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Integrated network analysis 
identifying potential novel 
drug candidates and targets 
for Parkinson’s disease
Pusheng Quan1, Kai Wang2, Shi Yan1, Shirong Wen1, Chengqun Wei3, Xinyu Zhang1, 
Jingwei Cao1 & Lifen Yao1*

This study aimed to identify potential novel drug candidates and targets for Parkinson’s disease. 
First, 970 genes that have been reported to be related to PD were collected from five databases, 
and functional enrichment analysis of these genes was conducted to investigate their potential 
mechanisms. Then, we collected drugs and related targets from DrugBank, narrowed the list by 
proximity scores and Inverted Gene Set Enrichment analysis of drug targets, and identified potential 
drug candidates for PD treatment. Finally, we compared the expression distribution of the candidate 
drug-target genes between the PD group and the control group in the public dataset with the 
largest sample size (GSE99039) in Gene Expression Omnibus. Ten drugs with an FDR < 0.1 and their 
corresponding targets were identified. Some target genes of the ten drugs significantly overlapped 
with PD-related genes or already known therapeutic targets for PD. Nine differentially expressed 
drug-target genes with p < 0.05 were screened. This work will facilitate further research into the 
possible efficacy of new drugs for PD and will provide valuable clues for drug design.

Parkinson’s disease (PD) is a pervasive, progressive, disabling neurodegenerative disorder with motor and non-
motor features1. PD places a significant burden on society and the affected individuals, and approximately 6.1 
million people worldwide had been diagnosed with PD in 20162. Dopamine depletion leading to hyperactivity 
of the corticostriatal glutamatergic pathway is thought to be primarily responsible for parkinsonian symptoms 
such as resting tremors, rigidity, dyskinesia and postural instability3,4. Levodopa is the gold standard drug that 
provides symptomatic relief from motor problems but it has some side effects, and its effectiveness is reduced 
under long-term treatment. In the present context, medication (including dopamine agonists and monoamine 
oxidase B inhibitors) and invasive surgery (deep brain stimulation) are being used to reduce the shortcomings 
of levodopa therapy5. These therapies are quite helpful but are not always completely satisfactory. Thus, it is 
imperative to identify and develop promising drugs for preventing and treating PD.

Unfortunately, drug discovery is expensive and time-consuming. New drug development is affected by many 
factors, and 85.1% of potential drugs for PD tested thus far have failed in the clinical trial phase6. Under such a 
situation, the repositioning of available drugs for other disorders as potential novel therapeutic agents for PD 
becomes an ideal approach. A well-known example of drug repositioning against cancer is thalidomide, which 
was initially used as a sedative drug7. Network pharmacology is a commonly applied strategy that analyzes 
biological systems and establishes a drug-target-disease network for drug repositioning8. Many computational 
methods based on transcriptomic data have also been developed. Chuan et al. found 10 drugs that had certain 
therapeutical effect on PD based on a handful of genes9. Hindol et al. developed a bidirectional drug repositioning 
method to find out new drugs for PD10. However, most previous studies have mainly focused on certain specific 
genes and neglected the gene expression signatures. Here, we present an integrated method for the comparisons 
of gene expression signatures between a disease model and drug-treated condition network, prediction of drug-
protein interactions, and large transcriptomic dataset mining.

The purpose of this scheme is to predict and identify new related drugs and targets by applying integrated 
network pharmacology and transcriptome analysis. Our work will facilitate further studies for better preventive 
strategies for PD.
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Results
PD‑related genes.  Genes from the five databases were integrated to include as many PD-related genes 
as possible. Specifically, 249 genes were retrieved from the Parkinson’s disease pathway (hsa05012) included 
in KEGG. By querying the keyword “Parkinson’s disease”, 188 genes were retrieved from OMIM, 9 genes from 
HGMD, 524 from Genotype, and 370 from DISEASE. After filtering, a total of 970 genes were retained as the 
PD-related genes. The expression levels of these genes in the PD and control subjects (GSE99039) are shown 
in the heatmap (Fig. 1a). Detailed provenance information for the genes is given in a Venn diagram (Fig. 1b).

Protein–protein interactions between the PD‑related genes.  The PD-related genes were exported 
to the STRING, PINA, and HuRI databases to construct the PPI network. STRING contained 1723 interactions 
among 188 genes/proteins after removing all interactions with a combined score < 0.9; PINA contained 1127 
interactions among 107 genes/proteins; and HuRI predicted 1411 experimental validation interactions of 119 
genes/proteins (see Supplementary Fig. S1 online). We extracted 163 nonredundant genes/proteins and 1709 
interactions by comparing the results from the three databases (Fig. 2). Nodes represent PD-related genes/pro-
teins and edges represent interactions of these genes/proteins.

Enrichment analysis of the PD‑related genes.  In this study, based on GO and KEGG analysis of PD-
related genes, several enriched biological processes and metabolic pathways were identified. The top 10 GO 
enrichment terms in the three GO categories and the KEGG pathways were illustrated by a bubble diagram. 
GO enrichment analysis of biological processes (BP) revealed that PD-related genes were mainly involved in the 
ATP metabolic process, energy derivation by oxidation of organic compounds, and oxidative phosphorylation 
(Fig. 3a). Molecular function (MF) analysis showed that these genes may take part in the cell adhesion mol-
ecule binding, DNA-binding transcription activator activity, and RNA polymerase II activity-specific processes 
(Fig.  3b). For cell component (CC) analysis, our genes mainly enriched in mitochondrial inner membrane, 
mitochondrial protein complex, and respirasome (Fig. 3c). KEGG pathway analysis indicated their involvement 
in Parkinson, Alzheimer, amyotrophic lateral sclerosis, prion disease, and Huntington disease (Fig. 3d).

Network‑based proximity between drugs and PD.  We tidied up the list of proximal drugs and 
excluded drugs irrelevant to PD by applying a network-based proximity analysis. The density plot showed that 
the distance distribution of drugs to PD-related genes overlapped but differed significantly from that of the refer-
ence data in the range of − 10.0 ~ 5.0 (Fig. 4). The overlap can be observed visually at the point of 1.0 ~ 2.0, sug-
gesting that drugs in this range were unlikely to be treatment candidates for PD while drugs with distance < 1.0 
might be effective for PD treatment. Thus, we took 1.0 as the threshold to screen candidate drugs for PD and to 
exclude any irrelevant drugs.

Calculation of drug signatures.  Ultimately, 46 drugs with an FDR < 0.25 were identified. They may sig-
nificantly influence PD-related genes. The drugs with FDR < 0.1 (ten drugs) and the corresponding targets (fifty-
one targets) are shown in Table 1 and could potentially be options for therapies. Some target genes of the ten 
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Figure 1.   PD-related genes. (a) Heatmap for comparison between the control samples and patients with 
PD. Colors correspond to standardized log2-transformed expression values. Heatmap created using R and 
“pheatmap” package48. (b) Veen diagram show the number of PD-related genes collected from five databases. 
PD, parkinson’s disease. Veen diagram created using R and “ggVennDiagram” package49.
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drugs significantly overlapped with the PD-related genes or the known therapeutic targets for PD. Additionally, 
we explored and visualized the interactions between the ten predicted drugs, their corresponding targets, and 
the PD-related genes (Fig. 5).

Differentially expressed drug‑target genes analysis.  We took the intersection of DEGs and drug-
target genes, and nine differentially expressed drug-target genes with p < 0.05 were screened. Then, we compared 
the expression distribution of these genes in the two groups and visualized them with a box plot (Fig. 6a). In 
the final step, the heatmap and clustering tree revealed a distinct expression pattern of nine genes between 
the groups (Fig. 6b). PSMB10, SLC47A2, HDAC8, and BCL2 were clustered into the same model, while KIT, 
TXNRD1, JUN, AKT1, and PML were clustered into another model, suggesting that these nine targets may act 
through two distinct mechanisms. Further GO enrichment analysis of biological processes (BP) revealed that 
the nine genes were mainly involved in the response to oxidative stress. KEGG pathway analysis revealed that 
they were enriched in the apoptosis, neurotrophin, estrogen, MAPK, and PI3K-Akt pathway (see Supplementary 
Table S1 online).

Discussion
Recently, the repurposing of existing drugs has been proposed as a strategy for new drug development11,12. In 
the current work, we selected a systematic computation framework to explore potential treatment options for 
PD based on existing data about diseases, drugs and drug targets.

Since drugs usually interact with specific targets to exert an effect on biological processes, and drug targets 
always interact with disease-related genes, we collected PD-associated genes. GO enrichment analysis of all genes 
showed that the most enriched terms were oxidative respiratory chain, energy metabolism and ion transport, 
which are consistent with prior findings13–15. These findings established the foundation for further mechanistic 
studies and provided novel targets for therapy. It is well recognized that PD, as a complex disease, may be caused 
by mutations of multiple genes or by the dysfunction of multiple biological processes. Earlier studies have shown 
that disease genes tend to interact in cellular networks16. We calculated a score to predict the proximity between 
the drug targets and PD-related genes by integrating the information in the PPI networks and kept the drugs 
with high proximity as candidates.

The major features of PD pathology are the loss of dopaminergic neurons from the midbrain and the pres-
ence of αSyn protein inclusions. Hence, we chose profiles of neural cell lines to perform the IGSEA procedure. 
Eventually, ten drugs were kept after filtration.
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Figure 3.   GO and KEGG enrichment analysis of the PD-related genes. (a) Biological process analysis. (b) 
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Among the ten candidates, six drugs have been approved by the Food and Drug Administration (FDA) 
for clinical use in cancer patients. For instance, carfilzomib and afatinib are epidermal growth factor receptor 
(EGFR) inhibitors. Interestingly, EGFR gene polymorphisms were reported to be related to the susceptibility to 
PD17. Vorinostat (also known as a histone deacetylase inhibitor, which is an effective anti‐neoplastic agent for 
different types of tumors) has recently been reported to be a potential novel candidate for treating PD18. However, 
there are no reports about the correlations of tucatinib, tazemetostat and avapritinib with PD pathology. Two 
of these candidates are hormones. To date, few effective treatments for PD have been reported, but a phase 1/2a 
clinical trial (Identifier: NCT04127578) is ongoing, the aim of which is to characterize the potential efficacy of 
methylprednisolone for treating patients with PD who have at least one GBA1 mutation, and we look forward 
to witnessing more promising discoveries. Isosorbide mononitrate (ISMN) is a candidate treatment for cerebral 
small vessel disease and lacunar ischemic stroke19. Arsenic trioxide showed beneficial effects on patients with 

Table 1.   Prediction of drug target and distance information by top10 (FDR < 0.1).

Sig-drug Proximity FDR Targets

Carfilzomib − 4.769 0.00 ABCB1, PSMB5, PSMB1, PSMB2, PSMB8, PSMB9, PSMB10

Afatinib − 4.737 0.02 EGFR, ABCB1, ABCG2, ERBB4

Prednisolone acetate − 4.989 0.02 ABCB1, SLCO1A2, NR3C1, SERPINA6

Isosorbide − 4.989 0.03 BCL2, BCL2L1, MCL1

Arsenic trioxide − 4.557 0.04 CYP3A4, TXNRD1, AKT1, JUN, IKBKB, MAPK3, CCND1, MAPK1, CDKN1A, HDAC1, 
PML

Vorinostat − 4.638 0.04 HDAC2, HDAC1, HDAC8, HDAC3, HDAC6, ACUC1

Tucatinib − 4.516 0.05 ABCB1, ABCG2, SLC22A2, CYP2C8, SLC47A1, SLC47A2, ERBB3

Tazemetostat − 4.656 0.05 ABCB1, ABCG2, SLC47A1, SLC47A2, EZH2, EZH1

Avapritinib − 4.611 0.05 ABCB1, ABCG2, KIT

Tixocortol − 4.989 0.09 HDAC2, NR3C1
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acute promyelocytic leukemia20 and systemic lupus erythematosus (SLE) in a mouse model21. Inflammasomes 
might be involved in the therapeutic mechanism of arsenic trioxide in the above diseases. However, these two 
drugs have not yet been investigated in PD.

Nine differentially expressed drug-target genes with p < 0.05 were screened, and PSMB10, SLC47A2, HDAC8, 
and BCL2 were clustered into the same model, while KIT, TXNRD1, JUN, AKT1, and PML were clustered into 
another one, suggesting that these nine targets may act through distinct mechanisms. Sun et al.22 found that three 
beta subunits of immunoproteasome (PSMB9, PSMB10, PSMB8) all colocalized with α-syn, and PSMB9 knock-
down aggravated the accumulation of α-syn in a cell model of PD. BCL2 overexpression protects dopaminergic 
neurons against neurodegeneration23 and it may play a role in dopaminergic development and PD24. Stéphane 
et al. showed that eliminating Jun N-terminal kinases (JNKs) can prevent neurodegeneration and improve motor 
function in an animal model of PD25. Another study suggested that activating the Akt1-CREB pathway might halt 
neurodegeneration in PD26. Furthermore, we found no experimental studies that have focused on PD in associa-
tion with SLC47A2, HDAC8, TXNRD1, PML, and KIT, so this requires more observational data for verification.

Further KEGG pathway analysis revealed that these nine genes were enriched in the apoptosis, neurotrophin, 
estrogen, MAPK, and PI3K-Akt pathway. Some of them may represent novel targets for therapeutic interven-
tion. Apoptosis is considered the main mechanism of neuronal death in PD, which could be targeted as possible 
therapies for PD27. In a randomized control trial (RCT), the effects of glial cell line-derived neurotrophic factor 
(GDNF) in Parkinson’s disease were investigated28. MAPK consists of 3 subfamilies, ERK, JNK and P38. Results 
from the PD model implicate that selective inhibitors of p38 may help preserve the surviving neurons in PD and 
slow down the disease progression29.

In the last decade, multi-target drugs have attracted considerable interest in the treatment of complex dis-
eases. The multi-target ligands have clear advantages, such as more predictive pharmacokinetics and reduced 
risk of drug interactions. For example, the multi-receptor approach for the Cannabinoid Receptor Subtype 2 
was proposed for cancer and neurodegeneration therapy30. Bromophenols is a ligand for both dopaminergic 
receptors and human monoamine oxidase31. This study may provide new insights for revealing novel potential 
drugs and targets for multi-target drug screens. Additionally, the present strategy based on repositioning drugs 
could provide valuable clues for drug design and exploration for the treatment of other disorders.

However, there were also several limitations of this study. First, a potential drawback of proximity analysis is 
that it relies heavily on known information, including genes, drugs and targets, but this information is still far 
from being completely understood. Second, although some of the drugs extracted appear to be good candidates 
for further investigation, it is uncertain whether any of them would actually be effective for PD. More investi-
gations are needed to determine the best use of these drugs to minimize side effects and to maximize patient 
benefit. Additionally, future studies should pay more attention to the novel targets, not just the drugs themselves.

In summary, this network-based approach enabled us to identify several novel drug candidates and targets 
that could been applied in treating PD. Although these results are still in the preliminary stages, they will provide 
clues for further experimental exploration. Additional investigation of these drugs and gene networks could lead 
to better preventive strategies for PD.

Materials and methods
The workflow of this study is presented in Supplementary Fig. S2 online.
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DrugBank and expression data preprocessing.  The drug–target relationships were constructed based 
on the DrugBank database32, which contained 13,680 drug entries and 4875 corresponding targets. The gene 
expression data were downloaded from Gene Expression Omnibus (GEO, http://​www.​ncbi.​nlm.​nih.​gov/​geo). 
The dataset with the largest sample size (GSE99039)33 was selected as the reference group. The platform data 
is GPL570 Affymetrix Human Genome U133 Plus 2.0 Array, and 233 healthy controls and 205 PD patients 
are included. After log2‐ transformation, the data were centered and scaled for differentially expressed genes 
(DEGs) analysis by limma Package34 of R software (version 3.6.4)35. DEGs were defined by a p-value < 0.05.

Collection of PD‑related genes.  Genes associated with PD were retrieved from KEGG (https://​www.​
genome.​jp/​kegg/)36,37, OMIM (https://​www.​ncbi.​nlm.​nih.​gov/​omim), Genotype (https://​www.​ncbi.​nlm.​nih.​
gov/​gap/​phege​ni), DISEASES (https://​disea​ses.​jense​nlab.​org/​Search), and HGMD (http://​www.​hgmd.​cf.​ac.​uk/). 
This was done by querying the above databases using the “Parkinson’s disease” keyword. Genes from the above 
five databases were combined and mapped to their corresponding HUGO gene nomenclature committee38 
(HGNC)-based official gene symbols. Duplicate genes and genes of unknown function were removed, and all 
remaining genes were retained as the PD-related genes.

Protein–protein interactions between the PD‑related genes.  Proteins are the molecules that exe-
cute most cellular functions and many regulatory processes take place at this level, and biomolecules always 
achieve certain functions through extensive interactions with other proteins. To evaluate the correlations 
between the PD-related genes, we adopted the protein–protein interactions (PPI) network-based approach. The 
PPI data were obtained from the STRING39, PINA40 and HuRI databases. In the STRING database, the com-
bined score is computed by combining the probabilities from the different evidence channels and corrected for 
the probability of randomly observing an interaction41. In this study, the combined score is calculated based on 
experiments, databases, co-expression, neighborhood, co-occurrence, and co-expression. STRING interactions 
with a combined score of 0.9 or higher were retained. All proteins retrieved from PINA and HuRI were pre-
served. After outlier removal, a PPI network was constructed based on the common interplayed relationships of 
three databases, and then visualized using the Cytoscape software (version 3.7.2)42.

Enrichment analysis of the PD‑related genes.  Functional enrichment analysis is often conducted to 
investigate the potential mechanism of the gene set of interest. Gene Ontology (GO) annotation and KEGG 
analysis are the most commonly used methods. GO provides the classification of gene functions, the relation-
ships between genes of interest in three categories (GO: biological process, GO: cellular component, and GO: 
molecular function). The KEGG analysis is applied to explore potential signaling pathways that genes may par-
ticipate in43. The GO annotation and KEGG pathway enrichment analysis were performed using an R package 
“clusterProfiler”44. Only the terms/pathways with a false discovery rate (FDR) < 0.05 were considered signifi-
cantly enriched in this work.

Network‑based proximity between drugs and PD.  To uncover the targeting genes of drugs, we also 
drew upon the new approach from prior studies45 to calculate the distance between drugs and PD-related genes. 
Given G, the PD-related genes-set; T, the set of drug targets, the distance d(g,t), namely the shortest path length 
between nodes g (g∈G) and t (t∈T) in the network, was calculated as below:

w, the weighted-score of a target; w = − ln(D + 1) if a target is in the PD-related genes-set; if not, w = 0. D, the 
PPI degree of PD-related genes.

The significance of relatedness between a drug and PD was evaluated using a reference distance distribution 
corresponding to the drug. Specifically, a set of proteins (P) matched to the number of drug targets was randomly 
selected in the network. The distance d(G,P) between these proteins and PD-related genes was computed. We 
repeated the randomization process 10,000 times and achieved the reference distribution. The mean μd(G,P) and 
standard deviation σd(G,P) of the reference distribution were used to calculate a z-score by converting observed 
distance to a normalized distance, i.e., proximity value:

Calculation of drug signatures.  The drug-perturbed gene expression profiles were derived from the 
Library of Integrated Network-based Cellular Signatures (LINCS)46, which is based on gene expression changes 
that describe the response of various types of cells when exposed to different agents. 165 nervous system-related 
datasets were obtained. Then, each filtered dataset was subject to Inverted Gene Set Enrichment Analysis 
(IGSEA) with the PD-related genes45,47, the enrichment score (ES), and the nominal p-value for quantifying 
enrichment magnitude and statistical significance of the genes. Finally, multiple comparisons among all the 
expression datasets were performed using the Benjamini–Hochberg FDR method. The gene set with FDR < 0.25 
after performing 1,000 permutations was considered significantly enriched for gene expression datasets, and the 
corresponding drugs were deemed to be potential candidates for PD.

(1)d(G,T) =
1

|T|

∑

t∈T

min
g∈G

(

d
(

g , t
)

+ w
)

(2)z(G,T) =
d(G,T)− µd(G,P)

σd(G,P)
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http://www.hgmd.cf.ac.uk/
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Differentially expressed drug‑target genes analysis.  A gene that acts as both an effective drug target 
and a differentially expressed site could emerge as an important therapeutic target for the treatment. So, we took 
the intersection of DEGs and drug-target genes, i.e., differentially expressed drug-target genes, compared the 
expression distribution of these genes between the two groups of samples, and visualized with a box diagram.

Data availability
The gene expression data analyzed during the present study are available in the GEO with the accession number 
GSE99039.
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