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Abstract
Loss of cell differentiation is a hallmark for the progression of oral squamous cell carcinoma (OSCC). Archival Formalin-
Fixed Paraffin-Embedded (FFPE) tissues constitute a valuable resource for studying the differentiation of OSCC and can 
offer valuable insights into the process of tumor progression. In the current study, we performed LC–MS/MS-based quan-
titative proteomics of FFPE specimens from pathologically-confirmed well-differentiated, moderately-differentiated, and 
poorly-differentiated OSCC cases. The data were analyzed in four technical replicates, resulting in the identification of 2376 
proteins. Of these, 141 and 109 were differentially expressed in moderately-differentiated and poorly differentiated OSCC 
cases, respectively, compared to well-differentiated OSCC. The data revealed significant metabolic reprogramming with 
respect to lipid metabolism and glycolysis with proteins belonging to both these processes downregulated in moderately-
differentiated OSCC when compared to well-differentiated OSCC. Signaling pathway analysis indicated the alteration of 
extracellular matrix organization, muscle contraction, and glucose metabolism pathways across tumor grades. The extracel-
lular matrix organization pathway was upregulated in moderately-differentiated OSCC and downregulated in poorly dif-
ferentiated OSCC, compared to well-differentiated OSCC. PADI4, an epigenetic enzyme transcriptional regulator, and its 
transcriptional target HIST1H1B were both found to be upregulated in moderately differentiated and poorly differentiated 
OSCC, indicating epigenetic events underlying tumor differentiation. In conclusion, the findings support the advantage of 
using high-resolution mass spectrometry-based FFPE archival blocks for clinical and translational research. The candidate 
signaling pathways identified in the study could be used to develop potential therapeutic targets for OSCC.

Keywords  Cancer pathology · Pressure cycling technology · Molecular medicine · Cancer grade · Quantitative proteomics · 
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Abbreviations
DTT	� Dithiothreitol
FDR	� False Discovery Rate
FFPE	� Formalin-Fixed Paraffin Embedded
GO	� Gene Ontology
IAA	� Iodoacetamide

MS/MS	� Tandem Mass Spectrometry
OSCC	� Oral Squamous Cell Carcinoma
PCT	� Pressure Cycling Technology
PSM	� Peptide Spectrum Match
SDS	� Sodium Dodecyl Sulfate
TEABC	� Triethyl Ammonium Bicarbonate
TMT	� Tandem Mass Tags

Introduction

Cancers of the lip and oral cavity arise primarily from epi-
thelial cells, and 90% of these are composed of oral squa-
mous cell carcinoma (OSCC) by origin (Miranda-Filho and 
Bray 2020). OSCC arises in various anatomical locations 
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within the oral cavity, including the tongue, buccal mucosa, 
gingiva, palate, lip, and floor of the mouth. Carcinoma of 
the oral cavity results from a multi-step process triggered 
by various stimuli such as tobacco, alcohol consumption, 
and infections with high-risk types of human papillomavirus 
(HPV) (Argiris et al. 2008). Despite the continuous advance-
ment in the multimodality treatment, satisfactory survival 
rates have not been achieved, owing to diagnosis at advanced 
stages of the disease, resulting in poor outcomes (Forastiere 
et al. 2001).

Molecular and histopathological features play an essen-
tial role in prognostic evaluation of oral squamous cell 
carcinoma (OSCC), which is based on the TNM staging 
system (primary tumor, regional lymph node metastasis, 
and distant metastasis) developed by the American Joint 
Committee on Cancer (AJCC). OSCC is categorized into 
three histopathological types based on the degree of differ-
entiation, such as well-differentiated OSCC (Well-OSCC), 
moderately-differentiated OSCC (Moderate-OSCC), and 
poorly-differentiated OSCC (Poor-OSCC). Such histologi-
cal grading using Broder’s classification is subjective, and 
attempts have been made to add more rigor to the grading by 
taking into account other parameters such as mitotic index, 
DNA content, Ki-67 expression among others (Akhter et al. 
2011). Well-OSCC, also referred to as low-grade OSCC, 
resembles normal squamous mucosa with a good prognosis. 
Moderate-OSCC displays intermediated forms of tumors and 
has less keratinization, whereas Poor-OSCC is more aggres-
sive, resulting in a worse prognosis (Barnes et al. 2005). 
Cancer metastasis is a multi-step process that involves the 
invasion of neighboring tissues by malignant cells result-
ing in loss of cell-to-cell adhesion and apical-basal polarity. 
It is assumed that such morphological changes serve as an 
indicator of epithelial-mesenchymal transition (EMT) where 
Well-OSCC, Moderate-OSCC, and Poor-OSCC derive its 
architecture owing to such EMT transition (Guarino et al. 
2007). Accurate identification and categorization could 
play a vital role in significantly improving the prognosis 
of OSCC.

In the post-genomic era, proteomics has become an effec-
tive approach to identify distinct protein expression signa-
tures associated with the cancer phenotype and enhanced 
our understanding of tumor-specific changes. Frozen tumor 
tissue is a preferred biological material, as it is a reservoir 
of signaling components from diverse cell compartments 
(Poschmann et al. 2009). Besides, most tumor tissues are 
stored as formalin-fixed paraffin-embedded (FFPE) tissues 
as a part of routine pathological investigations. These are 
readily available as a resource for research and can be used 
to identify candidate biomarkers for diagnosis or treatment 
outcome. Because of formalin fixation-induced intermolecu-
lar and intramolecular cross-linking of proteins, FFPE sam-
ples are not generally preferred for proteomics investigations 

(Ahram et al. 2003). However, several efforts have been 
made to develop a clinically applicable high-throughput 
mass spectrometry approach, to mine the FFPE tissue pro-
teome to identify candidate biomarkers (Hwang et al. 2007; 
Mertins et al. 2016; Negishi et al. 2009; Patel et al. 2008; 
Pozniak et al. 2016; Tyanova et al. 2016; Xiao et al. 2010; 
Zhang et al. 2014, 2016). In recent years, workflows for 
extracting proteins from FFPE specimens for mass spec-
trometry (MS)-based proteomic analysis have been devel-
oped (Hwang et al. 2007; Patel et al. 2008) and these, in turn, 
have enabled numerous other studies. In 2014, quantitative 
proteomics analysis of FFPE tissue samples from OSCC 
patients was carried out, which resulted in the identification 
of galectin-7 as a potential predictive marker of chemo- and/
or radiotherapy resistance in OSCC (Matsukawa et al. 2014). 
Similarly, two-dimensional liquid chromatography-tandem 
mass spectrometry coupled with an isobaric tag for relative 
and absolute quantification (iTRAQ) labeling technique was 
used by Xiao et al. for the analysis of nasopharyngeal car-
cinoma specimens (Xiao et al. 2010). The use of pressure 
cycling technology (PCT) has been suggested to be efficient 
in improving protein recovery and overall protein identifi-
cations from FFPE blocks compared to heat and detergent-
based denaturation methods (Fowler et al. 2010).

In the current study, we utilized PCT technology to 
extract proteins from FFPE tissue specimens of three his-
topathological types based on the degree of differentiation 
of OSCC (Well-OSCC, Moderate-OSCC, and Poor-OSCC). 
The samples were subjected to tandem mass tags (TMT)-
labeling followed by tandem mass spectrometry analysis 
to identify and quantify the candidate proteins across these 
subtypes. We attempted to study the underlying molecu-
lar mechanisms of OSCC tumor differentiation and look 
for potential discriminant proteins suggesting histological 
type. This, in turn, could help identify clinically relevant 
biomarkers specific to these subtypes, which will further 
help improve therapeutic outcomes. Our analysis revealed 
differential expression of proteins associated with extracel-
lular matrix and cell adhesion, with Moderate-OSCC show-
ing higher expression. In comparison, Poor-OSCC revealed 
a lower expression of the same class of proteins.

Materials and methods

Study design

A total of 3 sample sets of FFPE tissue specimens, including 
6 cases of each differentiation type of oral cancer, namely 
well-, moderate-, and poorly-differentiated, were retrieved 
from the archive of Burdwan Dental College and Hospital, 
Burdwan, West Bengal, India. The study was reviewed and 
approved by the Institutional Ethical Committee, Burdwan 
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Dental College and Hospital, Burdwan, West Bengal, India 
(dated 02/01/2017), and informed consent was obtained 
from each patient for the study. The details of the tissues 
used are provided in Supplementary Table S1.

Protein extraction and estimation

For analysis, 10 μm tissue sections were considered. The 
deparaffinization of FFPE sections involved three cycles 
of xylene treatment for 2 min each. These sections were 
rehydrated in 90% and 70% ethanol, followed by water for 
1 min. The rehydrated tissue sections were resuspended in 
lysis buffer (4% Sodium Dodecyl Sulfate, 100 mM DTT, and 
50 mM TEABC (Sigma-Aldrich)) and transferred to PCT 
microtubes. Barocycler was used for protein extraction with 
a temperature of 95ºC and 60 cycles of alternating pressure 
(1cycle = 40,000 psi for 50 s and 5000 psi for 10 s). The 
lysates were cooled at room temperature and centrifuged at 
12,000 rpm for 20 min. The supernatant was separated, and 
the protein concentration was determined using the bicin-
choninic acid assay kit (Thermo Scientific Pierce).

In‑solution digestion and labeling with TMT 
reagents

Briefly, 100 µg of protein from each condition was reduced 
using 10 mM dithiothreitol (DTT) (Sigma-Aldrich) at 60 °C 
for 30 min. Alkylation was done using 20 mM iodoaceta-
mide in the dark for 10 min at room temperature. Buffer 
exchange was carried out using 30 kDa filters to remove SDS 
as it interferes with trypsin action. Digestion was carried 
using trypsin as a proteolytic enzyme using a barocycler. 
After digestion, the peptides were dried using speedVac and 
kept at -80 ºC until TMT labeling.

TMT labeling was carried out using reagents from a TMT 
10-plex kit (Thermo Fisher Scientific) as per the manufac-
turer’s protocol (TMT channel details: Well-OSCC: 126; 
Moderate-OSCC: 128C; Poor-OSCC: 131). The labeling 
reactions were quenched using 5% hydroxylamine. Labeled 
peptides were then pooled and treated with C18 clean-up 
before fractionation using HPLC. Peptides were fractionated 
into 6 fractions, each using the reverse-phase liquid chroma-
tography (bRPLC) method to reduce the sample complexity 
(Verma et al. 2017).

Tandem mass spectrometry analysis (MS/MS)

Analysis of TMT-labelled samples was carried out on an 
Orbitrap Fusion Tribrid mass spectrometer (Thermo Sci-
entific, Bremen, Germany) interfaced with Easy-nLC-1200 
(Thermo Scientific, Bremen, Germany). The vacuum-dried 
peptides obtained after C18 cleaning were resuspended 
in 0.1% formic acid (Solvent A) and loaded onto the trap 

column (75 µm × 2 cm, nanoViper, 3 µm, 100 A°) filled 
with C18 at a flow rate of 4 µl/min with Solvent A. The 
peptides were further resolved onto the analytical column 
(15  cm × 50  µm, nanoViper, 2  µm). Each fraction was 
injected four times into the mass spectrometer to represent 
technical replicates. Data were acquired using data-depend-
ent acquisition mode with the following parameters- MS/MS 
analysis at a scan range of 110–2000, with top ten intense 
precursor ions selected for each duty cycle, higher collision 
energy dissociation with 33% normalized collision energy. 
The fragmented ions were detected using the Orbitrap mass 
analyzer at a resolution of 30,000 with a maximum injec-
tion time of 200 ms. Synchronous precursor selection MS3 
scanning for TMT labels was performed at a scan range of 
400–1600 in positive mode with a maximum injection time 
200 ms and an automatic gain control (AGC) target value 
of 5.0 × e5 with quadrupole isolation enabled. The fragment 
ions for MS3 scans were based on the precursor selection 
range of 250–1600 m/z, and isobaric tag loss exclusion for 
TMT. The top ten intense precursors were selected for MS3 
scans with a maximum fill time of 150 ms, 60,000 resolu-
tion at m/z 200, with MS3 scans acquired in profile mode.

Data processing of LC–MS/MS analysis

Mass spectrometry derived data were searched against the 
Human RefSeq 81 protein database (consisting of 110,386 
protein entries along with 116 common contaminants) in 
Proteome Discoverer 2.1 (Thermo Scientific, Bremen, Ger-
many) using SequestHT and Mascot (version 2.5.1, Matrix 
Science, London, UK) as search algorithms. The search 
parameters included trypsin as a proteolytic enzyme with 
a maximum of two missed cleavages. Cysteine carbamido-
methylation, TMT at lysine, and peptide N-termini were 
specified as fixed modifications. Acetylation of protein 
N-terminus and methionine oxidation were set as variable 
modifications with a minimum length of 7 amino acids as 
peptide length. Precursor ion mass tolerance and fragment 
ion mass tolerance were allowed with 10 ppm and 0.05 Da, 
respectively. Quantitation was carried out using the reporter 
ion quantifier node in Proteome Discoverer 2.1 from MS3 
scans using an integration tolerance of 20 ppm with the most 
confident centroid setting. The data were searched against 
the decoy database with a 1% FDR cut-off at PSM and pep-
tide levels.

Bioinformatics analysis

The datasets from Proteome Discoverer were exported, and 
identified proteins with missing values and contaminants 
were removed before bioinformatics analysis. Only the pro-
teins identified across all technical replicates were consid-
ered for further analysis. Protein intensities were subjected 
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to TMT channel-wise median- normalization. Median val-
ues were calculated from replicates for each condition, fol-
lowed by computation of fold-change ratios and p-values 
between differentiation states. Proteins with fold-change 
ratios of ≥ 1.5 and p-value ≤ 0.05 were considered to be sig-
nificantly upregulated, while those with fold-change ratios 
of ≤ 0.66 and p-value ≤ 0.05 were considered to be signifi-
cantly downregulated. The list of proteins identified were 
compared with gene lists for protein classes and functions 
such as protein kinases, phosphatases, tumor suppressor 
genes, oncogenes, epigenetic regulators, hypoxia, oxidative 
stress, and metabolism obtained from the Molecular Sig-
natures Database (MSigDB, v7.0, https​://www.gsea-msigd​
b.org/gsea/msigd​b) or compiled from existing literature 
as previously described (Subbannayya et al. 2020, 2019). 
Gene Ontology (GO) enrichment into biological process, 
sub-cellular localization, and molecular function categories 
and Reactome-based pathway enrichment analysis was con-
ducted for differentially expressed proteins using Enrichr 
(https​://maaya​nlab.cloud​/Enric​hr) (Chen et al. 2013).

Data availability

The mass spectrometry data have been made publicly avail-
able by depositing it to ProteomeXchange Consortium Pro-
teomics IDEntifications (PRIDE) partner repository with 
dataset identifier PXD019456 (Vizcaino et al. 2014).

Results

We analyzed the protein expression in OSCC tissue sections 
from three histopathological types based on the degree of 
differentiation (well, moderate, and poorly differentiated), 
as illustrated in Supplementary Fig. 1a. Six FFPE tissue 
sections, each of Well-OSCC, Moderate-OSCC, and Poor-
OSCC, were analyzed on Orbitrap Fusion Tribrid mass spec-
trometer after pooling. We identified 4367 proteins, of which 
2376 proteins (Supplementary Table S2) were quantified 
across all four technical replicates in Well-OSCC, Moderate-
OSCC, and Poor-OSCC. Among these, 199 proteins were 
identified with a single peptide with single PSM support and 
were excluded from further analysis.

Overview of protein expression across different 
grades of oral cancer

We compared the differentially expressed proteins from all 
three grades of differentiation. Proteins with fold-change 
ratios of ≥ 1.5 and p-value ≤ 0.05 were considered to be sig-
nificantly upregulated, while those with fold-change ratios 
of ≤ 0.66 and p-value ≤ 0.05 were considered to be signifi-
cantly downregulated. Employing this cut-off, we identified 

141 proteins (44 overexpressed and 97 downregulated) dif-
ferentially regulated in Moderate-OSCC; and 109 proteins 
(34 overexpressed and 75 downregulated) significantly 
altered in Poor-OSCC in comparison to Well-OSCC (Sup-
plementary Fig. 1b). Comparison of protein expression pro-
files across differentiation grades revealed an overlap of 41 
(19.6%) proteins while 100 proteins (47.8%) were specific to 
Moderate-OSCC vs. Well-OSCC, and 68 proteins (32.5%) 
were specific to Poor-OSCC vs. Well-OSCC (Supplemen-
tary Fig. 1b and d). The dysregulated proteins are graphi-
cally represented as volcano plots for moderate-OSCC cases 
(Fig. 1a) and poor-OSCC cases (Fig. 1b) compared to well-
OSCC. Principal component analysis PCA analysis was per-
formed using the dysregulated proteins, which revealed that 
these three grades show distinct protein expression patterns 
(Supplementary Fig. 1c). A partial list of overexpressed and 
downregulated proteins in Moderate-OSCC and Poor-OSCC 
as compared to Well-OSCC are provided in Tables 1 and 2, 
respectively.

A comparison of differentially expressed proteins against 
gene lists of selected processes and functions was carried 
out. Among the known protein kinases, we found EGFR, 
a receptor tyrosine kinase as well as a widely known onco-
gene to be highly overexpressed in Moderate-OSCC (4.73-
fold) whereas CSK (1.81-fold) was overexpressed in Poor-
OSCC compared to Well OSCC. OBSCN, a protein kinase 
involved in organization of myofibrils (0.60-fold), was found 
to be downregulated in Moderate-OSCC. Additionally, we 
observed alterations in several well-established oncogenes 
and tumor suppressor genes between Moderate-OSCC and 
Poor-OSCC samples, which are enlisted in Supplementary 
Table S3.

We wanted to understand if the tumor differentiation is 
guided by epigenetic events and sought to identify epige-
netic regulators in our data. Comparison with a list of epi-
genetic regulators revealed upregulation of PADI4 (2.01-
fold), HIST1H1B (1.64-fold), and HMGN1 (1.57-fold) in 
Moderate-OSCC and PADI4 (3-fold) in Poor-OSCC as com-
pared to Well-OSCC. Comparing with a list of cytokines 
and chemokines to look at cytokine activity in the process 
of differentiation identified the downregulation of ILRN and 
IL36RN receptor antagonists in both Moderate-OSCC and 
Poor-OSCC while there were no changes in the levels of 
identified interleukins- IL16 and IL18. These findings sug-
gest the presence of epigenetic events and absence or low 
detectable limits of cytokine activity.

We also compared our data with a list of metabolic path-
ways to identify evidence of underlying metabolic repro-
gramming. While several enzymes of glycolysis, including 
ADH1B, ENO3, PDHA1, PFKM, PGM1, PGAM2 were 
downregulated in Moderate-OSCC; ADH1B was upregu-
lated in Poor-OSCC (Highlighted in green in Supplemen-
tary Table S2). Further, there were stark differences between 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://maayanlab.cloud/Enrichr
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moderate and poorly differentiated-OSCC samples with 
respect to lipid metabolism. Lipid metabolism genes includ-
ing ACAA2, ACO2, ACOT2, CA2, ENO3, GPD1, HADH, 

and PDHA1 were downregulated in Moderate-OSCC while 
ACOT2 was upregulated in Poor-OSCC (Highlighted in blue 
in Supplementary Table S2). These suggest a significant 

Fig. 1   Differential expres-
sion of proteins across OSCC 
histopathological types based 
on the degree of differentiation. 
Volcano plots depicting differ-
ential expression of proteins in 
a Moderate-OSCC versus Well-
OSCC and b Poor-OSCC versus 
Well-OSCC. Red and green 
dots represent significantly 
(p-value ≤ 0.05) downregulated 
and overexpressed proteins, 
respectively
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difference between the extent of metabolic reprogramming 
across OSCC tumor grades. Metabolic pathways, including 
Amino acid metabolism, TCA cycle, and oxidative phos-
phorylation, showed minor changes across cancer grades. 
No significant trends were observed between differentia-
tion states with respect to proteins belonging to processes 
such as cell cycle, hypoxia, oxidative stress, and oxidative 
phosphorylation.

Functional analysis of differentially expressed 
proteins

Reactome pathway and Gene Ontology analyses of differen-
tially expressed proteins were carried out using Enrichr to 
identify significantly altered signaling pathways and biologi-
cal processes in Moderate-OSCC and Poor-OSCC compared 
to Well-OSCC (Supplementary Figs. 2, 3).

Consistent with differentiation grade, extracellular 
matrix (ECM) organization, collagen formation, muscle 

contraction, and glucose metabolism pathways were mainly 
dysregulated in Moderate-OSCC as compared to Well-
OSCC. Altered metabolism is often observed in tumors 
where cancer cells rely on glycolysis, also known as the 
Warburg effect (Warburg 1956). In the current study, we 
observed increased levels of glycolytic enzymes in Well-
OSCC, but they were comparatively decreased in Moderate-
OSCC. Recent findings highlighted such metabolic changes 
tend to modulate HNSCC and have potential in the develop-
ment of adjuvant anti-cancer therapy (Hsieh et al. 2019; Sur 
et al. 2019). Similarly, activation of complement compo-
nents, lipid digestion, ECM-receptor interaction pathways 
were observed to be disrupted in the Poor-OSCC phenotype 
when compared to Well-OSCC.

The most striking functional difference between Moder-
ate-OSCC and Poor-OSCC was the significant enrichment of 
ECM organization having opposite trend across two differ-
entiation grades (Fig. 2, Supplementary Fig. 2). This finding 
was also supported by GO analysis (Supplementary Fig. 3) 

Table 1   A partial list of 
differentially expressed 
proteins in Moderate-OSCC 
as compared to Well-OSCC 
(p ≤ 0.05)

Gene Symbol Gene ID Protein Description Fold-change ratio (Moder-
ate-OSCC vs. Well-OSCC)

Upregulated proteins
EGFR 1956 Epidermal growth factor receptor 4.73
CES1 1066 Liver carboxylesterase 1 4.43
KRT3 3850 Keratin, type II cytoskeletal 3 3.67
FN1 2335 Fibronectin 3.51
THBS1 7057 Thrombospondin-1 2.67
Downregulated proteins
MURC​ 347,273 Muscle-related coiled-coil protein 0.48
GOT1 2805 Aspartate aminotransferase, cytoplasmic 0.46
KRT13 3860 Keratin, type I cytoskeletal 13 0.48
CRABP2 1382 Cellular retinoic acid-binding protein 2 0.46
KLHL40 131,377 Kelch-like protein 40 0.15

Table 2   A partial list of 
differentially expressed proteins 
in Poor-OSCC as compared to 
Well-OSCC (p ≤ 0.05)

Gene symbol Gene ID Protein description Fold-change ratio (Poor-
OSCC vs. Well-OSCC)

Upregulated proteins
AGR2 10,551 Anterior gradient protein 2 18.96
BPIFB2 80,341 BPI fold-containing family B member 2 11.92
MUC5B 727,897 Mucin-5B 10.48
MPZ 4359 Myelin protein P0 isoform L-MPZ 6.95
FABP9 646,480 Fatty acid-binding protein 9 6.39
Downregulated proteins
HLA-DQA1 3117 HLA class II histocompatibility antigen 0.47
CD9 928 CD9 antigen 0.52
KRT14 3861 Keratin, type I cytoskeletal 14 0.46
GBP5 115,362 Guanylate-binding protein 5 0.50
CMA1 1215 Chymase 0.41
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In the oral cavity, ECM is composed of collagens, laminins, 
fibronectins, glycoproteins, and proteoglycans. It provides 
structural integrity and regulates cellular activities such as 
cellular adhesion, proliferation, and migration and has been 
shown to exhibit aberrant behavior in cancer, facilitating 
tumor progression. We identified altered expression of sev-
eral members of the collagen family (Table 3). These find-
ings are in line with previous results where altered expres-
sion of collagens have been reported to be associated with 
increased cellular migration, differentiation, and progres-
sion of OSCC (Fang et al. 2014). In addition, the laminin 

family of proteins, which constitute an integral part of ECM, 
were represented by LAMA2 (2.55 -fold in Moderate-OSCC 
and 0.61 -fold in Poor-OSCC), LAMA3 (0.35-fold in Poor-
OSCC), LAMB3(0.41-fold in Poor-OSCC), LAMC2 (0.39-
fold in Poor-OSCC).

The current analysis also demonstrated significant down-
regulation of muscle contraction-related proteins in the 
Moderate-OSCC compared to Well-OSCC. In particular, 
muscle contraction proteins such as troponins TNNI1 (0.39-
fold), TNNI2 (0.24-fold), TNNT1(0.35-fold), TNNT3 (0.30-
fold), TNNC2 (0.23-fold)), myosins (MYL1 (0.18-fold), 
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Fig. 2   Role of extracellular matrix–receptor (ECM-receptor) interac-
tion pathway in OSCC. The ECM-receptor interaction pathway was 
enriched based on proteins dysregulated in Moderate-OSCC and 
Poor-OSCC compared to Well-OSCC. Proteins highlighted in grey 

were not identified in our study. Pathway enrichment analysis was 
performed using Reactome pathway analysis carried out using Enri-
chr
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MYL2 (0.29-fold), MYL3 (0.24-fold), MYLPF (0.13-fold), 
MYBPC1 (0.23-fold)) and tropomyosins (TPM1 (0.55-fold), 
TPM2 (0.27-fold)) were found to be downregulated. This 
finding was also supported by GO analysis, where proteins 
participating in muscle contraction-related processes were 
downregulated in both Moderate-OSCC and Poor-OSCC 
compared to Well-OSCC (Supplementary Fig. 3). Troponin 
and tropomyosin are Ca2+-binding proteins and known 
to regulate striated muscle contraction. There are reports 
implicating the role of troponins and its isoforms in various 
human tumors (Casas-Tinto et al. 2016). Taken together, our 
results indicate diverse expression profiles of multiple cel-
lular pathways between Moderate and Poor-OSCC.

Discussion

Formalin-fixed, paraffin-embedded tumor tissue blocks are a 
valuable resource for clinical research as they are routinely 
prepared in clinical settings for pathological investigations. 
FFPE specimens were initially thought to be problematic 
for proteomic analysis because of formalin-induced protein 
cross-links and modifications hindering separation, visuali-
zation, and characterization of individual proteins (Palmer-
Toy et al. 2005). However, advances in proteomics methods 
have made FFPE tissue specimens a useful resource for 
molecular discovery, and several studies have highlighted 
the feasibility of biomarker discovery from FFPE tissue pro-
teins by shotgun proteomics approach (Xiao et al. 2010), 
(Azimzadeh et al. 2010; Palmer-Toy et al. 2005; Sprung 
et al. 2009). The current study used a TMT-labeling based 
quantitative proteomics approach to study OSCC FFPE tis-
sue specimens across three differentiation grades.

Malignant transformation involves activation of under-
lying connective tissue and generation of phenotypically 
altered and specific tumor stroma, with a possibility to 
influence tumor cells (Kellermann et al. 2008). Epithelial 
tumor growth and the tumorigenesis process are regulated by 
tumor stroma comprising of inflammatory cells, endothelial 
cells, fibroblasts, and myofibroblasts (Baglole et al. 2006). 
Myofibroblasts-based activity modulated by cancer cells 
promotes the secretion of extracellular matrix proteins and 
is involved in the growth, adhesion, migration, and differen-
tiation of tumor cells (Kellermann et al. 2008; Mukaratirwa 
et al. 2005; Pourreyron et al. 2003). ECM is responsible for 
providing structural integrity and regulating cellular activi-
ties such as cellular adhesion, proliferation, and migration 
and has been shown to exhibit aberrant behavior in cancer, 
facilitating tumor progression (Bissell and Hines 2011; Lu 
et al. 2012; Nissen et al. 2019; Oh et al. 2012; Walker et al. 
2018). In the current study, we identified proteins belong-
ing to the ECM organization pathway to be upregulated in 
Moderate-OSCC compared to Well-OSCC. On the contrary, 
proteins belonging to the same pathway were found to be 
downregulated in Poor-OSCC compared to Well-OSCC. 
This was also reflected in the results of the GO analysis. 
This suggests that ECM pathway remodeling status is prob-
ably dependent on the differentiation state of the tumor cells.

Our results indicate that the main components of the 
basement membrane, including collagen family members, 
fibrinogens (FGA, FGB), fibronectin (FN1), and fibulin 1 
(FBLN1), were upregulated in Moderate-OSCC. These pro-
teins have been implicated in stromal impairment facilitat-
ing tumorigenesis (Chu et al. 2019; Sun et al. 2020; Xiao 
et al. 2014). FN1 is an extracellular matrix glycoprotein 
and plays an essential role in cell adhesion, wound heal-
ing, proliferation, metastasis, and epithelial-mesenchymal 
transition (EMT) (Pankov and Yamada 2002). Its aberrant 
expression is reported in multiple cancer types, including 
OSCC, colorectal cancer, esophageal SCC, nasopharyngeal 
carcinoma, thyroid cancer, and gastric cancer (Cai et al. 
2018; Nakagawa et al. 2014; Sponziello et al. 2016; Sun 
et al. 2020; Wang et al. 2017; Xiao et al. 2018). FBLN1 
is also a glycoprotein and its aberrant expression has been 
associated with tumor progression (Harikrishnan et al. 2020; 
Xiao et al. 2014).

Notably, our results indicated ECM-related proteins, 
including collagen family members and laminins, to be sig-
nificantly downregulated in Poor-OSCC compared to Well-
OSCC, which probably allows cancerous cells to detach from 
the site of their origin, resulting in invasion and metastasis. 
The role of laminins in ECM-remodeling in cancer is well 
known. Further, the expression for laminins has been found 
to correlate with cell differentiation in oral cancer (Kulkarni 
et al. 2019). We also identified tenascin-C (TNC), whose 
expression is mainly observed in the microenvironment 

Table 3   Expression of collagen family members in Moderate-OSCC 
and Poor-OSCC as compared to Well-OSCC

Gene symbol Moderate-OSCC/Well-
OSCC (Fold-change)

Poor-OSCC/
Well-OSCC (Fold-
change)

COL1A1 2.31 (Up) 1.32 (No change)
COL1A2 2.25 (Up) 1.93 (Up)
COL3A1 2.14 (Up) 1.02 (No change)
COL4A2 1.33 (No change) 0.34 (Down)
COL5A1 2.47(Up) 0.76 (Down)
COL5A2 2.18(Up) 0.69 (Down)
COL6A1 1.04 (No change) 0.53 (Down)
COL6A2 1.01 (No change) 0.47 (Down)
COL6A3 1.57 (Up) 0.58 (Down)
COL7A1 1.19 (No change) 0.51 (Down)
COL12A1 1.71 (Up) 0.52 (Down)
COL14A1 2.5 (Up) 0.84 (Down)
COL17A1 0.89 (No change) 0.44 (Down)
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of tumors (Orend and Chiquet-Ehrismann 2006). Simi-
larly, LUM (Lumican) expression has been linked to tumor 
growth in various malignancies; however, its precise mecha-
nism remains elusive to date (Nikitovic et al. 2008). Altera-
tions in its levels have been reported in multiple cancers 
where its diverse role in homeostasis and pathological pro-
cesses makes it a potential candidate for targeted therapy 
in cancer (Brezillon et al. 2013). Taken together, most of 
the ECM-related proteins were dysregulated and showed 
opposite expression across different histological grades of 
OSCC. Such alterations contribute to tumor invasiveness 
and metastasis and play a crucial role in cancer progression. 
This strongly implicates that targeting the effectors of this 
pathway will prove useful for therapeutic intervention.

Apart from the ECM family of proteins, our data revealed 
significant enrichment of muscle-contraction related pro-
teins, which were downregulated in Moderate-OSCC com-
pared to Well-OSCC. Muscle wasting is observed among 
cancer patients resulting in disruptions of mitochondrial 
homeostasis and reduced oxidative capacity, which has 
been associated with systemic inflammation (Hardee et al. 
2020). Loss of muscle mass has been linked with reduced 
response to anti-cancer treatments. Loss of adipose tissue 
and skeletal muscle majorly accounts for muscle wasting and 
represents an early characteristic in cancer patients (Penna 
et al. 2014). Cancer-induced muscle wasting (sarcopenia) 
represents one of the hallmarks of cachexia. A recent study 
also demonstrated the presence of cachexia, marked by the 
loss of adipose tissues and skeletal mass in OSCC patients 
(Yoshimura et al. 2020). Preferential losses of myosin and 
actin proteins are known to play an essential role in cancer-
induced muscle wasting resulting due to altered translational 
regulation or protein degradation (Banduseela et al. 2007). 
There are studies demonstrating the role of troponins and 
their isoforms as striated muscle-specific proteins and their 
role in tumor growth (Johnston et al. 2018; Sheng and Jin 
2016). The existing literature states loss of skeletal muscle 
is accompanied by chronic respiratory disease, cardiac fail-
ure, chronic kidney disease, and sepsis, further resulting in 
poor overall survival in cancer patients (Bowen et al. 2015). 
Hence, further studies exploring the role of signaling path-
ways resulting in muscle contraction and loss are warranted 
for the identification of candidate drug targets.

In addition to ECM and muscle contraction proteins, we 
observed altered metabolic reprogramming and epigenetic 
modulation across OSCC tumor grades. Increased glucose 
uptake, aerobic glycolysis, and fermentation of glucose are 
characteristic features of cancer cells. The switching of 
tumor cells from oxidative phosphorylation to glycolysis for 
their energy needs despite the presence of functioning mito-
chondria is known as the Warburg effect (Warburg 1956), 
and this phenomenon has been suggested to promote tumo-
rigenesis (Liberti and Locasale 2016). The findings from 

our study were consistent with the Warburg effect. Similarly, 
increased uptake and metabolism of lipid metabolism are a 
feature of tumor cells (Koundouros and Poulogiannis 2020; 
Munir et al. 2019). However, the extent of the change in 
expression of glycolytic enzymes varied across the tumor 
grade. Both glycolysis and lipid-metabolism associated pro-
teins were found to be downregulated in Moderate-OSCC 
compared to Well-OSCC.

Peptidyl arginine deiminases (PADI).catalyze the pro-
cess of citrullination, a post-translational modification 
that is known to modulate epigenetic events and regulate 
transcription (Beato and Sharma 2020). PADI2 and PADI4 
have been previously shown to citrullinate histones bring-
ing about changes in transcription activities (Christophorou 
et al. 2014; Guertin et al. 2014; Zhang et al. 2012). PADI4, 
in particular, was found to citrullinate H1 histone resulting 
in its dissociation from chromatin and causing chromatin 
decondensation in embryonic stem cells (Christophorou 
et al. 2014). In addition, PADI4 has been shown to modulate 
arginine methylation through methylation in HL-60 granulo-
cytes and regulate transcription of estrogen-responsive genes 
such as pS2 (or trefoil factor 1) in MCF-7 breast cancer 
cells (Wang et al. 2004). In the current study, we identified 
PADI4 as well as its transcriptional target- HIST1H1B to 
be overexpressed in both Moderate-OSCC and Poor-OSCC 
as compared to Well-OSCC. This suggests a possible asso-
ciation of PADI4-induced epigenetic events across tumor 
differentiation states. In addition, citrullination events could 
also be modulating the ECM remodeling events observed in 
the current study. This hypothesis is supported by a previ-
ous study where increased ECM localization of PADI4 was 
observed in liver metastasis of colorectal cancer (Yuzhalin 
et al. 2018). In addition, ECM citrullination altered adhe-
sion, motility and epithelial to mesenchymal transition 
(EMT) of colorectal cancer cells, and pharmacological inhi-
bition of PADIs resulted in decreased metastasis. This sug-
gests that PADI4 could be a potential therapeutic target for 
OSCC, and more investigations are required to confirm this.

Conclusions

In conclusion, proteomic characterization of various grades 
of OSCC provided novel insights into the underlying molec-
ular mechanisms associated with differentiation. The data 
obtained from the study indicate significant differences 
across various grades with respect to ECM organization pro-
teins as well as metabolic pathways and epigenetic events. 
These differences could be utilized to develop prognostic 
signature panels or identify potential therapeutic targets for 
OSCC. Altered proteins identified in the current study need 
to be further validated in a larger cohort of patient samples. 
The lack of validation of candidate proteins and the limited 
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number of patient samples used constitute the limitations 
of the study. Finally, the study shows the power of utilizing 
archival FFPE tissues for high-throughput clinical omics 
investigations to unravel molecular mechanisms of cancer.
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