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Abstract

Everyday social interactions hinge on our ability to resolve uncertainty in nonverbal cues. For 

example, although some facial expressions (e.g., happy, angry) convey a clear affective meaning, 

others (e.g., surprise) are ambiguous, in that their meaning is determined by the context. Here, we 

used mouse-tracking to examine the underlying process of resolving uncertainty. Previous work 

has suggested an initial negativity, in part via faster response times for negative than positive 

ratings of surprise. We examined valence categorizations of filtered images in order to compare 

faster (low spatial frequencies; LSF) versus more deliberate processing (high spatial frequencies; 

HSF). When participants categorized faces as “positive”, they first exhibited a partial attraction 

toward the competing (“negative”) response option, and this effect was exacerbated for HSF than 

LSF faces. Thus, the effect of response conflict due to an initial negativity bias was exaggerated 

for HSF faces, likely because these images allow for greater deliberation than the LSFs. These 

results are consistent with the notion that more positive categorizations are characterized by an 

initial attraction to a default, negative response.
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Our daily lives are saturated with affective value (e.g., a visit from a friend, the ringing of an 

alarm clock, a beautiful sunset, a hot cup of coffee). When we encounter new information 

(new people, sounds, locations, flavors), we readily sort this information into emotional 

valence categories: good or bad, approach or avoid, reward or threat. Indeed, the human 

brain quickly predicts affective value based on previous experiences (i.e., whether something 

is pleasant/approachable or unpleasant/to-be-avoided; Cabanac, 2002). Facial expressions 

convey particularly rich information about another person and the environment. Some 

expressions are clear-cut (angry face predicts threat/avoidance), whereas others are more 

ambiguous, because they readily predict both rewarding or threatening outcomes. For 

example, a surprised expression is associated with both positive (a friend’s unexpected visit) 

and negative (hearing that a loved one was in a car accident) outcomes. In other words, when 
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we perceive anger (or happiness) on another’s face, we infer a prototypically negative (or 

positive) context, whereas when we see a surprised expression, the valence of the context is 

relatively ambiguous.

Previous research has documented a wide range of individual differences in ‘valence bias,’ 

or the tendency to categorize ambiguous cues (e.g., surprised faces) as having a positive or 

negative valence (Kim et al., 2003; Neta et al., 2009). Some individuals overwhelmingly 

tend to categorize such cues as positive, while others overwhelmingly categorize them as 

negative. Despite these individual differences, Neta and colleagues proposed an initial 

negativity hypothesis, such that ambiguous cues initially activate a negative valence 

representation, which can be overridden by a positive representation via an additional 

mechanism putatively involved in emotion regulation (Petro et al., 2018).

Various behavioral measures and techniques have been used to provide indirect evidence for 

this initial negativity hypothesis. For example, reaction times are longer for positive than 

negative categorizations of surprised faces (Neta et al., 2009), and encouraging greater 

deliberation results in more positive categorizations (Neta & Tong, 2016). Experimental 

manipulations that promote hypervigilance and reduce cognitive control (i.e., stress 

induction, threat-of-shock), on the other hand, result in more negative categorizations 

(Brown et al., 2017). Finally, low spatial frequency (LSF) images emphasizing faster visual 

processing (Bar et al., 2006) result in more negative categorizations of surprised faces than 

the more elaborate processing of high spatial frequency (HSF) images (Neta & Whalen, 

2010). However, while these findings are suggestive of an initial negativity (in that, for 

example, positivity is associated with more processing/response time), there is not clear 

evidence demonstrating that positive categorizations are characterized by an initial attraction 

toward a competing negative response.

More recently, research has begun exploiting online hand movements via mouse-tracking to 

index competing response tendencies during valence categorization. In mouse-tracking 

paradigms, participants move the mouse from the bottom-center of the screen to response 

options in either top corner (e.g., negative vs. positive). Despite participants’ explicit 

response, mouse trajectories may reveal a simultaneous attraction toward the unselected 

response option (on the opposite side of the screen). Thus, the paradigm moves beyond a 

delayed processing/response time for positive categorizations of surprise and directly 

measures competition from an unselected (negative) response alternative, including its 

particular millisecond-resolution temporal dynamics (Freeman, 2018). This paradigm 

therefore provides a sensitive window into the process rather than products of categorization. 

One prior study used mouse-tracking to explore valence categorizations of surprised faces, 

but focused on trajectories that differed as a function of valence bias and cognitive load 

(Mattek et al., 2016). Thus, rather than examining the dynamic process of valence 

categorization across individuals, this work examined trajectories in individuals with a 

negative versus positive bias and found that bias did not impact trajectories when under high 

load.

To more directly study the dynamic process of valence categorization when resolving 

ambiguity across all individuals, and to provide evidence for the initial negativity 
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hypothesis, we used mouse-tracking to examine response trajectories for LSFs (faster visual 

processing) and HSFs (more elaborate processing) of facial expressions. We predicted a 

general negativity bias, such that when participants select the ‘negative’ response their 

trajectories are especially direct; and when they ultimately select the ‘positive’ response, 

their trajectories reveal an early bias toward the ‘negative’ response, producing response 

conflict. Importantly, this response conflict due to the negativity bias should be exacerbated 

by HSF images, as they promote more deliberative processing that would only serve to 

intensify the conflict, relative to LSF images. Thus, we should observe negative 

categorizations of surprise (putatively the default) to be characterized by direct trajectories, 

but positive categorizations (putatively overriding the initial negativity) to be characterized 

by indirect trajectories that show response conflict, and this should be pronounced for HSF 

images.

Method

Participants

A power analysis using G*Power3.1 suggested a total sample size of 101 participants would 

be necessary to achieve 90% power in detecting significant effects with an effect size 

comparable to previous work (d = .31; Neta et al., 2009). One-hundred and twenty-five 

participants were recruited from Amazon Mechanical Turk. Seven participants were 

excluded because they provided incomplete data (responding on less than 80% of trials), and 

ten were excluded for failing to accurately rate clearly valenced faces (angry/happy) on at 

least 60% of trials (as in previous work; Neta & Whalen, 2010). This resulted in a final 

sample of 106 participants (52 female; ages 18-43 years, Mage(SD)=28.71(4.14)). All 

procedures were approved by the New York University Committee for the Protection of 

Human Subjects.

Stimuli

The stimuli were taken from previous work (Neta & Whalen, 2010), including an equal 

number of male and female faces from NimStim (8 individuals; Tottenham et al., 2009), 

Pictures of Facial Affect (13 individuals; Ekman & Friesen, 1976), and Averaged Karolinska 

Directed Emotional Faces (KDEF) databases (39 individuals; Lundqvist, Flykt, & Öhman, 

1998). Of interest were responses to surprised expressions; angry and happy expressions 

were included as response anchors and to validate performance on the task (Neta et al., 

2009). All images were transformed to gray-scale with a resolution of 75 dots per inch. 

Facial expressions were validated by an independent set of raters labeling each expression; 

only faces correctly labeled by more than 60% of raters were included.

Further, the original image (broad spatial frequencies, BSFs) was filtered to create two 

versions of each face: one comprising primarily HSF information and one primarily LSF 

information (Fig. 1). We used a high-pass cutoff of 24 cycles per image for HSFs and a low-

pass cutoff of 6 cycles per image for LSFs (Neta & Whalen, 2010). Prior to filtering, we 

equated contrast and luminance across stimuli. For the task, we used 99 stimuli (face 

identities posing a particular expression) that were counterbalanced such that each subject 

viewed a given face as either filtered (counterbalanced order of HSF and LSF) or intact (two 
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presentations of the BSF), totaling 198 trials. Faces of all types (BSF, HSF, and LSF) were 

presented pseudorandomly within each of three runs of 66 trials each. We avoided 

presenting the same identity in BSF and filtered versions to a given subject so that BSF 

versions would not affect ratings of the filtered images (Neta & Whalen, 2010).

Procedure

Participants categorized faces as positive or negative in a mouse-tracking paradigm using a 

Javascript implementation of MouseTracker (Freeman & Ambady, 2010). Participants began 

each trial by clicking “Start” at the bottom center of the screen, after which a fixation cross 

appeared for 500 ms, followed by a face for 200 ms. Participants categorized the valence of 

the face’s emotion as quickly and accurately as possible by moving the computer mouse to a 

“positive” or “negative” response option, which appeared in the upper left and right corners 

of the screen (counterbalanced across participants), and clicking on the response. There was 

no time limit within participants needed to complete their response. However, in order to 

prevent mouse trajectories from being off-line with the decision process, participants were 

encouraged to start moving within 400 ms of face onset; if they did not, a message appeared 

following the trial encouraging earlier movement initiation, and the trial was excluded. This 

criterion resulted in removal of 964 trials out of a total 24,353 across participants (i.e., 

3.96% of trials; M(SD)= 7.84(6.45) out of 198 trials per participant). During the 

categorization process, the streaming x, y coordinates of the mouse were recorded.

Results

Table 1 reports valence ratings scored as the percentage of trials the participant rated as 

negative out of the total number of trials for that condition (Neta et al., 2009; see 

Supplementary Material for analysis).

Mouse-trajectory data underwent standard preprocessing (Freeman & Ambady, 2010). All 

trajectories were rescaled into a standard coordinate space (top-left: ‘‘1, 1.5”; bottom-right: 

‘‘1, 0”) and normalized into 100 time bins (101 time-steps) using linear interpolation to 

permit averaging of their full length across multiple trials. For comparison, all trajectories 

were remapped rightward. With this orientation, the selected response is located at x=1.0 

and unselected response at x=−1.0. Thus, more positive x-coordinates indicated a more 

direct and facilitated trajectory, while less positive (or even negative) x-coordinates indicated 

a more indirect trajectory temporarily attracted to the unselected response.

Analyses focused on filtered images of surprised expressions so to emphasize the distinction 

between faster (LSF) versus more elaborate processing (HSF) of ambiguously valenced 

stimuli. We used generalized estimating equations multi-level regression (GEE) models, 

which permits analysis of trial-by-trial data while appropriately accounting for 

intracorrelations due to the nested data structure (Zeger & Liang, 1986). GEE models of 

initiation and response times are provided in Supplementary Material. For all GEE models, 

we report unstandardized regression coefficients (B) and Wald Z-statistics.

Plotting trajectories’ x-coordinates over 101 time-steps for the four conditions [Rating 

(positive, negative) x Filter (LSF, HSF)] supported our predictions (Fig. 2A): trajectories 
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were more direct for negative than positive ratings, and this was exacerbated for HSF 

images. To probe this Rating x Filter interaction, at each time-step, we regressed the x-

coordinate onto Rating (−0.5=negative, 0.5=positive), Filter (−0.5=LSF, 0.5=HSF), and the 

interaction using GEE. To solve the issue of multiple statistical testing at each time-step, we 

used bootstrapping on 10,000 simulated experiments (see Supplemental Material and Dale et 

al., 2007 for details). The bootstrapping showed that the experiment-wide significance of the 

Rating x Filter interaction was guaranteed at a criterion of p<.05, p<.01, or p<.001 if at least 

5, 6, or 8 consecutive time-steps showed a significant effect, respectively.

The Rating x Filter interaction effect was significant for time-steps 48-57, guaranteeing a 

significant experiment-wide interaction effect (p<.001). To characterize the nature of the 

interaction, we averaged x-coordinates within these time-steps and submitted them to GEE. 

There was a significant effect of Rating (B=−0.11, SE=0.03; Z=−3.88; p<.001), with 

negative-rating trials showing higher x-coordinates (more direct trajectories) than positive, 

evidencing a general negativity bias. There was also a significant effect of Filter (B=−0.06, 

SE=0.01, Z=−4.74, p<.001), with LSF trials showing higher x-coordinates than HSF trials, 

as expected given faster processing of LSFs. Notably, as expected given the bootstrapping, 

these effects were qualified by a significant interaction (B=−0.06, SE=0.03, Z=−2.10; 

p=.04), such that LSF trajectories demonstrated a negativity bias (i.e., more attraction toward 

the competing response for ‘positive’ than ‘negative’ categorizations; B=−0.08; SE=0.03; Z=

−2.52; p= .01) that was exacerbated in the HSF condition (B=−0.14, SE=0.03, Z=−4.57, 

p<.001). Together, these results show that, even when participants selected the ‘positive’ 

response, they exhibited an initial attraction toward the ‘negative’ response overall, and this 

early ‘negative’ activation was stronger for HSF faces (Fig. 2B).

It is possible that what appears to be response conflict and early negativity in the average 

trajectories could be spuriously produced, for example, if a subpopulation of erroneous “flip-

flopping” trajectories were averaged together with very direct trajectories (Freeman & Dale, 

2013). To rule this out, we inspected the distribution of x-coordinates during time-steps 48–

57, as multimodality would suggest multiple subpopulations of trajectories at play (Freeman 

& Dale, 2013). Hartigan’s dip statistic (HDS; Hartigan & Hartigan, 1985) provides an 

inferential test of multimodality against a null hypothesis of unimodality. There was no 

evidence of multimodality (LSFs rated as ‘positive’ HDS=.011, p=.88 or ‘negative’ 

HDS=.007, p=.52; HSFs rated as ‘positive’ HDS=.011, p=.931 or ‘negative’ HDS=.006, 

p=.855).

Another possible explanation is that our results merely reflect perceptual confounds, such 

that surprised faces show greater resemblance to angry than happy faces. We calculated 

pixel-based similarity (Pearson correlation between vectorized pixel-maps) between 

surprised and angry, and between surprised and happy faces, and compared the correlations 

(Meng et al., 1992). For HSFs, surprised faces were more similar to happy than angry faces 

(p<.001), contrary to this possibility; for BSFs and LSFs, there was no significant difference 

(ps=.26 and .12, respectively) with the pattern again biased toward happy faces. Such results 

favor a genuine negativity bias affecting the categorization process.
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Discussion

We provide direct evidence supporting the initial negativity hypothesis, which posits that the 

more spontaneous interpretation of ambiguity is negative. Specifically, by using mouse-

tracking, which provides a unique window into the dynamic process of categorization, we 

demonstrated that negative ratings of ambiguity show more direct response trajectories, but 

positive ratings are characterized by an attraction to the negative (competing) response 

option. Notably, filtering images into different spatial frequency bands enabled us to 

examine trajectories in response to images that receive priority processing (i.e., LSFs are 

processed first and fast) as compared to those processed more slowly and deliberately 

(HSFs; Bar et al., 2006). As predicted, the effect of response conflict due to negativity bias 

was exaggerated for HSFs, likely because these images allow for greater deliberation than 

the LSFs. Interestingly, this effect was evident despite there being no difference in 

categorizations of HSF and LSF surprised faces, suggesting that it was the HSF nature of the 

images that resulted in increased conflict. Having said that, we note that we did not replicate 

the finding that LSF surprised faces are rated more negatively than HSFs (Neta & Whalen, 

2010). Given that other work using a button press response (i.e., similar to the original 

report; Park et al., 2016) has established replicability, we propose that response modality 

may impact this finding.

These findings extend work demonstrating that, despite individual differences in valence 

bias (Kim et al., 2003; Neta et al., 2009), the initial response is negative (Neta & Whalen, 

2010) and positivity arises from greater deliberation (Neta & Tong, 2016). This is also 

consistent with evidence that the default response to uncertainty is negative (Brosschot et al., 

2016). We extend these findings by suggesting that increased deliberation (e.g., longer 

reaction times) may be associated with greater response conflict. Specifically, we suggest 

that reaction times are longer for positive than negative trials because positive trials are 

characterized by a greater attraction to the initial, negative (competing) response option, 

whereas the negative trials result from more direct trajectories. Notably, this increased 

response conflict due to negativity bias was exaggerated in response to HSFs, which allow 

for slower and more deliberate processing; hence, HSFs are more vulnerable to this response 

conflict. Thus, we leveraged filtered images to more explicitly probe the processes 

associated with a more direct/automatic (negative) versus more indirect (positive) 

categorization.

Recent work suggests that the bottom-up negativity is associated with amygdala activation 

(Kim et al., 2003), and that a top-down mechanism promotes positivity by overriding the 

initial negativity using an emotion regulation mechanism akin to cognitive reappraisal (Petro 

et al., 2018). Cognitive reappraisal is a strategy whereby one reframes or reinterprets an 

emotionally evocative event in order to change the emotional response (e.g., decreasing 

negative affect; Gross, 1998). With particular relevance to surprised faces, which have a 

dual-valence ambiguity, we have proposed that participants override the initial negativity by 

allowing for a more elaborate (re)interpretation of the expression as positive. The present 

findings support this notion by demonstrating that a positive interpretation is preceded by an 

attraction toward a negative rating (i.e., participants are not disengaging from the stimuli, but 

likely overriding the initial negativity). Importantly, this reinterpretation may result from an 
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implicit form of reappraisal (Braunstein et al., 2017), as individuals are not likely aware of 

this override process. For this reason, using filtered images here was crucial for 

disentangling trajectories during faster versus more elaborate processing. Future work could 

use mouse-tracking to examine processes associated with reappraisal and draw a more direct 

link to the response competition associated with positive ratings.

Finally, we recently reported that experimental manipulations that promote hypervigilance 

and reduce cognitive control (e.g., stress) result in more negative categorizations (Brown et 

al., 2017). Notably, individuals that were more sensitive to the stressor (greater cortisol 

reactivity) showed more direct trajectories toward the ‘negative’ response when under stress. 

Thus, stress was not only associated with greater negativity, but also decreased response 

competition in the context of negativity. We have also recently demonstrated that individuals 

that use reappraisal more frequently in their daily lives are more resilient to this stress-

related negativity (Raio, Brown & Neta, submitted). Future work will be useful for 

determining if other simpler methods for promoting elaborate processing (HSF images) 

might also help to mitigate stress-related negativity.

Several limitations are worth noting. Although we focus on the ambiguity of surprised faces, 

there is a broader context-dependency of emotional expressions (Aviezer et al. 2012; Barrett, 

2014). Indeed, a particular facial configuration is always “ambiguous” to some extent (e.g., 

Fernandez-Dols & Crivelli, 2013). However, our approach stemmed from a social signaling 

standpoint, suggesting that angry expressions are inferred to be prototypically negative and 

happy positive, but one is more likely to encounter surprised expressions in a range of 

contexts (positive and negative). Thus, we do not wish to imply a fundamental distinction 

between angry/happy and surprised expressions’ potential for ambiguity, and future work 

could test how our findings generalize to cases in which angry/happy expressions are also 

considered relatively ambiguous. Also, although this paradigm characterizes individual 

differences in negativity bias, faces are almost never seen without context in the real world. 

However, even then, the context is not always sufficient for determining a clear emotional 

valence (e.g., seeing people in a dark alley either in search of a night club or someone to 

rob). Our valence bias task intentionally withholds context so that individuals must resolve 

the uncertainty by relying on their own biases. Having said that, it could be that this 

paradigm is a better measure of one’s tendency to infer that situations are negative or 

positive, and we are generally agnostic to this distinction; the important feature here is that 

we can identify one’s bias to perceive a more negative or positive meaning in circumstances 

where both alternatives are valid with relatively equal probability. Future research could 

explore these open questions, for example, using paradigms lacking categorical emotion 

labels.

Conclusions

By leveraging mouse-tracking technology and filtered images that emphasize faster versus 

more deliberate processing, this work provides direct evidence in support of the initial 

negativity hypothesis. Specifically, we demonstrate the presence of an early negativity bias 

that weighs in during the process of resolving emotional ambiguity, even when participants 

ultimately arrive at a ‘positive’ evaluation. This work lends insight into the underlying 
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mechanism of classifying new, and particularly ambiguous information into emotional 

valence categories.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of the stimuli. Broad-spatial frequency (BSF) images were intact. These images 

were filtered to emphasise the high-spatial frequency (HSF) or low-spatial frequency (LSF) 

information, in order to promote more elaborate or faster processing, respectively. Each 

expression was presented either as intact (BSF) or filtered (HSF and LSF) to each 

participant, and this was counterbalanced across participants.
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Figure 2. 
Positive ratings are characterised by an early attraction to negativity particularly in response 

to HSF faces. (a) There was a partial attraction to the competing (unselected) response 

option which was more evident on trials rated as positive (attraction to negative) than on 

trials rated as negative (attraction to positive). This pattern of results was exaggerated for the 

HSF images, which emphasise a slower, more elaborate processing than the LSF images. (b) 

We averaged the x-coordinates within the sequence of the trajectory showing a 

significantinteraction (time steps 48–57) and submitted these to GEE multi-level regression. 

We found that LSF trajectories demonstrated the negativity bias, with significantly more 

attraction (i.e. lower x-coordinates) toward the opposite response for “positive” rather than 

“negative” categorizations(B = −0.08; SE = 0.03; Z = −2.52; p = .01), but this effect was 

exacerbated in the HSF condition (B = −0.14, SE = 0.03, Z = −4.57, p < .001). Error bars 

denote standard error of the mean.

Neta et al. Page 11

Cogn Emot. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Neta et al. Page 12

Table 1:

Frequency of negativity ratings by condition.

Surprised Angry Happy

BSF LSF HSF BSF LSF HSF BSF LSF HSF

Mean 
(SD)

77.45 
(24.59)

78.24 
(24.73)

76.83 
(23.50) 98.07 (4.29) 94.19 (6.88) 93.69 (9.82) 3.14 

(6.94)
4.19 

(7.06)
9.48 

(15.53)

Range 
(Min- 
Max)

0-100 0-100 3.45-100 77.78-100 63.16-100 42.11-100 0-38.89 0-33.33 0-100

Note: Dependent measure is Percent Negative Ratings, so mean frequency of positive ratings can be calculated by subtracting the mean frequency 
of negative ratings from 100
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