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Abstract: The central nervous system (CNS) is the major target for adverse effects of alcohol and 

extensively promotes the development of a significant number of neurological diseases such as 

stroke, brain tumor, multiple sclerosis (MS), Alzheimer’s disease (AD), and amyotrophic lateral 

sclerosis (ALS). Excessive alcohol consumption causes severe neuro-immunological changes in the 

internal organs including irreversible brain injury and it also reacts with the defense mechanism of 

the blood-brain barrier (BBB) which in turn leads to changes in the configuration of the tight 

junction of endothelial cells and white matter thickness of the brain. Neuronal injury associated with 

malnutrition and oxidative stress-related BBB dysfunction may cause neuronal degeneration and 

demyelination in patients with alcohol use disorder (AUD); however, the underlying mechanism still 

remains unknown. To address this question, studies need to be performed on the contributing 

mechanisms of alcohol on pathological relationships of neurodegeneration that cause permanent 

neuronal damage. Moreover, alcohol-induced molecular changes of white matter with conduction 

disturbance in neurotransmission are a likely cause of myelin defect or axonal loss which correlates 

with cognitive dysfunctions in AUD. To extend our current knowledge in developing a 

neuroprotective environment, we need to explore the pathophysiology of ethanol (EtOH) metabolism 

and its effect on the CNS. Recent epidemiological studies and experimental animal research have 

revealed the association between excessive alcohol consumption and neurodegeneration. This review 

supports an interdisciplinary treatment protocol to protect the nervous system and to improve the 

mailto:zinia@unm.edu


391 

AIMS Neuroscience                                                                                                                    Volume 8, Issue 3, 390–413. 

cognitive outcomes of patients who suffer from alcohol-related neurodegeneration as well as clarify 

the pathological involvement of alcohol in causing other major neurological disorders. 

Keywords: alcohol use disorder; central nervous system; oxidative stress response; neuropathology, 

blood-brain barrier dysfunction; neuroimaging, antioxidant 

 

1. Introduction 

Alcohol is the most commonly used recreational beverage and drug of abuse among the adult 

population, alcohol-related death is the third leading preventable cause of death in the United States 

which accounts for more than 3.3 million global deaths annually [1,2]. According to the 2018-

National Survey on Drug Use and Health (NSDUH), 14.4 million people suffered from alcohol use 

disorder (AUD) in the US, and over 100,000 deaths were attributable to alcohol [3]. The World 

Health Organization reported that more than 200 health conditions including cancer, liver cirrhosis, 

and neurocognitive impairment were also attributed to alcohol consumption [2]. These chronic health 

conditions are progressive, cause a heavy economic burden to society, and decrease the quality of 

life for both patients and caregivers [4]. 

According to the National Institute of Alcohol Abuse and Alcoholism (NIAAA), AUD is 

defined as a chronic relapsing brain disease with an altered emotional state involving chronic alcohol 

abuse. This disorder may contribute to a considerable proportion of dementia, neurocognitive deficits, 

neuronal injury resulting from synaptic degeneration, nerve fiber demyelination, or blood-brain 

barrier dysfunction [5,6]. In the presentation of the catastrophic or global loss of brain tissue, 

significant cortical-subcortical volume loss including white matter shrinkage occurs in patients with 

AUD, which is caused either by nutritional deficiency associated with alcoholic excitotoxicity or 

oxidative stress which results in alteration of various types of normal brain function [7,8]. 

Furthermore, there is interest in the alcohol-induced metabolic disorder, Wernicke-Korsakoff 

syndrome (WKS), which is associated with thiamine deficiency and may contribute to severe 

neurological damage in the thalamus and hypothalamus [9,10]. A combined effect of nutritional 

deficiency and ethanol toxicity may cause severe long-term effects and worsen the clinical 

manifestation of neurological impairment [11]. In general, persistent alcohol consumption may lead 

to gradual deterioration of psychological status with varying degrees of cognitive impairment 

including severe dementia [10]. Alcohol is the second leading cause of dementia (10%) among the 

adult population in the US after Alzheimer’s disease (40–60%) [12]. The severity of neurological 

outcomes is associated in part with lifestyle factors including nutrition, amount, and term of alcohol 

consumption. Chronic alcoholic patients may develop severe malnutrition because they usually 

consume 50% of the calories from alcohol [13]. Alcohol consumption may have kindling effects and 

may increase epileptic episodes, cerebral infections, cerebrovascular lesions, and alter 

neurotransmitter systemic balance[14,15]. Cognitive impairment may affect high order executive 

performance which may persist throughout the rest of life with secondary disabilities. 

Neuron and myelin regeneration is a delicate process that requires different types of growth 

factors (nerve growth factor and brain-derived neurotrophic factor) to regulate and maintain neuronal 

homeostasis [16]. In AUD, essential growth factors of CNS homeostasis are downregulated by 
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highly elevated alcohol metabolites acetaldehyde (AA) and reactive oxygen species (ROS), causing 

neuronal injury that leads to neurodegeneration [17]. Neurodegeneration, the opposite of 

regeneration, is when cells of the central nervous system stop working or die and usually perform 

actions more poorly with time in the presence of toxic or pathological conditions [18,19]. Alcohol 

triggers abnormal protein accumulation, lysosomal dysfunction, and DNA damage which promotes 

neurodegeneration as well as accelerating the aging process of the brain [12,4]. In contrast to AD and 

aging, alcohol’s effect on the brain may be possible to slow, halt, or even reversible with alcohol 

abstinence because alcoholic brain shows shrinkage of brain tissue without significant loss of 

neurons, however, disrupted neuronal function or connection can be reestablished by modifying 

pathophysiology and lifestyle which can promote to maintain physiological homeostasis and 

cognitive function [20,21]. 

Interestingly, previous research established the evidence of recovery and regeneration of 

cortical volume including white matter thickness in short-term abstinence as well as improvement in 

neurocognitive deficits particularly visuospatial abilities, working memory, and motor skills [22,23]. 

The mechanism of alcohol-induced degeneration and alcohol abstinence regeneration is a complex 

phenomenon that is determined by a person’s genetic characteristics, dominant brain activity, 

coexisting risk factors, and genetic process related to aging [24]. Sometimes, an immune-competent 

status with a pharmacological trigger or lifestyle modification can be a way to prevent the alcohol-

induced neuronal insult and might play a significant role in brain recovery. This review will cover 

possible mechanisms of neurotoxicity in AUD to support an effort to establish a multidisciplinary 

therapeutic approach to prevent or reverse neurological damage. 

2. Pathophysiology of alcohol metabolism and its consequence on BBB dysfunction  

Despite thousands of published studies on alcohol-mediated neurological disturbance, the true 

mechanism of alcohol-induced cell death remains ambiguous. Many chronic AUD patients 

demonstrate neurocognitive and neurovascular injury associated with BBB dysfunction due to 

ethanol metabolites [25]. The BBB is a highly selective semipermeable membrane formed by brain 

microvascular endothelial cells (BMVEC). Pericytes and astrocytes connect the BMVEC assuring 

BBB structural tightness by binding with a tight junction which not only acts as a natural protector 

but also plays an important role to maintain normal brain homeostasis [26,27]. Ethanol metabolites 

or neurotoxic substances may interact with the cytoskeletal structure of the brain to increase BBB 

permeability to start neuroinflammation [28,29].  

Before discussing the effect of alcohol on BBB damage, we have to look through alcohol 

absorption and metabolism. The liver is the predominant organ for ethanol metabolism which 

usually occurs via two oxidative pathways mediated by alcohol dehydrogenase (ADH) and 

cytochrome P450 2E1 (CYP2E1) [30] (Figure 1). In brief, after drinking alcohol, absorption 

Occurs in the gastrointestinal tract then the liver converts the alcohol to acetaldehyde through the 

first-pass metabolism in the liver, this oxidation reaction is catalyzed by the alcohol dehydrogenase 

enzyme [31,32]. After the first-pass metabolism, alcohol metabolites are distributed throughout the 

body, it goes to the brain through the blood vessels then it enters into the endothelial cells from the 

blood and alters the expression of signaling molecules which adhere to the BMVEC [33]. The 

metabolism of EtOH in the brain is controversial than the metabolism of acetaldehyde due to 

undetectable evidence of homogenous ADH activity in the whole brain. Animal experimental 
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studies demonstrate the presence of cytochrome p4502E1 in the smooth endoplasmic reticulum of 

brain cells that are capable of Ethanol metabolism in brain by catalyzing the H2O2 with catalase 

enzyme [34]. However, the oxidation of acetaldehyde in brain cell is established because of ALDH 

(aldehyde dehydrogenase) have been well known to be found in mitochondria of brain cells [35]. 

ALDH converts acetaldehyde to acetate, acetate has further effects on brain including increase 

lipid peroxidation and free radicals production. EtOH exposure induces the catalytic expression of 

oxidative metabolizing enzymes which is parallel to enhancing the production of ROS (Figure 1). 

It is known that during oxidative stress conditions the levels of oxidants are higher than the 

levels of antioxidants. So, ethanol indirectly decreases the antioxidant activity by increasing 

oxidative stress response. Alcohol-induced ROS production is believed to be specific to EtOH 

metabolism by cytochrome P450–2E1 (CYP2E1), which produces H2O2, superoxide, and free 

radicals. These free radicals, in turn, activate Rho kinase(ROCK/JNK) signaling to induce the release 

of vascular endothelial growth factor (VEGF) and inflammatory cytokines in brain endothelial cells 

(e.g. upregulation of ICAM-1and E-selectin, the release of IL-6) [36,37]. 

 

Figure 1. Schematic of ethanol metabolism through the liver and hypothetical 

involvement of ethanol metabolites for BBB dysfunction. In the presence of alcohol 

dehydrogenase (ADH) and cytochrome P450 enzymes, alcohol undergoes 1
st
 and 2

nd
 pass 

metabolism in the liver. Increased ROS and ethanol metabolites in the blood alter the 

signaling pathways of BBB endothelial cells and down-regulate the tight junction, which 

ultimately enhances leukocyte leakage and neuroinflammation [41,42,25]. 

Experimental studies on human brain tissue provide evidence of increased expression of 

CYP2E1 after chronic ethanol exposure and as a result of CYP2E1 mediated metabolism induces 

production of ROS and NO synthesis in the human brain [37,38]. However, actions of EtOH 

metabolites depend on their concentration, ROS acts as active molecules at low concentration but at 

high concentration, oxidants convert as a transducer of the oxidative stress response and 



394 

AIMS Neuroscience                                                                                                                    Volume 8, Issue 3, 390–413. 

neurodegenerative agents [39]. As a consequence of exaggerated actions of ROS, transcription 

modulated lipid peroxidation is activated in neurons and increases the 4-HNE (lipid peroxidation 

products) level as well as decreases the neuronal cytoskeletal proteins [38,40]. Disruption of neuron-

specific neurofilaments or neuronal death initiates the primary process of alcohol-related 

neurodegeneration [37]. 

In the course of this phenomenon, further activation of astrocytes amplifies mitochondrial 

phosphorylation with downregulation of the tight junction which enhances the permeability of the BBB 

system. Thus, ethanol exposure results in BBB disruption by a complex immune-regulatory loop 

between BMECs and astrocytes. Evidence from animal models and cell culture reports further 

strengthens the idea that chronic excessive alcohol exposure downregulates the tight junction proteins 

(claudin, occludin, zonula occludens) which are responsible for maintaining BBB integrity [43]. Both 

acute and chronic alcohol exposure can increase the production of ROS and enhance peroxidation of 

lipids, protein, and phosphorylation of mitochondria resulting in decreased ATP production by 

disrupting phospholipid-containing cell membrane structure [44]. Astrocytes maintain the BBB 

integrity by forming paracrine interactions to coordinates the CNS blood flow and neural function 

between pericytes and CNS vasculature [45]. Alcohol-induced tight junction disassembly is usually 

mediated via activation of expression protein kinase C (PKC) which subsequently allows toxic 

substances to enter the brain which in turn affects CNS homeostasis. Incidental ablation occurs in 

astrocytes, pericytes vascular basement membrane results in unyielding leakage of leukocytes and 

immune complex molecules in and out of the brain, including secondary changes such as edema, 

inflammation, and hyper excitability may have appeared in white matter and cortical regions [32,46] 

(Figure 1). Loss of astrocytes function to maintain the neurovascular coupling is not recovered by the 

proliferation of adjacent astrocytes resulting in long-term effect in neurovascular damage. 

Empirical studies further show that ethanol-induced brain damage is mainly related to oxidative 

stress response from proinflammatory cytokines activated during alcohol intoxication. 

Proinflammatory cytokines NF-kB (transcription factor) mediate oxidative stress plays a role in the 

induction of anti-inflammatory and immune response signals, which appear to underlie neuronal 

degeneration and tissue atrophy [46,47]. Cytokines are large families of secreted proteins that are 

transported from blood serum to neuronal tissue in response to oxidative stress-related alcohol 

neuroinflammation [47]. Increased cytokines particularly tumor necrotic factor (TNFα), interleukin 

IL-1β, and macrophage chemotactic protein 1 (CCL 2) expression cause neuroinflammation and 

insult of nerve axons in nociceptive synaptic terminals which leads to intracortical network 

miscommunication and neuropathy [48,49].  

As a result of BBB dysfunction, abnormal expression of water channel aquaporin (AQP) 

occurs which in turn causes cerebral edema by extravasating the water inside the brain tissue. 

The swelling of the brain plays a critical role in the pathogenesis of an extensive variety of CNS 

disorders including stroke, infection, and demyelination. Rodent brain studies provide evidence 

of the association of abnormal expression of water channel AQP4 in ROS-induced BBB 

dysfunction [50,51]. The distribution and expression of AQP4 are important to maintaining CNS 

homeostasis. AQP4 is mainly arranged and organized in astrocytes and ependymal cells 

alongside myelinated fiber tracts [29,52]. AQP4 may help astrocytes to maintain ion 

concentration by taking excess K
+ 

inside the cell to activate the specific brain regions in 

exchange for rapid transfer of water out of the cell [52]. Alcohol-induced oxidative response 

interferes with the AQP4 activity and causes activity-related swelling of the extracellular space 
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in white matter tracts (corpus callosum, optic chiasma, hippocampus, hypothalamic nuclei) 

where perinodal astrocytes fail to regulate the intracellular junctions at the nodes of Ranvier [52]. 

Inconsistent water movement in between CSF and brain parenchyma causes edema which 

appears to play a key role in the neurodegenerative process by facilitating a neuropathological 

environment. In the case of thiamine deficiency in chronic alcoholic abusers causes Wernicke 

korsakoff syndrome (WKS) due to its impaired metabolism of the mitochondrial oxidation to 

produce the brain energy and causes increase oxidative stress response and neuronal intoxicat ion. 

Glucose serves as a primary fuel to mitigate the high demand for energy production in the central 

nervous system. The brain is highly vulnerable in a state of thiamine deficiency due to thiamine-

dependent enzymes are required to glucose metabolism as well as mitochondrial ATP production 

for maintaining the CNS homeostasis, actions potentials, myelination and neuronal activity [53]. 

Impaired glucose metabolism decreases mitochondrial ATP production, thereby slow down the 

firing of the neuronal action potential, in addition, trigger lipid peroxidation, oxidative damage 

to CNS. Thus, Alcohol and its metabolites induce BBB disruption and neuroinflammation as 

well as alter the CNS homeostasis. 

3. Impairment of glucose transport system leads to neurodegeneration 

Previous research suggests a strong correlation between the impairment of glucose metabolism 

with subsequent neuronal loss at the interface of alcohol-induced BBB dysfunction which causes 

neurodegeneration in CNS [54,55]. Therefore, disruption of BBB integrity may cause altered 

expression of the glucose transport channel protein (GLUT 1 and GLUT 3) and reduce uptake of 

glucose inside brain tissue [1]. About 90% of brain tissue depends on constant glucose supply as an 

energy source to maintain a dynamic function. GLUT 1 glucose transporter facilitates glucose 

transport from capillary endothelium to astrocytes then astrocytes metabolize some glucose 

molecules and transport these to neurons as fuel for anti-oxidation and tissue plasticity regeneration 

via the GLUT 3 transporter [56,54]. In the preclinical period of neurodegeneration, glucose 

consumption is gradually diminished in neurons and glial cells of the hippocampus, corpus callosum, 

cerebral cortex, which induce lactate production, aerobic glycolysis, and structural plasticity in 

animal model [57,55]. Eventually, clinical symptoms emerge and are associated with ataxia, 

spasticity, dementia, and mild to severe cognitive deficits. So, normal glucose homeostasis is 

important to maintain brain function; if any alteration or disruption occurs then it leads to neuronal 

toxicity with neuronal death results in neurodegenerative effect on cognitive function. 

4. NMDA receptor-mediated neurotoxicity 

N-methyl-D-aspartate (NMDA) is a primary excitatory brain neurotransmitter that binds to the 

glutamate receptor usually found in nerve cells. Depolarization and activation of the nerve action 

potential are maintained by the influx of different types of ions (Na
+
 and Ca

2+
) into the cell through 

the NMDA receptors [58]. Under normal circumstances, NMDA receptors play an important role in 

synaptic plasticity and signal transmission in the course of the cellular mechanism of learning, 

visuospatial memory, and buildup of working memory by neuronal synchronization through the 

intra-cortical communication of the central nervous system [59]. It is believed that alcohol acts as an 

antagonist for the NMDA receptor, so in the case of AUD, it causes hypofunction of the NMDA 
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receptor which may result in neuronal network impairment with loss of synaptic plasticity [60]. To 

maintain normal neuronal function and homeostasis, the physiological actions of the NMDA receptor 

are required. Several controversial studies implicated that NMDA receptors are strongly involved 

with excitotoxicity which contributes to cell death and hamper the longevity of the cells [42,58]. 

Recent evidence supports the hypothesis that excitotoxic events of NMDA receptors play a role in 

the formation of neurodegenerative diseases like Alzheimer’s and Huntington’s disease and affect 

normal brain function [11]. However, there is no established theory that delineates the use of alcohol 

as an NMDA receptor antagonist or medication for a neuroprotective role because successful 

implementation of NMDA antagonists would require blocking the excessive activation without 

interfering with the normal physiological function [61,42]. In contrast, prior studies had shown that 

ethanol-induced blockage of the NMDA receptor could increase neurotoxicity by decreasing the 

expression of brain-derived neurotrophic factor (BDNF) during chronic alcohol administration [62]. 

Therefore, more studies are needed to establish the role of the NMDA receptor in the mechanism of 

neurodegeneration or neuro-regeneration in patients with AUD. 

5. Astrocyte and oligodendrocyte associated neuronal dysfunction in AUD 

Studies on the rodent and human brain delineated that excessive ethanol intake induces 

neuronal injury during various developmental stages including neurodegeneration and this type of 

ethanol-induced neurodegeneration seems to be connected with glial activation and 

neuroinflammation [23,63,64]. Astrocytes and oligodendrocytes play a crucial role in the 

molecular mechanism of signal conduction and neurotransmission in both gray and white matter. 

Besides, astrocytes, oligodendrocytes, and myelin protein take part in the maintenance of plasticity 

of gray and white matter [65]. In alcohol-related brain damage, ethanol and its metabolites have the 

potential to disrupt glial physiology and neurobiology in gray and white matter. Ethanol triggers the 

TLR4 receptor-dependent or -independent pathways of microglial activation which stimulates the 

NF-kB, interleukins IL1, IL6, CCL2, and in turn, evokes the expression of proinflammatory 

cytokines surrounding the astrocytes and oligodendrocytes [49,64]. If this leads to an agglomeration 

of pro-inflammatory and neurotoxic mediators for a prolonged period in the glial environment, then 

it leads to neuroinflammation and neurodegeneration [63,66]. In AUD, ethanol metabolites alter the 

expression of astrocytes and oligodendrocytes which leads to impaired cell to cell communication. 

Signal transmission and cell interaction are accomplished by the formation and maintenance of the 

myelin sheath which is usually disrupted by alcohol metabolites. Alcohol interferes with the neuronal 

homeostasis process including the ability to form colonies, integrate, differentiate, and mainly 

proliferate [11].  

CNS inflammatory sequelae are believed to play a vital role in neuronal death as the pathway of 

neurodegeneration and inflammatory feedback is mainly mediated by microglial activation. In AUD, 

brain immune defense cells, microglia, are activate and express many proinflammatory genes 

including tumor necrotic factor α (TNF α), cyclo-oxygenase, NADPH enzymes which change the 

brain immune system and nerve cell functions [67,68]. In the case of normal infection, this 

immunomodulation is limited and controlled by further immune signals but in AUD, chronic 

activation of microglia and sustained increases in microglial specific cellular markers activate 

inflammatory gene expression which may, in turn, cause neuronal death and disrupt the cellular 

integrity, ultimately leading to neurodegeneration. Therefore, a number of researchers believe that 
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suppression of microglial activation could be a potential therapeutic to treat inflammation-mediated 

neurodegenerative disease [46]. 

6. Neuroimaging evidence of alcohol-induced neuroinflammation and neurodegeneration 

Neuroimaging technology can observe the dynamic brain in a living body and allows 

researchers to conduct meticulous studies to gain insights into the effect of AUD on the human brain 

throughout the periods of chronic drinking, relapse, and abstinence. Brain images can be used to 

predict the severity of AUD by measuring the connectivity of neuronal features corresponding to the 

executive control network associated with different brain regions [69]. To explore treatment options 

for AUD, it is required to identify the status of neuronal injury and distinguish the reversible and 

irreversible neuronal loss with connectivity network in the course of alcohol intake from abstinence 

to heavy alcohol use. Structural MRI helps to visualize different cortical regions of the brain (gray, 

white matter, cortex, and midbrain) to examine the region-specific effects of chronic alcohol 

consumption [70]. Structural MRI findings in AUD provide evidence of mammillary body damage 

with hippocampal volume deficits that are also associated with the decreased axonal diameter in 

white matter, increased glial loss, or incorporation of newly formed astrocytes [71]. Structural MRI 

studies have also revealed the shrinkage of the frontal cortex, pons, and cerebellar hemispheres along 

with thinning of the corpus callosum as well as alcohol-related cortical abnormalities [72,70]. These 

structural abnormalities give rise to the clinical symptoms of psychological impairment, dementia, 

amnesia, and motor dysfunction in patients with AUD [73]. Basal ganglia play an important role in 

regulating emotional and behavioral control but structural MRI images exhibit volume decreases of 

the hippocampus and basal ganglia in patients with AUD which may cause mental impairment with 

uncontrollable emotional aggression [74,75]. 

In particular, MRI studies of individuals with AUD demonstrate widespread diffuse loss of both 

cortical white and gray matter thickness where disproportionate deficits of gray and white matter are 

more visible in older age compared to young patients [86]. The mechanism of neuronal damage and 

volume deficits in chronic drinking patterns that have been suggested is neuronal death with the 

destruction of glial structure which may be caused by the induction of pro-inflammatory cytokines 

and oxidative enzymes [87]. As a consequence of this damage, Wallerian degeneration and shrinkage 

of white matter occur in AUD which further leads to irreversible brain damage. Previous research 

provides evidence of neurogenesis in the adult brain as a process of pathological recovery, they have 

reported that the delicate process of neuro-generation occurs in the dentate gyrus of the hippocampus 

and persists into old age, after 65 years of age where the aging process usually halt the recovery 

process in the brain [88–90]. However, this physiological process can be interrupted by ethanol 

consumption before or after 65 years of age where ethanol metabolites hinder the growth of the 

progenitor’s dendritic arbor to regulate the complexity of synaptic connections and thus may 

contribute to neurodegeneration [91,92]. 
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Table 1. Evidence-based study about the relationship between alcohol and neurodegeneration. 

Neurodegenerative 

disorder 

 

Study type 

 

The number of subjects 

with alcohol exposure 

history. Cases/control 

Brief Description of neurodegenerative 

risk. 

References 

Alzheimer’s disease Population-based 

longitudinal study 

111/3,202 The increased risk, an excessive 

amount of alcohol enhances tau 

phosphorylation and β- amyloid 

accumulation in CNS. 

[76], [77] 

Parkinson’s 

disease 

NIH-AARP diet and 

health cohort study 

1,113/ 306,895 Moderate risk, AUD activates 

cytochrome P450 2E1 and causes 

dopamine toxicity with the aggregation 

of α-synuclein in neuronal tissue. 

[78], [79] 

Amyotrophic 

lateral sclerosis 

(ALS) 

Population-based 

case-control study 

1557/2922 No influence, inconsistent risk. [80], [81] 

Generalized dementia Ginkgo evaluation 

of memory study 

512/3021 Considerable evidence, evidence of 

marked white matter disturbances, and 

alteration of glucose metabolism with 

decreasing neuronal density and 

volume decreases may be responsible 

factors for dementia in AUD 

[82], [83] 

Huntington’s disease Small study (42 

subjects at johns-

Hopkins hospitals) 

*** Alcohol abuse has a strong effect on 

onset of motor symptoms in 

Huntington’s disease, concurrent with 

depression syndromes. 

 

[84], [85] 

Multiple sclerosis Population based 

cohort study 

About 450/500000 Considerable evidence of elevated risk 

on concurrent alcohol abuse with 

cigarette smoking, heavy alcohol 

consumption may cause inflammatory 

demyelination and axonal degeneration. 

[81], [84] 

Note: *** no data available. 

Multimodal imaging may be useful in predicting the cognitive outcomes and therapeutic success 

of substance use induced neurological disorder. The impacts of long term and short term alcohol use 

on cognitive functioning and neurodegeneration can be studied extensively by resting-state fMRI 

(functional magnetic resonance imaging) and task-based fMRI [69,93]. Resting-state fMRI 

demonstrates the atypical dynamics in severe AUD [94] and task-based fMRI suggests altered 

neuronal network activity in executive control regions (Basal ganglia, SN) during task performance 

such as risk-taking, impulse control, and emotional oriented tasks [95,96]. 

In general, structural MRI detects the proton of the hydrogen atom contained in fat and water of 

human body and reveals the tissue composition while diffusion tensor imaging (DTI) measures the 

diffusion of water protons in the brain tissue which demonstrates the integrity of white matter fiber 
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tracts [97,98]. Thus, the disruption of white matter microstructure has been extensively studied by 

DTI which reveals the axonal density, cytoskeletal structure, and myelin sheath characteristics along 

the long axis of projection fibers, which might be affected in AUD [99]. Ultimately DTI may be 

useful to examine BBB stability by detecting the anisotropic changes to quantify the permeability of 

water through the blood-brain barrier membrane [71]. DTI images bring evidence of osmotic 

demyelination which may be caused by the rapid osmotic fluid shift in the malnourished brain of 

individuals with AUD [75]. Central pontine and extra pontine myelinolysis is commonly seen in 

brain images of individuals with AUD with as assessed with DTI and occasionally represent different 

clinical manifestations [87]. Typical clinical symptoms of demyelination associated with AUD is the 

deterioration of mental status with seizures, dysarthria, paresis, sometimes linked to movement 

disorder such as catatonia, dystonia, and parkinsonism [100,70]. Outcomes of brain damage are 

variable in patients with AUD and likely depend on the inflammatory or non-inflammatory loss of 

the myelin sheath. Eliminating alcohol from the diet may reverse the axonal damage with the 

regeneration of the myelin sheath in susceptible areas, but most cases of AUD brain damage cause 

inflammation-mediated demyelination which is contributed to irreversible damage like a diffuse 

axonal injury in AUD patients [101,102]. In conclusion, alcohol-related irreversible brain damage in 

response to cerebral fluid shift mediated BBB dysfunction can be observed as a long term effect in 

WKS with diffusion tensor imaging [103]. 

Magnetic resonance spectroscopy (MRS) provides additional information about the molecular 

concentration and ethanol metabolites in the brain [104]. Proton-MRS can explore region-specific 

neurobiological status in combination with genetic mediated neurocognitive decline which has 

potential efficacy for future clinical management of AUD [105]. The largest MRS signals arise from 

N-acetyl aspartate (NAA), glutamate, glutamine, and choline-containing compounds (Cho) which are 

considered to measure neuronal integrity and normal brain function [106,70]. MRS studies of the 

human brain have revealed a reduced level of NAA in several brain regions of patients with AUD 

which indicates neuronal injury. Similarly, studies in AUD patients have shown an elevated level of 

choline-containing compounds that usually provide evidence of demyelination but it is not consistent 

with alcohol withdrawal syndrome [71,11]. According to earlier studies, alcohol withdrawal seizures 

commonly occur due to an imbalance between glutamatergic and GABAergic neurotransmission 

which can be detected by MRS of the human brain [107]. Proton-MRS can explore region-specific 

neurobiological status in combination with genetic mediated neurocognitive decline which has 

potential efficacy for future clinical management of AUD [105]. 

The main goal of neuroimaging techniques is to diagnose cognitive and functional abnormalities 

of the brain. To further capture these problems magnetoencephalography (MEG) with a prosaccade 

task can detect pathological alteration of neuronal activity in alcoholic patients compared to the 

normally developing healthy controls [108]. Schulte et al. demonstrated cognitive processing 

disturbance with neuronal desynchronization in adults with AUD in MEG study [100]. MEG data 

exhibits altered oscillatory neuronal activity and delayed evoked response in the alcoholic group that 

indicates the restricted ability to process somatosensory and multisensory response of high order 

cognitive performance during day-to-day interactions which may persist throughout life and 

ultimately leads to permanent cognitive impairment in chronic alcoholism [109,110]. Accordingly, 

neuroimaging tools are required to observe the pathological changes and disease progression to 

figure out an applicable treatment agreement for AUD. 
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7.  The potential therapeutic approach to prevent neurodegeneration 

Despite the negative consequence of drinking alcohol, there is still hope for the recovery of 

alcohol-induced neurodegeneration. Neuro-regeneration (neuronal stem cell proliferation and 

formation of new neurons) generally depends on alcohol dosage, drinking duration, nutritional 

deficiency, stage of neuronal damage, and cellular components that correspond with cognitive 

functioning impairment. In AUD, alcohol alters the physiological status of the nervous system, may 

cause interruption of neuroprotective functions, and interfere with the absorption of certain nutrients 

which are necessary to maintain CNS homeostasis and brain cell development [111]. These factors 

may then result in loss of structure and function of multiple brain regions which induce alcoholic 

neurodegeneration [6]. Surprisingly alcohol abstinence could help individuals recover from the 

pathological state as well as improve cognitive function with sustained abstinence [67]. During 

abstinence, neural stem cells proliferate, differentiate, migrate and integrate into existing brain 

circuits to regenerate new neurons and re-establish the dendritic-axonal connection that contributes 

to learning [112,67]. The longer the period of abstinence, the greater the chance of sustaining a 

healthy recovery of hippocampal dentate gyrus neurons, mammillary bodies, and return of executive 

functions including learning, memory, and other forms of cognition [75,113]. Thus, abstinence 

regeneration is likely involved in blocking the pro-inflammatory gene expression and enhancing the 

high signaling cascades which contribute to the genesis of progenitor cells of neural stem cells, 

astrocytes, microglia, and oligodendrocytes in the course of trophic brain growth. 

7.1. Reducing ROS by antioxidant and anti-inflammatory therapy 

The generation of ethanol metabolites and ROS related oxidative damage is believed to be 

induced by the pathogenesis of several neurodegenerative diseases such as Alzheimer’s, Parkinson’s, 

Huntington’s diseases [25]. This oxidative damage is mainly mediated by O2‧
−
, H2O2, and the highly 

reactive hydroxyl radical (HO‧) which are byproducts of ethanol metabolism [114] (Figure 2). 

Therefore, maintaining the ROS level in the brain is required to regulate normal brain activity. 

Antioxidant activity is considered as enzymatic or non-enzymatic based on the mechanism of action 

involved to destroy the free radicals from the body [115]. The activity of antioxidant enzymes is 

significantly altered in the CNS of people who are chronically intoxicated with ethanol. There are 

some antioxidant enzymes mediated by protective signaling pathways such as superoxide dismutase 

(SOD) and heme oxygenase (HO
−1

) which can protect the neuronal tissue from oxidative damage by 

regulating transcription factor expression [116] (Figure 2). 

Several transcription factors such as nuclear factor-erythroid 2 (NF-E2) related factor 2 (Nrf2), 

and peroxisome proliferator-activated receptor-coactivator (PGC-1) are responsible for 

upregulating the endogenous antioxidant enzyme systems to save the brain from alcohol-induced 

severe neuronal injury [113,116]. Antioxidant enzyme heme oxygenase is thought to be highly 

associated with AD pathology and upregulated by the Nrf2 transcription factor. In the AD brain, 

GFAP positive astrocytes expressed heme oxygenase enzymes in the response to pharmacological 

activation of Nrf2 [117]. Overexpression of heme oxygenase can significantly decrease the 

intracellular cholesterol concentrations as well as a decrease in the exacerbations of amyloid-beta 

(Aβ) deposition in the neurodegenerative process of AD [118]. Also, heme oxygenase has another 

potential ability to cleave the tau protein by ubiquitin protease system which helps to inhibit the 
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neurodegenerative process [119,120]. Antioxidant SOD is regulated by PGC-1 factors and 

associated with human amyloid precursor protein (hAPP)-/Aβ-induced impairments in the AD 

brain [77]. Overexpression of SOD reduces the neurotoxicity by amyloid precursor protein and 

prevents memory deficits by reducing the activity of hippocampal superoxide. The most important 

exogenous antioxidants in the CNS are vitamin E, C, Omega 3 fatty acids, and selenium but both 

vitamin E and C levels in the CNS fall after alcohol exposure by ROS activity [121,122]. 

We can trigger the antioxidant system by exogenous supplementation that can protect BBB 

from alcohol-induced toxicity. Some gases such as nitric oxide, CO, hydrogen sulfide known as 

medical gases can also be used as triggering factors of endogenous antioxidant enzymes (SOD) to 

scavenge the ROS from brain tissues [116]. Nitric oxide is a signaling molecule that is responsible to 

maintain physiological, immunological, and endothelial function also plays important role in 

inflammation as a precursor of ROS [123]. Under physiological limit, nitric oxide acts as a vasodilator 

and improves the oxygenation to the cells when tissue can defend themselves against oxidative damage 

through the antioxidant system. However, an imbalance presence of endogenous free radicals (NO) and 

antioxidants results in a pathological response of cells that contribute to the oxidative response. The 

anti-oxidative capacity of the CNS also depends on endogenous enzymatic antioxidant activity and 

exogenous antioxidants obtained by the organism through dietary intake. The endogenous enzymatic 

activity can be evoked by anaerobic exercise, depending on the antioxidant enzyme, changes of activity 

differ in time after the end of the anaerobic exercise [124]. Previous study findings revealed that an 

antioxidant named Butylated hydroxytoluene (BHT) precisely blocks elevation of alcohol-induced 

DNA binding of NF-κB, proinflammatory gene induction, and degradation of alcohol-induced DNA 

binding of cAMP-responsive element-binding protein (CREB) [125]. AUD may lead to thiamine 

deficiency or malnutrition because alcohol blocks the person’s ability to absorb vitamins and 

nutrition’s in the body [126]. Wernicke encephalopathy is a reversible condition in heavy alcohol use, 

usually caused by inadequate absorption or deficiency of thiamine that can be recovered by thiamine 

supplementation. However, Chronic thiamine deficiency in AUD leads to irreversible clinical 

condition known as Korsakoff syndrome that causes irreversible damage and are not improved with 

thiamine supplementation. Accordingly, rehabilitation treatment with vitamin supplementation (D, 

B6, A, C, thiamine, and B12) may help to improve the quality of life and halt the degenerative 

process. Stabilization of oxidative response and maintenance of physiological magnitude of 

endogenous antioxidant system play a key role to control the AUD associated neurotoxicity. 

7.2. Pharmacological and lifestyle modifications  

Currently, only five FDA-approved drugs are available to diminish the progression of 

neurodegenerative conditions. Four of them donepezil, rivastigmine, galantamine, tacrine, are based on 

acetylcholinesterase inhibition, and one of them, memantine, is an NMDA receptor antagonist [119]. 

Cognitive-behavioral therapy in conjunction with pharmacological options is developing interest as a 

treatment regime to enhance alcohol abstinence along with relapse prevention. The therapeutic agent, 

disulfiram was discovered for the treatment of alcohol dependence that blocks the conversion of 

acetaldehyde to acetic acid irreversibly results in accumulates the intermediate toxic product to 

develop an aversion to alcohol rather than proceed neurochemical actions of alcohol [127]. The 

adverse effect of disulfiram is outrageous over the clinical success towards preventing alcohol 

relapse. Anti-craving agents acamprosate and naltrexone are emerging concepts to control drinking. 
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Naltrexone is an opioid receptor antagonist, found to be more effective to prevent relapse and 

maintain abstinence that reduces the rewarding effect of alcohol by generating fewer withdrawal 

effects [127,128]. Acamprosate enhance the tolerance of alcohol withdrawal symptom by stabilizing 

the activity of N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitation during early 

abstinence. However, their full clinical success has not been established and it depends on the 

administration, target, and severity of the disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Alcohol-induced oxidative response which enhances the formation of certain 

free radicals (H2O2, OḢ, and HOCl), causes cell damage and neuronal degeneration. 

However, increased expression of the antioxidant system can inhibit the process of 

cellular dysfunction and trigger the tissue repair system. 

Besides, immune therapy, N terminus-based antibodies immunization has a significant role in 

clearing the misfolded protein (Aβ and tau protein) but it is only effective at the earliest stage of 

disease [77]. Active Aβ immunotherapy (AN1792 vaccine trial) provided evidence of progression 

of mild to moderate dementia prior to death with a clearance of brain plaque in post-mortem 

follow-up [129,130]. Tau Immunotherapy ACI-35 blocks the oligomerization of tau protein and 

improves motor activity, neurological deficiency with extended life expectancy in the tau 

transgenic rodent model [131,132]. Therefore, novel therapeutic options are needed to treat the 

single or multi-target molecules of misfolded protein formation, oxidative stress damage, cognitive 

impairments, and synaptic integrity as well as the pro-inflammatory response in alcohol-induced 

neurodegeneration. Anti-inflammatory and neuroprotective agents can be one of the novel 

therapeutic options to treat or diminish the progression of neurodegenerative disease. Neuro-

inflammation is activated by glial cells and produces inflammatory cytokines and toxic factors that 
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cause neuronal death so if any anti-inflammatory drug controls the micro-glial activation and 

cytokine production then it may be another potential way to treat neurodegenerative disease [117,17]. 

A case-control study on AUD suggests that baclofen has played an important role as a neuronal 

predictor in AUD; this study provides evidence of increased activation of the right anterior cingulate 

cortex and dorsolateral prefrontal cortex (which are involved in cognitive control) following baclofen 

treatment in comparison with the control group [133]. There is evidence of the success of 

neuroprotective agents over neurodegeneration because neuroprotective agents have the ability to 

activate neuronal restoration and survival pathways by correcting the oxidative damage or 

mitochondrial dysfunction, reducing microglial activation, and synaptogenesis or axonal genesis [134]. 

Among these factors, glial cell line-derived neurotrophic factor (GDNF) and mesencephalic astrocyte-

derived neurotrophic factor (MANF) play a key role as neuroprotective agents in neuro restoration and 

neurogenesis to protect the neuron from oxidative damage [119,112]. 

Interestingly, treatment options are not confined to pharmacology, conventional and clinical 

neurocognitive event-related potentials may have a significant role to improve the decision making, 

judgment, and social interaction ability which are impaired by addiction in heavy alcoholic 

individuals [135]. Delayed evoked response latency and decrease amplitude in ERP are commonly 

seen in AUD due to inhibitory mechanism and functional impairment associated with excessive 

alcohol consumption. Brain imaging (fMRI, MEG) cognitive ERP could be used to evoke the 

electrophysiological stimulus in the neuronal network to process the sensory, motor response to 

executing the high order event-related cognitive task [136]. Accordingly, cognitive ERP can help to 

dopamine release in cortical-striatal circuit results in hyper activation of the sensory-motor cortex 

over the alcoholic-cue inhibitory phenomenon. It is expected that this would have a constructive 

impact on the alcoholic individual’s self-esteem, inducement, and compliance with the anticipated 

outcome. Transcranial magnetic stimulation (TMS) may be a relevant option to regenerate neurons 

and dendritic axon fibers by producing electric fields that spur action potential throughout the central 

and peripheral neurons [137]. TMS along with fMRI can be used to study neuronal connectivity and 

excitability, recently this treatment option was used to reduce dementia and induce remission for 

individuals with the major depressive disorder [138,139]. Sometimes it is also experimentally used 

as a stimulant for myelination and to restore neuronal function in neurodegenerative diseases like 

multiple sclerosis and Alzheimer’s disease [22,140]. It is believed by several researchers that each 

glial cell has the ability to respond to the currents induced by TMS and play a role in enhancing the 

proliferation of adult progenitor and neuronal stem cells but there is less evidence on cell survival 

and cell differentiation process [66,108]. Further research is needed to observe the direct effect of 

TMS on the blood-brain barrier and neuronal activity synchronization, which may introduce TMS as 

a complementary treatment option for AUD. 

Lifestyle modification is also one of the most promising initiatives to reduce alcohol or age-

related neurodegeneration as well as possible intervention strategies to control chronic disease or 

prevent the onset of dementia. Several lifestyle factors like aerobic and anaerobic exercise, an 

antioxidant-rich diet, limited alcohol consumption, neuropsychological therapy, and cognitive 

training have been demonstrated to improve cognitive function or postpone disease progression in 

AUD [141,142]. The association between lifestyle modification and neurodegeneration in AUD is 

outlined in Table 2.  
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Table 2. The association between lifestyle modification and neurodegeneration in AUD. 

Lifestyle and 

etiological factors 

Risk assessment in AUD for developing 

neurodegeneration. 

Protective strategy References 

Age The brain is highly susceptible to induced 

neurodegeneration in old age (>65) with a history of 

chronic alcoholism. 

Alcohol abstinence with 

antioxidants supplements can 

reduce the aging or degenerative 

process. 

[4], [143], [82] 

Genetic 

susceptibility 

ApoE 4 genotype is a strong risk factor for developing 

AD. Moderate and heavy alcohol consumption during 

old age causes dementia with a major decline in 

learning ability among ApoE4 allele carriers. 

Lower risk of developing dementia 

among ApoE 2 allele carriers. 

[77], [144] 

Smoking Concurrent heavy smoking with alcohol drinking 

increases the incidence of dementia, AD. 

Control drinking and smoking risk 

with vitamin A, C supplementation 

to decrease the risk of dementia 

[145], [146] 

Substance misuse Cocaine use associated with AUD to facilitates 

neurodegeneration. 

Stop drug use and add nutritional 

supplements 

[147], [148] 

Comorbid 

conditions 

Cardiovascular disease, liver cirrhosis, stroke, 

traumatic brain injury can exaggerate the alcohol 

effects on the CNS. 

Alcohol abstinence with treatment 

and control of the comorbid 

condition. 

[149], [150] 

Hypertension and 

hypercholesteremia 

High blood pressure and high lipidemia have a 

relation with AUD to develop neurodegeneration in 

the elderly. 

Reduce cholesterol and BP by 

controlling alcohol consumption 

[149], [151] 

Nutritional 

hypothesis 

Alcohol interferes with vitamin absorption in the 

body and causes nutritional (thiamine, folate) 

deficiency which induces CNS degeneration 

Choline, folate, Vitamin A, C, B1, 

B6 supplementation can postpone 

the alcohol-related degeneration. 

[77], [152] 

Physical exercise Less physical activity enhances the chance to develop 

dementia in AUD 

Aerobic and anaerobic exercise 

triggers the body’s enzymatic 

antioxidants production and 

prevents neurodegeneration. 

[124], [153] 

Psychosocial status Less education, depression, work complexity 

enhances neurotoxicity in AUD. 

Increased mental activity and social 

networking, cognitive training, and 

education can help to prevent 

dementia. 

[154], [149] 

8. Conclusions 

This review provides insight into alcohol mediated brain damage and establishes evidence that 

changes in the pathophysiology and lifestyle modifications can be an option for recovery and cell 

restoration in alcohol-induced neurodegeneration. Chronic alcohol abuse initially induces oxidative 

reduction response which leads to inflammatory activation with cytoskeletal destabilization of BBB 

integrity which further activates astrocytes to amplify the VEGF generation and increase the AQP4 

expression, and thus finally causing BBB disruption and neuronal death. With the application of 

antioxidant therapy to control the oxidative response mediated inflammation, we expect to improve the 

outcome of neurocognitive function and structural stability of BBB with re-myelination and regrowth 

of neuronal processes to diminish neurodegeneration in patients with AUD. This review enhances the 
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current state of knowledge regarding preventive approaches to alcohol-induced neurodegeneration by 

outlining the current understanding of alcohol-induced neurotoxicity while establishing possible 

therapeutic interventions to reduce further neurological impairment of patients with AUD. 
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