal tubule and loop of Henle, UBCD Ureteric Bud and collecting duct, CnT
Connecting tubules, Endo Endothelium, ICa Interstitial cells a (smooth muscle), ICb Interstitial cells b (stromal), MPC Mesenchymal progenitor cells. C Age
distribution of fetal kidney populations: Bar heights indicate fraction of cell type (as in B) by fetal age (color) in post conception weeks. D Benchmarking
with match in provided reference: Comparison of two “bulk deconvolution” methods (BSEQ-sc and MuSiC) to cellular signal analysis, using bulk
transcriptomes for which a good match exists in the reference single cell dataset. Bars height represent signal contributions from an immune cell and
proximal tubular cell (PT1, included as a negative control) reference set in explaining bulk transcriptome from peripheral blood or flow sorted cells as
indicated by the x-axis, bar color, and legend. “Matching cell” indicates a contribution from the expected signal (e.g., NK cell signal in NK bulk
transcriptomes). See also Supplementary Fig. 2A. E Benchmarking with no match in provided reference: As in D, except bulk transcriptomes are flow sorted
immune cells not in the reference (labeled “Unmatched cells”) or pre-B cell acute lymphoblastic leukemias (labeled “Cancer ALL”). See also Supplementary
Fig. 2B. Source data are available as a Source Data file.
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We annotated single cells based on literature derived marker
genes (Fig. 3D, S5) and compared to single cell clusters of
normal fetal kidneys using previously developed quantitative
approaches1. This comparison revealed that CMN tumor cells
matched the same mesenchymal progenitor cell population,
validating the cell signal seen in bulk tumor tissue (Fig. 3E).

Wilms tumor, clear cell sarcoma of the kidney and the effect of
treatment. Wilms tumor is the most common childhood kidney
cancer and is thought to arise from aberrant cells of the devel-
oping nephron. Clear cell sarcoma of the kidney (CCSK) is a rare,
at times aggressive childhood renal cancer that is treated as a high
risk Wilms tumor in clinical practice23. We assessed the cellular
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signals in bulk transcriptomes from treatment-naive CCSK, high
risk treatment-naive Wilms, and intermediate risk Wilms post
chemotherapy. Cellular signal analysis revealed a largely uniform
early nephron signal (cap mesenchyme, comma-shaped body, S-
shaped body) in the treatment-naive Wilms cohort (Fig. 4A, S6).
By comparison, the post-treatment cohort had a much-reduced
contribution from the early nephron, instead containing a mix-
ture of tubular, early nephron, and mesenchymal signals with a
relatively high unexplained signal fraction (Fig. 4A, S6). Previous
work utilizing single cell data from post-chemotherapy Wilms
tumors identified the same lack of cap mesenchyme signal
identified by our analysis of bulk transcriptomes1. The CCSK
transcriptomes showed a mixture of mesenchymal and early
nephron signals, with an extremely high unexplained signal
fraction (Fig. 4A, S6).

To validate the cap mesenchyme signal in treatment-naive
Wilms, we generated single cell mRNA transcriptomes from one
fresh, treatment-naive sample. Annotation of this data revealed
two proliferating populations (Fig. 4B, S7). Comparison to fetal
kidney showed that one of these populations strongly matched
the cap mesenchyme, validating its presence in treatment-naive
Wilms tumor (Fig. 4C). The second population exhibited a strong
match to mesenchymal progenitor cells (Fig. 4C).

To further investigate the origins of CCSK we generated single
nuclear transcriptomes from 2 archival samples and single cell
transcriptomes from one fresh sample (Fig. 4B, S8). In contrast to
Wilms tumor, all CCSK tumor cells matched multiple mesench-
ymal and early nephron populations (Fig. 4C). Although the
matching populations were consistent with the results of cell
signal analysis on bulk CCSK transcriptomes (Fig. 4A), the match
to multiple reference populations at the single cell level suggests
that CCSK transcriptomes represent a transcriptional state that is
intermediate between multiple mesenchymal populations in the
developing kidney. To test the possibility that the true normal cell
correlate for CCSKs was not in the fetal kidney, we next matched
CCSK bulk transcriptomes against mature kidney, fetal adrenal,
developing mouse, and the pan-tissue human cell landscape24. In
each of these comparisons, the unexplained signal explained at
least 50% of the CCSK bulk transcriptomes, a much higher
fraction than any other tumor type (Fig. 4D). This unexplained
signal fraction was comparable to the level obtained from a
deliberately inappropriate comparison of flow sorted B cell bulk
transcriptomes compared to the non-immune developing kidney
(Fig. 4D). In aggregate, these data suggest that CCSKs represent
transcriptionally grossly distorted renal mesenchymal cells.

Malignant rhabdoid tumors exhibit signals of neural crest and
early mesenchyme. Malignant rhabdoid tumor (MRT) is an
aggressive, often fatal childhood cancer, that typically affects the

kidney but may also occur at other sites. It is considered to be the
extracranial counterpart of the CNS tumor, atypical teratoid/
rhabdoid tumor (AT/RT). The principal, usually sole, driver event
in MRT and AT/RT is biallelic inactivation of SMARCB1. In
previous analyses of microRNA profiles, MRTs co-clustered with
a range of tissues: neural crest derived tumors, cerebellum, and
synovial sarcoma25.

Assessing fetal renal single cell signals in 65 MRT bulk
transcriptomes yielded a mesenchymal progenitor cell signal
(Fig. 5A, S9). However, the nephron and unexplained signal
fractions were also high, indicating that tumor cells only
moderately resemble this reference population. To investigate
further, we studied MRT single cell transcriptomes, derived from
an MRT expanded by a primary organoid culture26 (see
Methods), from nuclear mRNA sequencing, and from fresh
tissue MRT cells (Fig. 5B, S10). Comparison to our fetal kidney
reference revealed that MRT cell transcriptomes did not show any
consistent match (Fig. 5C). This may indicate that the
mesenchymal progenitor cell signal obtained in bulk represents
a signal of the broad embryological lineage of the tumor, rather
than a cell type.

We therefore compared MRT cells against published reference
cell populations of gastrulation embryos generated from mice13, a
developmental stage that is not accessible to study in humans.
Although there were differences between and within samples, all
produced a match to neural crest and/or early mesodermal/
mesenchymal populations (Fig. 5C). To validate this early
mesodermal signal, we performed immunohistochemistry for
the presence of a protein specific to paraxial mesoderm, TWIST1.
Consistent with its expression in a subset of cells by single cell
mRNA sequencing, occasional MRT cells exhibited TWIST1
staining, whilst no protein was detected in normal kidney
(Fig. 5D, S11). Overall our data show that MRTs do not
exclusively exhibit mRNA signals of either neural crest or
mesenchyme cells. Instead, our findings point at a hybrid state of
MRTs, representing mRNA features of both, neural crest and
mesenchyme, suggesting that MRTs may come from early
mesoderm or form along the differentiation trajectory of neural
crest to mesenchyme.

Adult tumors represent specific tubular cells. As discussed
above, our analyses confirmed a previous finding that the pre-
dominant single cell signal in the most common types of adult
renal cancer, clear cell RCC (ccRCC) and papillary RCC (pRCC),
was derived from a specific subtype of proximal tubular cells,
termed PT1 cell (Supplementary Fig. 3)1. In addition, cell signal
analysis also revealed some properties of the tumor micro-
environment. We found a prominent vascular endothelial signal
in ccRCCs (Fig. 6A, S12), but not in pRCCs. The downstream

Fig. 2 Immaturity score. A Normal kidney: From 201 bulk transcriptomes from normal kidney an immaturity score was calculated by fitting each bulk
transcriptome using a combined mature and fetal kidney cellular signal reference. The immaturity score is the total normalized signal contribution from
fetal kidney in each bulk transcriptome (y-axis). The x-axis shows sample age, with unknown age on the right and fetal samples on the left in red. The
shaded blue area indicates the range of maturity scores across all normal post-natal transcriptomes. The star indicates that fetal samples have maturity
scores significantly higher than normal samples (p=0.015, two-sided Wilcoxon rank sum test). B Adult renal tumors: Immaturity score (as in A) for 853
adult renal tumors, with normal immaturity score range shown by blue shading. The metabolically divergent subtype of Chromophobe renal cell carcinomas
have a significantly different maturity score as indicated by the star (p= 5.6 × 10−6 two-sided Wilcoxon rank sum test). C Childhood renal tumors:
Immaturity score (as in A) for 287 childhood renal tumors, with normal immaturity score range shown by blue shading. Each type of childhood tumor had a
significantly different maturity score than post-natal normal tissue kidneys (p < 2.2 × 10−16 (MRT), 6.8 × 10−14 (CMN), 1.8 × 10−9 (CCSK), < 2.2 × 10−16

(Wilms), and 10−10 (Wilms + Chemo) two-sided Wilcoxon rank sum test). D ccRCCs by PTEN mutation status: Immaturity score for clear cell renal cell
carcinomas as calculated in A, split by PTEN mutation status (0=wild type, 1=mono-allelic loss, 2= bi-allelic loss). The star indicates that bi-allelic loss is
a significant predictor of higher immaturity score (p= 0.003, two-sided t-test with multiple hypothesis correction). E ccRCCs by transcriptional group:
Immaturity score for clear cell renal cell carcinomas as calculated in A, split by transcriptomic subgroups20. The star indicates that samples in m3 have a
significantly lower immaturity score (p= 2.9 × 10−6, two-sided t-test with multiple hypothesis correction). Source data are available as a Source Data file.
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effects in RCC of inactivation of the von Hippel–Lindau gene and
upregulation of vascular endothelial growth factors are well
documented27. The prominent difference in the endothelial signal
provides a read-out of this pathway, further explaining why anti-
angiogenic treatments appear to be more effective in ccRCCs than
in pRCCs28.

Continuing our investigation of the tumor microenvironment,
we observed mast cells to be over-represented in single cell data
derived from pRCCs (Fig. 6B). Performing cellular signal analysis
revealed a high contribution of mast cell signal in a subset of
tumors, significantly enriched for type 1 pRCC tumors (p < 1e-4,
Wilcoxon rank-sum test; Fig. 6C). This finding was further
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validated by single molecule fluorescence in-situ hybridization
(smFISH), which found a higher fraction of mast cells a type 1
pRCC sample, than type 2 or ccRCC (Fig. 6D, Supplementary
Table 4).

Previous analyses of chromophobe cell renal cell carcinoma
(ChRCC) have shown that ChRCC exhibit expression profiles of
collecting duct cells29. Controversy exists as to whether the
normal cell correlate of ChRCC is the type A or type B
intercalated cells30. This is in part due to ChRCC retaining
expression of both canonical markers of intercalated cells,
SLC4A1 and SLC26A4 respectively (Supplementary Fig. 13).
Using cell signal analysis, which considers the entire transcrip-
tomes of type A and type B cells, rather than just two markers,
revealed a uniform type A signal across all chromophobe tumors
(Fig. 6E, S14), bar the lethal variant of so-called metabolically
divergent tumors (Fig. 2B, S14). The proliferation and active
remodeling of type A cells has been demonstrated under
conditions of systemic acidosis31, lending further credence to
their possible status as the cell of origin for ChRCCs.

Single cell signals provide diagnostic clues. An overarching
finding of our study was that each tumor type possesses a par-
ticular pattern of cellular signals that were uniform in, and spe-
cific to, bulk transcriptomes from individual tumor types.
Accordingly, cellular signal assessment of bulk transcriptomes
may provide sensitive and specific diagnostic clues. To test this
proposition, we assessed how accurately the tumor type of each
sample in our data could be determined based only on its cellular
signals. We found that the prevalence of the most common cel-
lular signal for each type could be used to infer the tumor type of
each bulk transcriptome (Fig. 7A, B, S15). As further validation,
we applied this approach to an independent cohort of Wilms
tumors. All were correctly identified as childhood tumors and had
cellular signals consistent with Wilms tumor (Supplementary
Fig. 16).

We next examined cellular signals in the bulk transcriptome of
a histologically undefinable metastatic primary renal tumor from
an 11-year-old boy. Following resection, the tumor was examined
histologically, both locally and by international reference renal
pathologists (Fig. 7C). A definitive diagnosis could not be reached
although an adult type renal cell carcinoma was favored.
Nevertheless, the child was treated as a Wilms-like tumor, with
cytotoxic chemotherapy and radiotherapy, following nephrect-
omy. He remains in complete remission two years following
diagnosis, thus retrospectively suggesting a diagnosis of a Wilms-
like tumor, as adult type kidney carcinomas do not respond to
cytotoxic treatment.

We performed bulk mRNA sequencing on tumor specimens
from this patient. Assessment of mRNA signals in bulk tissue
suggested that the tumor exhibited a fetal transcriptome with
cellular signals consistent with a Wilms-like tumor (Fig. 7D, E).
The transcriptional diagnosis of a Wilms-like tumor was further
substantiated by analyses of whole genome sequences. The tumor
harbored classical somatic changes of Wilms, namely canonical
CTNNB1 and KRAS hotspot mutations and uniparental disomy
of 11p (Supplementary Fig. 17). By comparison, when we assessed
single cell signals of an adult-type ccRCC that developed in a 15
year old adolescent, we found an overall mature transcriptome.
Furthermore, the tumor exhibited the PT1 signal of ccRCC as
well as a stark vascular endothelial signal typical of ccRCC
(Fig. 7F, G).

Discussion
We have determined normal cell signals in the major types of
human renal tumors. This has enabled us to replace the
approximate notion of the “fetalness” of childhood renal tumors
with quantitative transcriptional evidence that the entire spec-
trum of pediatric renal tumors represent an aberrant develop-
mental state. At the same time, our analyses question the
suggestion that adult, epithelial-derived kidney cancers revert to a
fetal state at the whole transcriptome level (i.e., “dedifferentiate”).
Importantly, when we found transcriptional evidence of ded-
ifferentiation in adult tumors, it conferred a dismal prognosis.
Furthermore, among childhood tumors we found examples of cell
signals representing differentiation trajectories, such as the neural
crest to mesenchyme conversion in MRT, validating our recent
finding based on phylogenetic and differentiation studies32. By
contrast, the different types of adult tumors resembled specific
renal tubular cells.

A central question that our findings raise is whether mRNA
signals point to the cell of origin of tumors. When the similarity
between mRNA signals and specific cell types was high, as found
in most tumor types, this may be a plausible proposition. For
example, in CMN, which typically occurs within the first weeks of
life, our analysis identified an early mesenchymal progenitor cell
population, characterized by the disease-defining oncogenes of
CMN, as the likely cell of origin of CMN. In some tumors,
transformation may entirely distort and obliterate gene expres-
sion profiles of the cell of origin. We found CCSK transcriptomes
to represent such an extreme modification of the transcriptome of
the developing kidney.

A further finding of our study was that within each category,
the majority of tumors exhibited remarkably uniform cellular
signals. That is, despite a high diversity in clinical outcome,

Fig. 3 Congenital mesoblastic nephromas. A Composition of bulk CMNs: The relative contribution of single cell derived signals from fetal kidney in
explaining the bulk transcriptomes of 18 congenital mesoblastic nephromas (CMNs) along with control leucocyte and ALL populations. The relative
contribution of each signal to each bulk RNA-seq sample is shown by the y-axis. Each signal/sample combination is represented by a single point and
boxplots shows the distribution with median (middle line), 1st and 3rd quartiles (box limits) and 1.5 times the inter-quartile range (whiskers). Each signal
type is abbreviated and colored as per the legend, with squares for fetal and circles for mature. CMN samples are shown on the left and control samples on
the right, where “Leukocytes” are bulk transcriptomes from flow sorted leukocytes and “Leukemia” represent B-precursor acute lymphoblastic leukemia.
B Expression of CMN cancer genes in fetal kidney: Expression of CMN driver genes (rows) in reference fetal kidney single cell RNA-seq populations
(columns), scaled to mean 0 and standard deviation 1 in each row (i.e., z-transformed). C Comparing mesenchymal progenitor cell signals to mature
fibroblasts: All 18 CMN bulk transcriptomes were analyzed using a reference signal set including both fetal kidney cells and the fibroblasts from mature
kidney. This figure shows the comparison of their inferred contribution to each transcriptome for each sample (y-axis), with lines joining points
representing the same sample. D Expression of CMN marker genes: tSNE map of 4,416 single cell transcriptomes from a CMN biopsy, where contours
indicate clusters of cells of the type labeled. Cells positive for NTRK3 (left) and EGFR (right) are colored red. B B cell, T T cell, DC dendritic cell, NK NK cell,
NKT NKT cell. E Comparison of single cell CMN to fetal kidney: Comparison of clusters of cells from D. (rows) with fetal kidney and leucocyte reference
populations (columns). For each CMN cluster/reference population pair a log-similarity score was calculated using logistic regression (see Methods).
Positive log-similarity scores represent a high probability of similarity between the reference and test cluster. Source data are available as a Source
Data file.
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tumors of the same type almost universally had the same domi-
nant cellular signal (Fig. 7A, B). This indicates that there are
overarching transcriptional features, beyond individual gene
markers, that unite tumor entities despite underlying intra- and
inter-tumor genetic heterogeneity. Therefore, cellular signals of
renal tumors may lend themselves as diagnostic adjuncts, as
illustrated here by our ability to resolve the identity of a

histologically unclassifiable childhood tumor. Moreover, the cel-
lular transcriptome itself may represent a therapeutic target that
transcends individual patients, if we had tools available to
manipulate transcription in a predictable manner. This may be a
particularly attractive approach for targeting transcriptional states
of fetal cells retained in childhood cancer that are absent from
normal post-natal tissues.
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Overall our findings attach specific cell labels to human renal
tumors that are underpinned by quantitative molecular data
obtained from single cell mRNA sequences, independent of the
interpretation of marker genes. As reference data from single cell
transcriptomes expand through efforts such as the Human Cell
Atlas, it will be feasible to annotate existing large repositories of
tumor bulk transcriptomes, to derive a cellular transcriptional
definition of human cancer.

Methods
Ethics statement. Human kidney and tumor tissues were collected through studies
approved by UK NHS research ethics committees. Patients or guardians provided
informed written consent for participation in this study as stipulated by the study
protocols. These studies have the following references: NHS National Research
Ethics Service reference 03/018 (DIAMOND study; adult kidney tissues); NHS
National Research Ethics Service reference 16/EE/0394 (pediatric tissues); NHS
National Research Ethics Service reference 96/085 (fetal tissues). Additional fetal
tissue was provided by the Joint MRC/Wellcome Trust-funded (grant # 099175/Z/
12/Z) Human Developmental BiologyResource (HBDR, http://www.hdbr.org;
(10)), with appropriate maternal written consent and approval from the Newcastle
and North Tyneside NHS Health Authority Joint Ethics Committee. HDBR is
regulated by the UK Human Tissue Authority (HTA;www.hta.gov.uk) and operates
in accordance with the relevant HTA Codes of Practice. Fetal tissues from both
sources were obtained from terminations and ranged from 7 to 18 post conception
weeks (Supplementary Table 1). Organoids were generated from human tissue as
approved by the medical ethics committee of the Erasmus Medical Center (Rot-
terdam, the Netherlands).

Tissue processing and data generation
10X single cell sequencing of fresh tissue and bulk sequencing of DNA/RNA. Fresh
tissues were processed to generate single suspensions for processing on the
Chromium 10X controller (V2/3 3′ chemistry), as previously described1. The MRT
and normal kidney tissue organoids were derived and maintained, as previously
described26. Libraries were produced according to the manufacturer’s instructions
and sequenced on an Illumina HiSeq4000 device. Sequencing of bulk RNA and
DNA was performed, as previously described1.

Cell-Seq2 experiments. Following resection, a random piece was selected from
viable tumor tissue, minced, and viably frozen. On the day of the sorting, the
sample was thawed and dissociated into a single-cell suspension in AdDF+ ++
(Advanced DMEM/F12 containing 1× Glutamax, 10 mM HEPES and antibiotics)
containing Collagenase 1a (1 mg/mL, Sigma, C9407) and DNase (0.25 µg/mL,
Stemcell), supplemented with Rho-kinase inhibitor Y-27632 (10 µM, Abmole). The
samples were digested on an orbital shaker for 30 min at 37 °C. The suspension was
washed first with AdDF+ ++ and next with MACS buffer (PBS pH 7.2+ 2 mM
EDTA+ 0.5% Bovine Serum Albumine), followed each time by centrifugation at
300 × g. Viable single cells were sorted based on forward/side scatter properties and
DAPI/DRAQ5 staining using FACS (MoFlo Astrios EQ, Beckman Coulter) into
384-well plates (Biorad) containing 10 µl mineral oil (Sigma) and 50 nl of RT
primers.

10X single nuclei sequencing. Single nuclei were isolated from frozen tissue using a
glass dounce homogeniser. Samples were homogenised in buffer A (Sucrose
0.25M, BSA 10 mg/ml, MgCl20.005 M, protease inhibitors and RNAse inhibitors
RNAseIn—0.12 U/ul and Superasin 0.06 U/ul), using ~25 strokes with the “loose”
pestle and ~20 strokes with the “tight” pestle. Nuclei were cleaned up using a 30%

Percol gradient and resuspended in buffer B (Sucrose 0.32M, BSA 10 mg/ml,
CaCl2 3 mM, MgAc2 2 mM, EDTA 0.1 mM, Tris-HCl 10 mM, DTT 1mM in the
presence of protease and RNAse inhibitors as in buffer A).

Nuclei were mixed 1:1 with Tryphan blue and counted using a disposable
haemocytometer, then diluted to the appropriate concentration. Nuclei were
loaded on to the 10X Chromium controller as per the Chromium Single Cell 3ʹ
Reagent Kits v3 User Guide, targeting to recover 5000 nuclei. Post GEM-RT
cleanup, cDNA amplification, and 3′ gene expression library construction were
carried out according to the user guide. The resulting libraries were sequenced on
the Novaseq platform.

Immunohistochemistry of MRT tissue. Immunohistochemistry was performed on
3–4 µm sections of tissue fixed in 4% paraformaldehyde, dehydrated, and
embedded in paraffin according to standard protocols. Sections were subjected to
H&E and immunohistochemical staining using antibodies for INI-1 (BD Trans-
duction Laboratories, 612111, 1:400) or TWIST (Abcam, ab50581, 1:500). Coun-
terstaining was performed using Mayer’s Hematoxylin (1:3 dilution). The Leica
DMi8 microscope was used for imaging.

RNAscope smFISH and immunohistochemistry. FFPE tissue sections of 5 μm
thickness were processed using a Leica BOND RX to automate staining with the
RNAscope Multiplex Fluorescent Reagent Kit v2 Assay and RNAscope 4-plex
Ancillary Kit for Multiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics,
Bio-Techne) in combination with immunohistochemistry (IHC) for PECAM133.
Owing to intense tissue autofluorescence, samples were treated with a photo-
bleaching procedure based upon that of Lin et al.34. It was observed that photo-
bleaching prior to RNAscope probe hybridisation adversely affected smFISH
staining, presumably due to loss of RNA integrity in the alkaline solution.
Therefore, photobleaching was conducted following RNAscope probe and tree
amplification reagents (AMP1/2/3) but before channel-specific HRP reagents and
fluorophores. Initial automated processing included baking at 60 °C for 30 min and
dewaxing, as well as heat-induced epitope retrieval at 95 °C for 15 min in buffer
ER2 and digestion with Protease III for 15 min. Following RNAscope probe and
AMP hybridisation according to the manufacturer’s instructions, slides were briefly
rinsed in PBS and then subjected to photobleaching. Slides were incubated hor-
izontally in 4.5% hydrogen peroxide, 24 mM sodium hydroxide in PBS in a Nunc
Square BioAssay Dish atop a white lightbox for 30 min. Slides were thoroughly
rinsed with sterile deionised water and Leica BOND wash before RNAscope
staining was resumed with the sequential development of three probe channels
using tyramide signal amplification with Opal 570, Opal 650 (both Akoya Bios-
ciences), and TSA-biotin (TSA Plus Biotin Kit, Perkin Elmer) and streptavidin-
conjugated Atto 425 (Sigma Aldrich). Finally, IHC was carried out, beginning with
a blocking step of 1 h in Primary Antibody Diluent (Leica), followed by rabbit anti-
PECAM1 (Abcam ab28364) at 1:600 at room temperature for 2 h, and then HRP
goat anti-rabbit IgG (Thermo G21234) at 1:1000 at room temperature for 1 h. Both
antibodies were diluted in Primary Antibody Diluent. IHC signal was developed
using Opal 520 (Akoya).

Stained sections were imaged with a Perkin Elmer Opera Phenix High-Content
Screening System, in confocal mode with 1 μm z-step size, using a 20× water-
immersion objective (NA 0.16, 0.299 μm/pixel). Channels: DAPI (excitation
375 nm, emission 435–480 nm), Atto 425 (ex. 425 nm, em. 463–501 nm), Opal 520
(ex. 488 nm, em. 500–550 nm), Opal 570 (ex. 561 nm, em. 570–630 nm), Opal 650
(ex. 640 nm, em. 650–760 nm).

Basic data processing and quality control
Mapping of DNA reads. DNA sequencing reads were aligned to the GRCh 37d5
reference genome using the Burrows–Wheeler transform (BWA-MEM)35.
Sequencing depth at each base was assessed using Bedtools coverage v2.24.0.

Fig. 4 Wilms tumor and clear cell sarcoma of the kidney. A Bulk Wilms tumor and CCSK compared to fetal kidney: The relative contribution of single cell
derived signals from fetal kidney in explaining the bulk transcriptomes of 137 nephroblastomas (Wilms tumors) and 13 CCSKs along with control
populations. The relative contribution of each signal to each bulk RNA-seq sample is shown by the y-axis. Each signal/sample combination is represented
by a single point and boxplots shows the distribution with median (middle line), 1st and 3rd quartiles (box limits) and 1.5 times the inter-quartile range
(whiskers). Each signal type is abbreviated and colored as per the legend, with squares for fetal and circles for mature. Wilms/CCSK samples are shown on
the left and control samples on the right, where “Leukocytes” are bulk transcriptomes from flow sorted leukocytes and “Leukemia” represent B-precursor
acute lymphoblastic leukemia. B UMAP of CCSK and Wilms single cell transcriptomes: Points represents cell transcriptomes from Wilms tumor (left) or
CCSK (right), with shading, contours, and labels indicate cell type. C Comparison of CCSK and Wilms transcriptomes to reference signals: Similarity of
transcriptomes from B (rows) to fetal kidney reference signals (columns), where color indicates logit similarity. D Comparison of unexplained signal
contribution to CCSKs and other tumor types: For each group of samples, the unexplained signal is calculated using the reference set of signals given at the
top (e.g., fetal kidney). The unexplained signal fractions are shown by black bars, sorted in increasing order, with the red horizontal line showing the median
value and the vertical line the range between the 25th and 75th percentiles. CCSK samples were fitted using 5 different reference sets (fetal and mature
kidney, mature kidney only, fetal adrenal, mouse embryo, and the pan-tissue human cell landscape). The final group on the right, represents samples fitted
using inappropriate references. This population serves as a calibration of the expected level of unexplained signal when the bulk transcriptome is not
explained by any of the provided reference signals. Source data are available as a Source Data file.
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Substitution calling. Single base somatic substitutions were called using an in-house
version of CaVEMan v1.11.2 (Cancer Variants through Expectation
Maximization)36. CaVEMan compares sequencing reads from tumor and matched
normal samples and uses a naive Bayesian model and expectation-maximization
approach to calculate the probability of a somatic variant at each base (https://
github.com/cancerit/CaVEMan). Small insertions and deletions (indels) were called
using an in-house version of Pindel (v2.2.2; github.com/cancerit/cgpPindel). Post-

processing filters required that the following criteria were met to call a somatic
substitution:

1. At least a third of the reads calling the variant had a base quality of 25 or
higher.

2. If coverage of the mutant allele was less than 8, at least one mutant allele was
detected in the first 2/3 of the read.
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3. Less than 5% of the mutant alleles with base quality ≥ 15 were found in the
matched normal.

4. Bidirectional reads reporting the mutant allele.
5. Not all mutant alleles reported in the second half of the read.
6. Mean mapping quality of the mutant allele reads was ≥ 21.
7. Mutation does not fall in a simple repeat or centromeric region.
8. Position does not fall within a germline insertion or deletion.
9. Variant is not reported by ≥ 3 reads in more than one percent of samples in

a panel of approximately 400 unmatched normal samples.
10. A minimum 2 reads in each direction reporting the mutant allele.
11. At least 10-fold coverage at the mutant allele locus.
12. Minimum variant allele fraction 5%.
13. No insertion or deletion called within a read length (150 bp) of the putative

substitution.
14. No soft-clipped reads reporting the mutant allele.
15. Median BWA alignment score of the reads reporting the mutant allele ≥140.
16. The following variants were flagged for additional inspection for potential

artefacts, germline contamination or index-jumping event:
17. Any mutant allele reported within 150 bp of another variant.
18. Mutant allele reported in >1% of the matched normal reads.

Copy number detection in bulk DNA. The ascatNGS algorithm (v4.0.1)37 was used
to estimate tumor purity and ploidy and to construct copy number profiles prior to
running the Battenberg algorithm (v2.2.5) (github.com/cancerit/cgpBattenberg) to
allow for tumor subclonality.

Bulk RNA mapping and quantification. Where possible, we have processed all bulk
RNA-seq data using the exact same pipeline as the recount2 project38. That is, we
used RAIL-RNA to produce counts of bases aligned to each gene in each sample39.
Counts were then converted to fragments aligned to genes by dividing counts by
the average fragment length for the sample. This approach allowed us to combine
our in-house data with any dataset processed by the recount2 project, in particular
the TCGA and GTEX projects.

The length for each gene was calculated as the sum of unique exonic bases for
all transcripts associated with each gene. We used the gencode v25 GTF
annotation40 and GRCh38 human reference genome.

In order to run the recount2 pipeline, we required access to the sequencer
output (BAM files or fastq). In some cases, we only had access to processed data,
either in the form of raw fragment counts, or transcripts per million (TPM). TPMs
were converted to fragment counts by multiplying by 1 million, rounding to an
integer and assigning each gene an effective length of 1.

Where TPM values were needed for direct comparison of gene expression, we
calculated TPM values from fragment counts by dividing by gene length, then
normalizing the counts/bp by forcing them to sum to 1,000,000 across all genes in a
sample.

Single cell RNA mapping, quantification, quality control, and normalization. Single
cell RNA-seq data were quantified using the 10X software package cellranger
(version 2.0.2 for V2 chemistry, 3.0.2 for V3 chemistry) to map sequencing data to
version 2.1.0 of the build of the GRCh38 reference genome supplied by 10X.

Data were normalized for sequencing depth by dividing by the total number of
UMIs in each cell and then transformed to a log scale for each cell using the Seurat
version 3.1.441 NormalizeData function. That is, the transformed data, y, is given
by:

ygc ¼ log 1þ F
xgc

∑gxgc

 !

where x is the UMI count matrix with g indexing gene and c indexing the cell. F is
the Seurat “scale.factor” parameter (which we left at the default value of 10,000).

Doublets were determined using scrublet42 and ambient RNA contamination
was removed with SoupX43. To filter lower quality cells, we performed high
resolution clustering (Seurat graph-based clustering with resolution= 10) and
filtered any cell which:

1. had greater than 5% expression originating from mitochondrial genes
2. was marked as a doublet
3. expressed fewer than 500 distinct transcripts
4. or belonged to a cluster where greater than 50% of cells failed one of 1–3.

The rationale behind this approach was to conservatively remove cells with a
very similar transcriptome to cells which have failed QC.

To prevent similarity to reference maps (e.g., fetal kidney) being driven by cell
cycle state, we also removed any cell with evidence of being in S or G2M phase. We
determined the cell cycle phase by scoring each cell based on panel of genes specific
to each phase using the Seurat CellCycleScoring function. We also removed all
leucocytes from each tissues reference map.

Analysis of processed data
Derivation of color scheme. In deriving a color scheme to represent the different
types of cellular signal used in this paper, we started by designating a series of hue
ranges to represent each tissue type. These hue ranges were then further sub-
divided to represent more specific cell types. To separate fetal and mature versions
of the same cell type, we used different values of the “value” parameter in hue,
saturation, value color space to represent fetal (0.9) and mature (0.7) cell signals.
Finally, we set the saturation value to 0.6 by default and allowed this to vary as
necessary to emphasize differences between cell types with otherwise similar colors.
This color scheme is summarized in Supplementary Fig. 18.

We also constructed a color scheme for each sample type in this study. We used
light/pastel colors to represent non-tumor or control samples and solid colors for
tumors. We used the same color to represent Neuroblastoma and ChRCC tumors
as they were never referenced in the same plot. This color scheme is summarized in
Supplementary Fig. 19.

Dimension reduction and cluster generation of single cell RNA data. Following
normalization, we identified genes with high variability using the Seurat Find-
VariableGenes function. This function calculates the mean expression and dis-
persion for each gene, then groups genes into bins (of size 20) by their mean
expression and identifies any gene for which the z-score calculated from the dis-
persion exceeds some cut-off. We used the default cut-off of z= 1 and mean
expression in the range 0.1 to 8.

The normalized data were scaled to have mean 0 and standard deviation 1 and
principle component analysis was performed using the variable genes identified
together with any gene that we identified as being potentially biologically
interesting (regardless of its variability in the data).

We determined the optimal number of principle components (PCs) using
molecular cross-validation (https://github.com/constantAmateur/MCVR)44. We
used these to construct a two-dimensional representation of the data using either
tSNE45,46 or UMAP47. This representation was then used only to visualize the data.

Clusters were identified using the community identification algorithm as
implemented in the Seurat “FindClusters” algorithm. We used the number of PCs
determined above as input to this method and set the resolution parameter to 1.
We chose this value of the resolution parameter as it produced a number of clusters
that was large enough to capture most of the important biological variability but
not so large as to make detailed manual scrutiny of each cluster impractical. All
other parameters were set to the function defaults.

Fig. 5 Malignant rhabdoid tumors. A Bulk MRTs compared to fetal kidney: The relative contribution of single cell derived signals from fetal kidney in
explaining the bulk transcriptomes of 65 malignant rhabdoid tumors (MRTs) along with control populations. The relative contribution of each signal to each
bulk RNA-seq sample is shown by the y-axis. Each signal/sample combination is represented by a single point and boxplots shows the distribution with
median (middle line), 1st and 3rd quartiles (box limits) and 1.5 times the inter-quartile range (whiskers). Each signal type is abbreviated and colored as per
the legend, with squares for fetal and circles for mature. MRT samples are shown on the left and control samples on the right, where “Leukocytes” are bulk
transcriptomes from flow sorted leukocytes and “Leukemia” represent B-precursor acute lymphoblastic leukemia. B UMAP of single cell MRT
transcriptomes: Each dot represents a single transcriptome from either tumor/tubular derived organoid cells (white), fresh tissue MRTs cells (gray) or
archival MRT nuclei (black). Contours indicate tumor cells, stroma, and leucocytes as labeled. C Log similarity of single cell MRT cells to fetal kidney and
developing mouse: Comparison of the transcriptomes in B to cellular signals defined from single cell reference transcriptomes. The reference population is
indicated on the x-axis and the gray bar on the left indicates the technology each cell was derived from. Each row corresponds to a single transcriptome
from B. The color scheme encodes the logit similarity score for each cell against each reference population (see Methods). D Immunohistochemistry of
TWIST1 in MRT and normal kidney: Staining of a region of normal kidney and MRT tissue for TWIST1. The MRT image shows a part of the tissue selected
for being TWIST1 positive, there were large sections of tumor tissue that were also TWIST1 negative. All normal kidney tissue was TWIST1 negative. This
experiment was repeated 3 times and the scale bar (bottom-right) indicates 0.1 mm. Source data are available as a Source Data file.
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Annotation of fetal kidney single cell data. To create the fetal kidney reference, we
combined the raw 10X output from previous studies1,8 together with data from 4
additional fetal kidneys. The combined data were quantified and clustered as
described above, with the exception that the clustering resolution parameter was set
to 2 to obtain a more granular annotation.

To annotate these clusters, we used a previously published detailed annotation
of the fetal kidney as a reference8. That is, we first trained a logistic regression
model on just the “PloS” data8. In training this model we used the elastic net

regularization procedure with alpha=0.99 to produce strong regularization but
prevent strongly co-linear genes being excluded. This model was fit using the
“glmnet” R package48.

To obtain regression coefficients specific to each cluster in our training data we
fit a series of N binomial logistic regression models, where N is the number of
clusters in the training data (i.e., one-versus-rest binomial logistic regression). To
prevent the observed frequencies of cells (which we do not expect to accurately
reflect the true abundances in situ) from biasing the regression coefficients we use
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an offset for each model given by,

log
f

1� f

� �

where f is the fraction of cells in the cluster being trained.
In each case, we performed 10-fold cross validation and selected the

regularization co-efficient, lambda, to be as large as possible (i.e., as few non-zero
coefficients as possible) such that the cross validated accuracy was within
1 standard deviation of the minimum.

These models were then used to calculate a predicted similarity for each cell in
the combined fetal kidney data set. In calculating the predicted values, an offset of 0
was used. Softmax normalization was not used to allow for the possibility that cell
types were present in the combined reference not present in the “PLoS” map.
Clusters with a similarity of less than 1 (logit scale) to any of the reference data
were labeled as “undecided”.

Following the application of the logistic regression model, we elected to merge
categories in the reference data that were commonly found in the same clusters.
Specifically, we combined:

NPCa, NPCb, and NPCc categories into CapMes.
RVCSBa, RVCSBb into RVCSB.
ErPrT and SSBpr into ErPrT

We removed Leu, Prolif, PTA, and Mes as no cluster contained a majority of
these cells.

Each cluster was then annotated with whichever of the reference categories had
the highest similarity score averaged across all cells in the cluster. This procedure
left one cluster as “Undecided” (that is, most cells in these clusters could not be
allocated unambiguously to one of the reference populations). Closer inspection of
this cluster revealed in to be an early mesenchymal population, which we labeled as
MPC for mesenchymal progenitor cells as discussed in the manuscript.

Additional reference signal sets. In addition to the above annotated single cell data
sets, cellular reference signals were also taken from additional data sets:

1. A mature kidney single cell reference map1.
2. The 10x demonstration PBMC data set49, annotated as described here

(https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html). This data set was
used to define a set of leucocyte signals that were added to all other
reference maps.

3. Fetal adrenal reference map12

4. Whole embryo mouse data13

5. A pan-tissue human reference from the human cell landscape publication24

Annotation of congenital mesoblastic nephroma single cell data. Single cell tran-
scriptomes derived from a congenital mesoblastic nephroma were processed into
clusters as described above. Following clustering, we assigned a cell type to each
cluster using marker genes identified as in the previous work1,43.

To confirm that the cluster without expression of other known markers
represented CMN tumor cells, we investigated the expression of ETV6, NTRK3,
and EGFR in this cluster. CMN is known to be driven by an activating
rearrangement between ETV6 and NTRK3, which results in a fusion product with
the 5′ end of ETV6 fused to the 3′ end of NTRK3. As the 10X assay measures
expression using a 3′ enrichment strategy, CMN tumor cells should show a high
level of NTRK3 expression. This is indeed what we find, with the cluster marked
tumor expressing NTRK3 more than 10 times more strongly than the next closest
cluster. By contrast, ETV6 was not highly expressed in this cluster, as would be
expected. Finally, EGFR is known to be highly expressed by tumor cells and was
also found to be highly expressed in the cluster designated as tumor.

Annotation of congenital malignant rhabdoid tumor cell data. For MRT single cell
data, clusters were determined and marker genes identified as described above for
CMN. Common non-tumor populations were annotated based on well-known
markers (Supplementary Fig. 10). Tumor cells were identified by loss of the
SMARCB1, except for MRT2 for which the molecular diagnostic workup did not
identify mutation of SMARCB1. For this sample, tumor cells were identified based
on the loss expression of other members of the SWI/SNF SMARCA2 and
SMARCA4.

Cell similarity inference using single cell data. To measure the similarity of a target
single cell transcriptome to a reference single cell data-set we used the methodology
based on logistic regression outlined in detail1. Briefly, we train a logistic regression
model with elastic net regularization (alpha= 0.99) on the reference training set.
We then use this trained model to infer a similarity score for each cell in the query
data set for each cell type in the reference data.

Softmax normalization was not used to allow for the possibility that some cells
in the query data set do not resemble any of the cell types in the reference data set.
Predicted logits were averaged within each cluster in the query dataset. This
approach was implemented using the “glmnet” package in R48.

Similarity to mouse data. In assessing the closest match to the organoid MRT data,
we considered a comparison to a mouse reference dataset13. We performed the
similarity analysis as described above, with the only difference being that we limit
the analysis to orthologous genes as determined by ENSEMBL biomart.

Sensitivity and specificity of samples to particular cellular signals. To perform the
sensitivity and specificity analysis (Fig. 7A, B) we first constructed a set of cellular
signals that were indicative of a particular tumor type. These were MPCs and
CMN, Intercalated cells and ChRCC, nephrogenic cells (i.e., cap mesenchyme,
primitive vesicle, and ureteric bud) and Wilms tumor, PT1 and ccRCC/pRCC, and
mature vasculature and ccRCC. We calculated all of these scores for every sample
in our data set and then evaluated the sensitivity and specificity at different cut-offs
for each score to construct the sensitivity/specificity curves in Fig. 7A (ROC curve).

Quantification of smFISH images. The tiled images exported from the Phenix were
illumination corrected and stitched together into large, multi-channel fluorescence
images by a specialized tool supplied by Perkin-Elmer. These images were then
analyzed in the Qupath50 Bioimage Analysis program. First, all nuclei were seg-
mented using Qupath’s cell detection algorithm, then each nucleus was expanded
by 3 microns to estimate the area covered by the entire cell. The subcellular spot
detection option was then used to detect all fluorescent spots in all the RNA-
SCOPE channels for the size range of 1–8 square microns. Each spot was auto-
matically assigned to a detected cell. The detection data for each image was then
exported as a.csv file for further analysis.

Method to quantify single cell-derived signals in bulk transcriptomes
Data preparation: Bulk RNA-seq data. Each bulk RNA-seq sample required two
pieces of information: fragment counts per gene and the effective length of each
gene. As described above, gene counts for this paper were mostly generated using
the Rail-RNA pipeline39 and effective gene lengths as the sum of unique exonic
bases per gene. However, fragment counts and effective gene lengths can be cal-
culated in any way.

Data preparation: Single cell reference data. To calculate reference single cell sig-
nals, single cell data must first be clustered and annotated. Cells are then grouped
together by annotation and raw counts summed across all cells within a group.
Summed counts are then normalized to sum to 1 across all genes so that a reference

Fig. 6 Adult kidney tumors. A Bulk renal cell carcinomas compared to mature kidney: The relative contribution of single cell derived signals from fetal
kidney in explaining the bulk transcriptomes of 171 normal kidney biopsies, 500 clear cell renal cell carcinomas (ccRCC), 274 papillary renal cell carcinomas
(pRCC), and 81 chromophobe renal cell carcinomas (ChRCC), along with control populations. The relative contribution of each signal to each bulk RNA-seq
sample is shown by the y-axis. Each signal/sample combination is represented by a single point and boxplots shows the distribution with median (middle
line), 1st and 3rd quartiles (box limits) and 1.5 times the inter-quartile range (whiskers). Each signal type is abbreviated and colored as per the legend, with
squares for fetal and circles for mature. B Mast cell fraction in single cell RCC samples: Bar height indicates mast cell fraction (black) or other cell fraction
(gray) in 5 single cell RCC expriments (x-axis labels). C Mast cell signals in bulk RCC transcriptomes: Inverse of mast cell fraction for bulk transcriptomes
(dots) of type given on x-axis. Boxplots show the distribution median (middle line), 1st and 3rd quartiles (box limits), and 1.5 times the inter-quartile range
beyond the box-limits (whiskers) and the star indicates that mast cell signals are significantly higher in pRCC T1 type tumors than pRCC T2 (two-sided
Wilcoxon rank-sum test, p= 1.5 × 10−5). D smFISH validation: An example section of single molecule fluorescence in-situ hybridization imaging of a pRCC
T1 tumor section. Nuclei are stained blue with dapi and expression of the tumor marker MET is shown in green and the mast cell marker TPSB2 in purple.
See Supplementary Table 4 for a quantification of smFISH applied to pRCC T1/T2 and ccRCC tumors. smFISH imaging was performed on one tumor
section from each of pRCC T1, pRCC T2, and ccRCC. The scale bar (bottom-right) indicates approximately 100 μm. E Bulk chromophobe renal cell
carcinomas compared to mature kidney: The same as A, but for 81 chromophobe renal cell carcinomas (ChRCC) bulk transcriptomes. Source data are
available as a Source Data file.
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signal is defined as a vector, S,

S ¼ s1; s2; ¼ ; sm
� �

s:t: ∑
m

g¼1
sg ¼ 1

where there are m genes.
Reference signals can be constructed in any way (e.g., including batch

correction for combined data sets), so long as the final signal can be normalized
such that ∑g sg ¼ 1.

Model fit. The aim of the signal assignment method is to infer how much of each of
the different reference signals best explains the supplied bulk transcriptome. That
is, we are aiming to solve for the values of beta in,

ygp ¼ β0p þ β1psg1 þ β2psg2 þ ¼ þ βnpsgn

where ygp is the fragment counts for gene g in sample p, sgc is the reference signal c
for gene g and βcp is the contribution of signal c to sample p. Note that the term β0p
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represents the contribution the intercept term for sample p, which is equivalent to
the inclusion of an additional flat signature for which sg ¼ constant8g. The
inclusion of this intercept term provides a measure of the extent to which the
reference signal set is inappropriate for the sample given.

In order to efficiently calculate the contributions of the same set of reference
signals simultaneously, we formulated the following model,

βcp ¼ ezcp

where c represents the signal and p the sample as above. We solve for zcp instead of
βcp directly as this formulation ensures that the contributions of each signal are
always strictly positive. Next, we calculate the expression for gene g and sample p
implied by these values of βcp

λgp ¼ Sgcβcp

where g represents the gene, and then calculate

λ0gp ¼ λgplgp

where lgp represents the effective length of gene g in sample p. This modification by
length is necessary as the fragment counts by gene created by bulk RNA-seq are
proportional to the length of a gene. Finally, a joint negative log likelihood is
calculated as

�logL ¼ ∑
p
∑
g
wg ðλ0gp � ygplogλ

0
gpÞ

where wg is an optional gene penalty applied to genes deemed to be biologically less
important. In this paper we set wg to 1 for all genes except a set of housekeeping
genes that are set to 0.5 and metabolic genes set to 0. It is this equation that is
minimized with respect to zcp in order to solve for the values of βcp . This log-
likelihood is simply the Poisson log-likelihood for a Poisson distribution with mean
λ0gp (see section below for a discussion of this choice of distribution).

This model is directly specified using the tensorflow framework51, which allows
the efficient minimization of this equation utilizing graphics processors and multi-
core machines. The optimization is performed using stochastic gradient decent
using Adam52. We require two termination conditions to be met before the
optimization is terminated:

1. the fractional decrease in the log-likelihood must be less than some
tolerance parameter.

2. the fractional change in Q must be less than the same tolerance parameter.

Q is defined as the sum of the sigmoid transformation of zcp and roughly
measures the number of signals with non-zero contributions to the fit. Without this
second termination condition, optimization would terminate with the coefficients
of many signals given small but non-zero values as these non-zero values barely
shift the total log-likelihood.

Post processing. Having obtained optimized values for βcp , we next normalize these
values by first modifying the intercept term to

β00p ¼
β0p
m

which make the modified intercept term equivalent to fitting an additional signal
with a completely flat profile. Following this modification, we then normalize the
values of βcp to sum to 1 for each sample. These normalized values represent the
relative contribution of each signal to each sample and are the values reported
throughout this manuscript. The final normalization step essentially controls for
differences in bulk RNA-seq library size and makes the coefficients comparable
across samples.

As an additional measure of the goodness we re-fit the above model with only
the intercept term and then calculate,

pR2 ¼ 1� logLfull

logLint

which is, a McFadden’s pseudo R-squared value53 pR2 given by 1 minus the ratio of
the log-likelihood of the full model fit over the model fit with only the
intercept term.

In order to aid with interpretation of the fit, the contribution from similar
cellular signals is often aggregated before being presented in the Figures and
Supplementary Figures. For example, there are multiple endothelial signals in the
mature kidney, but for simplicity and readability we have combined them
throughout this study.

Quantification of goodness of fit. One of the central aims of cell signal analysis
compared to deconvolution methods is to allow for the possibility of a mismatch
between the reference and the cells present in the bulk transcriptome. We allow for
this through the inclusion of an intercept term in the model and quantify the
mismatch by the relative contribution of the intercept and the fraction of the
variance explained by the reference as measured by pR2. To understand the
intuition behind this choice it is useful to consider a simple linear model with and
without an intercept.

Supposing we have bulk transcriptomes composed of two cell populations A
and B. As a reference we have single cell transcriptomes from population A, but not
B. Let us now consider how a linear model with and without an intercept term
behaves. That is, for each bulk transcriptome we fit two models:

Yg ¼ βARg ð1Þ

Yg ¼ βARg þ β0 ð2Þ
Where Yg is the expression in the bulk transcriptome for gene g, R is the
reference signal at gene g derived from single cell transcriptomes population A,
and the ß terms are estimated using linear regression. If Yg is composed only of
cells from population A, models (1) and (2) are identical (i.e., ß0 = 0). Let us
now consider what happens if a small number of cells from population B are
added to Yg. Further, assume that cell types A and B are unrelated cell types
with uncorrelated transcriptomes. The maximum likelihood estimator for beta
in model (1) is:

β̂A ¼ < YR >

< R2 >

where <…> denotes an average across all genes. For model (2) the maximum
likelihood values of ß are:

β̂A ¼ < YR >� < Y ><R>

< R2 >� < R >2
¼ cov Y;Rð Þ

cov R;Rð Þ

β̂0 ¼ < Y >� β̂A< R >

where cov(…) indicates the covariance of the two variables. Write
Yg ¼ nARg þ nBSg , where Sg is the cell signal reference for population B and nA
and nB give the number of cells from each population. It can then be shown that
the difference in ß in the simple population A only model (nB = 0) and the full
model with both populations is the same as fitting a model with nA = 0. That is,

Δβ̂A ¼ nB
< SR >� < S >< R >

< R2 >� < R> 2

� �
¼ cov S;Rð Þ

cov R;Rð Þ

Δβ̂0 ¼ nB < S >� Δβ̂A< R >
� �

Fig. 7 Clinical utility of cellular signal analysis. A Sensitivity/Specificity of signals in classifying tumor types: Curves showing the sensitivity and specificity
of using the scores defined by the color scheme to classify tumors by type at different cut-offs. The different score and tumor type pairs are: fetal interstitial
cells and CMN (light blue), intercalated cells and ChRCCs (dark blue), developing nephron and Nephroblastoma (light green), PT1 and ccRCCs/pRCCs
(dark green), and mature vascular and ccRCCs (red). BMedian reference contribution by tumor type: Each point represents the median score for the group
of samples indicated by the combination of shape (tissue type, see legend) and shading (score type, as in A). C Histology image of unclassified childhood
renal tumor: The tumor mostly compromised pleomorphic epithelioid cells that formed tubules, papillae, glands and nests, as well as more solid areas with
spindled cells and clefting similar to that of synovial sarcoma. Patchy tumor necrosis was apparent. Some areas showed smaller, more uniform cells lining
narrow tubular structures, resembling adenomatous perilobar nephrogenic rests. Overall, the morphology and ancillary tests were inconclusive. Scale bars
at bottom of each image indicate approximately 100 μm. D Immaturity score for unclassified childhood renal tumor: Calculated as in Fig. 2, with score range
for normal post-natal kidney indicated on left. E Summary of signal contribution from fetal and mature kidney to unclassified childhood renal tumor: Each
color represents the signal type labeled and fraction of squares of each type matches the signal contribution. F Immaturity score for childhood renal cell
carcinoma: As in D. G Summary of signal contribution from fetal and mature kidney to childhood renal cell carcinoma: As in E but for a transcriptome
derived from renal cell carcinoma fit using a mature kidney signal set. Source data are available as a Source Data file.
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Where delta represent the difference between the model with and without a
contribution from population B (i.e., the difference between models where nB=
0 and nB > 0). The equivalent formula for model (1) is,

Δβ̂A ¼ nB
< SR >

< R2 >

� �

From this it can immediately be seen that the effect of adding a cell population
not accounted for in the reference (population B in this example) in model (1) is to
increase the contribution from the unrelated population present in the reference
(population A, ΔßA> 0). By contrast, for model (2) the contribution from the
unrelated reference population (A) remains unchanged (ΔßA= 0) and the intercept
term is increased to model the unaccounted-for population (B).

Of course, our model is not a linear model, but is based on a constrained
generalized linear model. Furthermore, the above argument assumes that
population B is unrelated to A. If population B has some correlation/covariance
with A, then the fit for the population with which it is correlated will be increased
by an amount proportional to the degree of correlation (see formula above).
However, it is straightforward to show that (assuming Y and R are strictly positive)
model (2) will always increase ßA by less than model (1). Thus, the inclusion of the
intercept term will always improve the ability of the model to handle mismatches
between the reference cell signals and the transcriptomes of the cells that make up
each bulk transcriptome.

One thing the above toy example makes clear is that while the intercept term
accounts for and quantifies variation not in the reference to an extent, it is not a
complete solution. To further identify cases where there is a mismatch between the
reference and the observed data we make use of the goodness of fit statistic, pR2

define above. Continuing with the linear model analogy, this metric will identify
cases where Y is modified by a perturbation δ that can both increase and decrease
expression. An example of this would be the changes to a normal cell’s
transcriptome as it transforms into cancer. Suppose that the perturbation was not
correlated with the reference and has an average value of zero. It follows that the
effect of this perturbation on the model fit parameters is,

Δβ̂A ¼ cov δ;Rð Þ
cov R;Rð Þ ¼

0
cov R;Rð Þ ¼ 0

Δβ̂0 ¼ nB < δ >� Δβ̂A< R >
� �

¼ nB 0� 0< R >ð Þ ¼ 0

However, although the fit does not change, the perturbation will decrease the
total likelihood of the model and increase the value of pR2. In combination, the
intercept term and pseudo R-squared metric provide a quantification of the
mismatch between reference cell signals and bulk transcriptomes

Benchmarking. We compared our method to two other methods: MuSiC15 and
BSeq-SC14. In both cases, we used the default settings recommended by each
method. As MuSiC requires a reference containing multiple cells derived from
multiple samples, we were unable to create include leucocytes as part of our
reference panel for Fig. 1D, E for MuSiC. BSeq-SC required marker genes for each
population in the reference. To generate markers for each reference population we
identified genes significantly enriched in the target population with a binomial test,
using the quickMarkers function in the SoupX R package43. We further refined this
set of markers by requiring that markers be expressed in at least 40% of cells within
the cluster they mark and less than 5% of all other clusters. With these require-
ments, some clusters, notably the PT1 cluster, did not have any marker genes and
so received a value of 0 in the BSeq-SC fit.

Calibration of intercept term. To assess the range of contributions from the
intercept term (i.e., the “unexplained signal”) when no appropriate reference is
provided we constructed a series of inappropriate fits. In each case, we selected a
cell signal reference set that we knew was inappropriate to the set of samples being
considered. The range of intercept values in this fit then gives a quantitative range
that is indicative of how much weight is given to the intercept when no appropriate
reference is present.

Choice of Poisson distribution. The choice of the Poisson distribution as the like-
lihood model at first glance seem a curious one, given that the Negative Binomial
distribution (of which the Poisson distribution is a specific case) is widely used to
model both bulk RNA-seq and single cell RNA-seq data. However, some reflection
reveals that this choice is actually well justified.

We wish to evaluate the probability of observing a particular number of
fragment counts in a bulk RNA-seq experiment, given that this experiment is
composed of the addition of signals from a collection of single cell derived
transcriptomic signals. To do this, we need to know how likely a particular set of
fragment counts is, given a fixed contribution from each of the single cell signals.

Let us assume that the number of counts for a gene g in cell type c in a single
cell RNA-seq experiment (with a fixed number of reads) can be well modeled by a
negative binomial distribution with mean μ and over-dispersion φ. That is, the

variance of this distribution is given by,

σ2gc ¼ μgc þ μ2gcϕgc
The distribution we are interested in, is then the distribution resulting from the

sum of {N0, N1, N2, …, Nk} random samples from the set of negative binomial
distributions representing cell types {1,2,…,k}. That is, the distribution we are
interested in is given by the sum of negative binomial distributions.

The moment generating function for the compound distribution is then given
by,

Mcomp tð Þ ¼
Y
c2C

1þ μcϕc 1� et
� 	� 	� 1

ϕc

where C is the set of signals summed to form the compound distribution. This
moment generating function completely specifies the compound distribution.
However, we can use the method of moments to approximate this compound
distribution with another Negative Binomial distribution with mean μ and over-
dispersion φ. To do this, observe that the first and second moment of the
compound distribution are,

E Xð Þ ¼ ∑
c2C

μc

E X2
� 	 ¼ ∑

c2C
μc þ ∑

c2C
μc

� �2

þ ∑
c2C

μ2cϕc

while the first and second moments of a negative binomial distribution with mean
μ and over-dispersion φ are,

E Xð Þ ¼ μ

E X2
� 	 ¼ μþ μ2 þ μ2ϕ

Using the method of moments, this implies that the negative binomial
approximation to the compound distribution has,

μ ¼ ∑
c2C

μc

ϕ ¼ ∑
c2C

μc
μ

� �2

ϕc

That is, the mean of the compound distribution equals the sum of the means of
each component distribution (as expected). The over-dispersion of the compound
distribution is equal to the weighted sum of the component distributions. Closer
consideration of the equation for the compound over-dispersion reveals that the
over-dispersion of the compound distribution is almost always considerably less
than the average over-dispersion of its component distributions.

For example, consider the case where all distributions have approximately the
same mean and rewrite the compound over-dispersion as,

ϕ ¼ ∑
c2C

μc
< μc >

� �2 ϕc
N2

where angle brackets denote an average and N is the number of elements in C.
Assuming the ratio in brackets is close to 1 gives,

ϕ ¼ < ϕc >
N

So, in the case of distributions with similar means, the over-dispersion of the
compound distribution is always N times less than the mean over-dispersion of the
individual distributions. Consequently, as the number of distributions being
summed over increases, the over-dispersion goes to zero and the compound
Negative Binomial distribution approaches a Poisson distribution. The more
general case where the means of the component distributions are not all similar is
more complex, but in the limit of many distributions, the compound over-
dispersion still approaches 0.

This result justifies the use of a Poisson distribution as the likelihood model in
our fitting procedure. Although the individual signals from which the fit is derived
are negative binomially distributed, the distribution of their sum is Poisson
distributed. It may be that an extension of the Poisson model used here may prove
useful, to model effects such as uncertainty in the effective length of genes for
example, but it is not required to accurately represent the compound distribution
on which our model depends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw nucleotide sequences for single cell data newly generated for this study are available
in the European Genome-Phenome Archive under restricted access with accession codes
EGAD00001004304 (CMN), EGAD00001006296 (MRT organoids), EGAD00001007498
(CCSK CEL-Seq2), and EGAD00001007572 (Wilms, other CCSK, and other MRT),
access can be obtained by contacting the Data Access Committees EGAC00001001146
(CCSK CEL-Seq2) or EGAC00001000205 (everything else). We additionally utilised
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publicly available single cell kidney data from previous work1,8,54. The raw nucleotide
data for which are available in the European Genome-Phenome Archive under restricted
access with accession codes EGAS00001002171, EGAS00001002486, EGAS00001002325,
and EGAS00001002553, and in the Human Cell Atlas Data Portal with project ID
abe1a013-af7a-45ed-8c26-f3793c24a1f4.
Raw nucleotide sequences for bulk transcriptomic data newly generated for this study

are available in the European Genome-Phenome Archive under restricted access with
accession codes EGAS00001002487 and EGAS00001002534, access can be obtained by
contacting the Data Access Committee EGAC00001000205. We also utilised publicly
available bulk transcriptomes from: congenital mesoblastic nephroma22, Wilms tumor55,
fetal kidney56, the Therapeutically Applicable Research to Generate Effective Treatments
(https://ocg.cancer.gov/programs/target) initiative, phs000218, available at https://portal.
gdc.cancer.gov/projects, data generated by the TCGA Research Network, available at
https://www.cancer.gov/tcga, and The Genotype-Tissue Expression (GTEx) Project as
mapped by the recount2 project38.
Mapped count data (i.e., tables of counts) are available as Supplementary Data 2 (bulk

transcriptomes) and Supplementary Data 3 (single cell transcriptomes). This includes
both newly generated data in this study and data obtained from public repositories.
Sample metadata, including references to the source from which this data was obtained
are listed for each unit of data in Supplementary Data 1 (bulk transcriptomes) and
Supplementary Table 2 (single cell transcriptomes). All patient samples generated in this
study are listed in Supplementary Table 5. The remaining data are available within the
Article, Supplementary Information or Source Data file. Source data are provided with
this paper.

Code availability
As an annex to the supplementary methods, we have provided all source code used in
generating the results, figures, and tables used in this study as Supplementary Software 1.
The purpose of these code files is to provide additional details as to how we implemented
the analyses described in the Methods section. We provide the code necessary to run
cellular signal analysis, along with some documentation and an example dataset online at
https://github.com/constantAmateur/cellSignalAnalysis.
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