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A B S T R A C T   

Many studies have proposed a relationship between COVID-19 transmissibility and ambient pollution levels. 
However, a major limitation in establishing such associations is to adequately account for complex disease dy
namics, influenced by e.g. significant differences in control measures and testing policies. Another difficulty is 
appropriately controlling the effects of other potentially important factors, due to both their mutual correlations 
and a limited dataset. To overcome these difficulties, we will here use the basic reproduction number (R0) that 
we estimate for USA states using non-linear dynamics methods. To account for a large number of predictors 
(many of which are mutually strongly correlated), combined with a limited dataset, we employ machine-learning 
methods. Specifically, to reduce dimensionality without complicating the variable interpretation, we employ 
Principal Component Analysis on subsets of mutually related (and correlated) predictors. Methods that allow 
feature (predictor) selection, and ranking their importance, are then used, including both linear regressions with 
regularization and feature selection (Lasso and Elastic Net) and non-parametric methods based on ensembles of 
weak-learners (Random Forest and Gradient Boost). Through these substantially different approaches, we 
robustly obtain that PM2.5 is a major predictor of R0 in USA states, with corrections from factors such as other 
pollutants, prosperity measures, population density, chronic disease levels, and possibly racial composition. As a 
rough magnitude estimate, we obtain that a relative change in R0, with variations in pollution levels observed in 
the USA, is typically ~30%, which further underscores the importance of pollution in COVID-19 transmissibility.   

1. Introduction 

In the current era of globalization, the appearance of the new SARS- 
CoV-2 virus in 2019 has harshly reminded humanity of how easily an 
epidemic can also become a global issue. While essentially the entire 
world, already for more than a year, suffers from the COVID-19 disease, 
not all areas have been hit equally. Hence, scientists worldwide are 
struggling to find patterns in observable variations in the epidemic 
progression speed and/or its severity, and the present paper is a part of 
this international and interdisciplinary effort (Bontempi et al., 2020). 
More specifically, we aim to understand the possible effects of air 
pollution on the transmission of COVID-19. 

Many previous studies have already provided arguments for the 
importance of pollution (primarily PM2.5 and, to a lesser degree, PM10 
and NO2) in COVID-19 transmissibility and suggested mechanisms that 

might explain this connection. It was argued that droplets with virus 
particles may bind to Particulate Matter (PM), which may promote the 
diffusion of virus droplets in the air (Chen et al., 2010; Comunian et al., 
2020; Contini and Costabile, 2020). Furthermore, once the virus droplet 
bound to PM reaches a susceptible individual, it can penetrate deeper in 
alveolar and tracheobronchial regions – especially in the case of small 
(PM2.5) pollution particles (Copat et al., 2020; Qu et al., 2020). Besides 
these direct mechanical effects on transmission, pollution has a general 
effect on weakening the immune system making the organism more 
susceptible to infection (Domingo and Rovira, 2020; Paital and Agrawal, 
2020; Qu et al., 2020). In addition, it promotes overexpression of ACE-2 
receptors, which allows SARS-CoV-2 binding and entry into cells 
(Comunian et al., 2020; Paital and Agrawal, 2020; Sagawa et al., 2021). 

While these arguments are compelling, and several studies pointed to 
correlations between pollutant levels and increased severity of COVID- 
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19 progression (De Angelis et al., 2021; Kolluru et al., 2021; Lorenzo 
et al., 2021; Tello-Leal and Macías-Hernández, 2020; Yao et al., 2021; 
Zhu et al., 2020), there are also prominent methodological difficulties in 
establishing this link, as discussed in (Anand et al., 2021; Bontempi, 
2021; Bontempi et al., 2020; Villeneuve Paul J. and Goldberg Mark S., 
2020). Specifically, comparing case counts (Adhikari and Yin, 2020; 
Suhaimi et al., 2020) in different geographical regions may be influ
enced by significant differences in the epidemic onsets (Villeneuve Paul 
J. and Goldberg Mark S., 2020), applied control (e.g., social distancing) 
measures (Bontempi, 2021)), and testing methodologies (most signifi
cantly the number of performed tests). Consequently, adequately con
trolling for the infection dynamics, rather than relying on absolute case 
counts, is crucial. Secondly, due to a multitude of potential confounding 
factors, it is crucial to, jointly with pollution, consider possible in
fluences of diverse sociodemographic, economic, medical, and meteo
rological factors on transmission (Bontempi, 2020b; Bontempi et al., 
2020). Ideally, the scope of the study should be conceived to emphasize 
variability in pollution, while being relatively homogenous in these 
other factors. As another obstacle, the considered variables can be 
mutually highly correlated (Notari and Torrieri, 2021; Salom et al., 
2021). Such high correlations realistically present a problem for any 
statistical inference method, though modern machine-learning ap
proaches can partially account for this difficulty (Gupta and Ghar
ehgozli, 2020). Additionally, the relationship of input variables to R0 
might be (highly) non-linear, which can hardly be accounted for by 
linear regressions, but may be successfully addressed by e.g. ensembles 
of decision trees (Hastie et al., 2009). Finally, to obtain robust pre
dictions that are not an artifact of the applied methodology and the 
underlying assumptions, it is crucial to perform analysis by several in
dependent methods. 

In our approach, we aim to address these general limitations. First of 
all, the USA dataset seems to be optimal for this analysis: while, in ab
solute figures, the pollution in the United States is not high, there is still 
sufficient variability in the pollution variables to extract reasonable 
conclusions, whereas heterogeneities in sociodemographic and weather 
parameters are not too large to overshadow the dependence on pollu
tion. Next, as a measure of transmissibility, we use the basic reproduc
tion number (R0). R0 is a measure of SARS-CoV-2 transmissibility in a 
completely susceptible (non-resistant) population and in the absence of 
social distancing (sometimes also referred to as R0,free (Magdalena 
Djordjevic et al., 2021b; Maier and Brockmann, 2020)), which is 
insensitive to differences in specific testing policies and control mea
sures. We here apply our previously developed methodology (Salom 
et al., 2021), which is based on observation of different dynamical re
gimes in COVID-19 infection counts during the disease outburst (Mag
dalena Djordjevic et al., 2021a). Our model is then applied to one of 
these growth regimes (the exponential one), to estimate R0 for individ
ual USA states. These R0 estimates, instead of the disease counts (or 
other similar measures), are then used as the dependent (response) 
variable in further analysis. As independent (input) variables, we 
assemble a large set of available sociodemographic, medical, and 
weather variables. Importantly, to assess the pollution levels in detail, 
we assemble the data for ten different pollutants, with the levels 
determined in the time windows relevant for the analyzed exponential 
growth regimes. We gather the weather parameters in the same 
dynamically relevant manner. This results in a large number of pre
dictors, many of which we group in sets of similar and mutually often 
highly correlated variables. Additionally, the number of assembled 
variables exceeds the total sample size, so it is necessary to reduce the 
number of predictors to a smaller and less correlated set. We achieve this 
through data preprocessing (feature engineering), which includes vari
able transformations, removing all outliers, and grouping mutually 
related and highly correlated variables into subsets (e.g., age-related, 
population prosperity measures, chronic diseases). Principal Compo
nent Analysis (PCA) is then applied within these subsets, resulting in 
dimensionality reduction (reducing the number of predictors) and 

smaller overall correlations within this reduced predictor set. Finally, to 
go beyond establishing mere correlations between different varia
bles/components with R0, we use four established machine learning 
approaches: Lasso, Elastic net, Random Forest, and Gradient Boost. Our 
goal is to: i) select important variables and rank their relative impor
tance in explaining R0, ii) obtain an estimate of expected changes in R0 
based on observed variability in pollution levels. While the estimates we 
get in this way are only rough (due to the inability to assemble all 
relevant factors in determining R0), the obtained results nevertheless 
provide a quantitative assessment of the importance of pollution in 
SARS-CoV-2 transmissibility. 

2. Methods 

2.1. R0 extraction 

As the proxy for the COVID-19 transmissibility, we used the basic 
reproduction number (R0). Basic reproduction number is a measure of 
SARS-CoV-2 transmissibility in a fully susceptible population and in the 
absence of intervention measures (social distancing, quarantine). For 
extraction of R0, we used our previously published methodology, in 
particular analysis of widespread infection growth regimes (Magdalena 
Djordjevic et al., 2021a) and extraction of R0 from the exponential 
growth phase that we previously applied on a worldwide level (Salom 
et al., 2021). For the sake of completeness, we summarize this meth
odology below. 

To describe the SARS-CoV-2 transmission in a population, we con
structed an adapted version of an SEIR compartmental model (Maier and 
Brockmann, 2020; Maslov and Goldenfeld, 2020; Perkins and España, 
2020; Tian et al., 2020; Weitz et al., 2020), which takes into account all 
the relevant features of this process, while being simple enough to be 
used for R0 estimation in a wide range of populations (Magdalena 
Djordjevic et al., 2021a; Salom et al., 2021). In the early stages of epi
demics and before social distancing measures are introduced, the flow 
between the model compartments leads to the changes of the compart
ment member abundances S (susceptible), E (exposed), I (infected), R 
(recovered), and D (cumulative detected cases) which are described by 
the following system of ordinary differential equations: 

dS
dt

= −
βSI
N

(1.1.)  

dE
dt

=
βSI
N

− σE (1.2.)  

dI
dt

= σE − γI (1.3.)  

dR
dt

= γI (1.4.)  

dD
dt

= εδI (1.5.)  

where N is the population size. Parameters represent: β - the rate of virus 
transmission from an infected to the encountered susceptible individual, 
σ - the inverse of the average incubation period (~3 days), γ - the inverse 
of the average period of infectiousness, ε – the detection efficiency (as 
not every infected individual becomes detected), and δ - the detection 
rate. 

We here applied the model to the relatively brief, initial epidemics 
period when only a small fraction of the population is resistant, and 
before social distancing interventions take effect. Note that, even after 
introducing the measures, there is ~10 days delay in observing their 
effect in the confirmed case-counts curve, due to the incubation period 
and the time needed between the symptom onset and the infection 
detection/confirmation. During this period, the virus is spreading at a 
rate determined by its natural biological potential, modulated by the 
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characteristics of the given population and the environment. Therefore, 
the above parameter values of infection progression are considered 
constant in this period. The standard measure of the virus trans
missibility in these conditions (not influenced by interventions or im
munity) is the basic reproduction number, R0, defined as the average 
number of secondary infections caused by a primary infected individual 
in a fully susceptible population (S/N ≈ 1), and in the absence of social 
distancing measures (also sometimes denoted as R0,free) (Maier and 
Brockmann, 2020). At the start of an epidemic, R0 > 1 and the number of 
infected individuals grows exponentially. The model can then be line
arized by invoking S/N ≈ 1, reducing the model to two linear differential 
Eqs. (1.2) and (1.3). Solving for the eigenvalues of this system, 

λ± =
− (γ + σ) ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(γ − σ)2
+ 4βσ

√

2
,

(1.6.)  

provides the solution of the form I(t) = C1 ⋅eλ+t + C2 ⋅ eλ− t, which can be 
approximated by 

I(t) = I(0)⋅ eλ+ t (1.7.)  

where the term containing the negative eigenvalue, λ- can be neglected 
(see (Salom et al., 2021)). With R0 = β/γ (Keeling and Rohani, 2011; 
Martcheva, 2015), the equation for the basic reproduction number, 

R0 = 1 +
λ+⋅ (γ + σ) + λ2

+

γ*σ . (1.8.)  

can be obtained by expressing β from Eq. (1.6). 
To estimate the R0 values for 46 US states, we collect the detected 

case counts for each state from online resources (Worldometer, 2020). 
The solution D(t) = ε⋅δ⋅I(0)⋅(eλ+ t − 1)/λ+ of Eq. (1.5) using Eq. (1.7) 
models the dependence of the cumulative number of detected with time. 
Taking its logarithm 

log(D(t)) = + λ+⋅t, (1.9.)  

results in the equation of the straight line that can be fitted to the data on 
the semilogarithmic scale. Notably, the slope of that line is given by the 
positive eigenvalue of the system, λ+. Once that λ+ is determined by 
fitting, the value of R0 for a particular state can be calculated from Eq. 
(1.8). 

2.2. Pollution data collection 

Air quality information was obtained from the US environmental 
protection agency (EPA) Air Data service (US Environmental Protection 
Agency, 2020). We used aggregated daily data for pollutant gases (O3, 
NO2, SO2, CO), particulates (PM2.5 and PM10) and other available spe
cies, such as VOCs (Volatile Organic Compounds), NOx, and HAPs 
(Hazardous Air Pollutants). For a given state, aggregation was done over 
all cities with available information. The populations of cities were 
obtained from the US Census Bureau (U.S. Census Bureau, 2020). All the 
variable values are averaged for each city over the identified time 
period, and the state average is calculated as the average of all included 
state cities weighted by the population. 

2.3. Weather data collection 

Weather parameters were downloaded in bulk using a custom Py
thon script from the NASA POWER project service (NASA Langley 
Research Center, 2020). All the parameters were downloaded via the 
POWER API at the longitude and latitude coordinates matching the 
largest cities in each state that comprise above 10% of the state popu
lation. Variables include temperature at 2 m and 10 m, measures of 
humidity and precipitation (wet bulb temperature, relative humidity, 
total precipitation), insolation indices, wind speed, and pressure. The 

maximum predicted UV index was downloaded from OpenUV (OpenUV, 
2020). Geographical coordinates of the cities and populations of cities 
and states were adapted from Wikidata (Wikipedia, 2021a, b). 

2.4. Socio-demographic data collection 

Demographic data were collected from several sources. The de
mographic composition of the US population by gender, race, and per
centage of the population under 18 and over 65 was taken from the 
Measure of America, a project of The Social Science Research Council 
website (Measure of America, 2018). Information about health insur
ance, GDP, life expectancy at birth, infant and child mortality was also 
taken from the Measure of America website. Medical parameters such as 
hypertension, cholesterol, cardiovascular disease, diabetes, cancer, 
obesity, inactivity, and chronic kidney and obstructive pulmonary dis
ease were taken from America’s Health Rankings website (America’s 
Health Ranking, 2021) hosting Centers for Disease Control and Pre
vention (CDC) data (CDC, 2019). Percentages of the population that are 
actively smoking and consuming alcohol are taken from the same 
source. The percentage of the foreign population was taken from the 
Census Reporter website (U.S. Census Bureau, 2019). The subnational 
HDI was taken from the Global Data Lab website (2020) (Smits and 
Permanyer, 2019). Population density, urban population percentage, 
and median age were taken from the U.S. Census Bureau website (U.S. 
Census Bureau, Population Division, 2019). 

2.5. Data processing 

The initial analysis of the assembled data distributions and QQ plots 
revealed non-normal distributions in a majority of variables. To reduce 
the skewness of the data we applied a number of transforms with 
different strengths (square root, cubic root, or log), adjusted in sign to 
maintain the data ranking (Spearman correlation). Individual data 
values that remained more than three median absolute deviations from 
the new median were substituted by the said median value. 

The main purpose of these transformations, and outliers’ removal, 
was to account for more extreme variable values (such as heavy distri
bution tails), which may significantly affect some of the analysis 
methods that we further use (in particular, correlation analysis, Lasso 
and Elastic net regressions). On the other hand, methods based on the 
ensembles of decision trees (e.g., Random Forest and Gradient Boost) are 
fairly robust to outliers and non-normal variable distributions and pro
vide a consistency check of the obtained conclusions. 

The table with all applied transformations is provided below. Also, 
note that the entire dataset used in this analysis (variable values for all 
46 states) is provided in Supplement Table 1. In addition to the trans
formations applied, the table below also links the variables to the 
dataset, by relating a variable abbreviation (used in Supplemental files) 
with its full name and units (see Table 1). 

2.6. Feature engineering and principal components analysis 

The total number of variables (74) is larger than the sample size (46 
states). While the regressions with feature selection (Lasso and Elastic 
net) can handle the number of variables that is significantly larger than 
the sample size (as long as the number of selected features is smaller 
than the sample size), this large number of variables (some highly 
correlated) is a major risk for overfitting, particularly for Random Forest 
and Gradient Boost methods. To reduce the number of variables, we first 
divided them into groups by conceptual similarity and expected corre
lation, after which we performed Principal Component Analysis (PCA) 
on each group. This also partially reduced data correlation (Jolliffe, 
2002). Variables were grouped according to two criteria: i) those that 
represent similar quantities so that, after PCA, the interpretation of the 
obtained PC remains unambiguous; ii) the correlations between the 
variables in the same group are high, so that in this way, after PCA, the 
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overall correlations in the new predictor set are substantially reduced. 
Grouping of variables and their relation to PCA is provided in Table 2. 

Since different variables are expressed in different units and corre
spond to diverse scales, each variable in the dataset was standardized 
(the mean subtracted and divided by the standard deviation) before 
PCA. For each dataset, we retained as many PCs (starting from the most 
dominant one) as needed to (cumulatively) explain >85% of the data 
variance. It was inspected that PCs reasonably follow a normal distri
bution (as expected, based on the transformation of the original vari
ables). Note that some of the initial variables did not satisfy our grouping 
criteria and thus do not appear in Table 2. They either have a distinct 
meaning from other variables (e.g., racial prevalence) or have a similar 
meaning, but do not exhibit a high correlation with the related variables 
(e.g., relative humidity RH2M, which does not correlate well with the 
other two humidity measures, QV2M and T2MDEW). These variables 
enter further analysis independently, i.e., together with PCs obtained 
after PCA on grouped variables. 

2.7. LASSO regression 

To complement the PCA feature selection, additional L1 regulariza
tion was done with Lasso (Hastie et al., 2009; Tibshirani, 1996). All 
input variables were standardized. Hyperparameter λ (which controls 
the model complexity) was optimized through grid search on an 

Table 1 
List of variables (with units) and the applied transformations. Variable shortcuts 
(first column) correspond to Supplement Table 1.  

Data Name (units) Transformation f 
(x) 

T2M, T2MMAX, T2MMIN, T10M, 
T10MMAX, T10MMIN, TS, 
T2MWET 

Temperatures (◦C) None 

RH2M Relative humidity at 2 m (%) -log(max(x) - x) 
QV2M Specific humidity at 2 m (g/ 

kg) 
log(x) 

T2MDEW Dew Point (◦C) None 
PRECTOT Precipitation (mm/day) x1/3 

TQV Total Column Precipitable 
Water (cm) 

log(x) 

CLRSKY_SFC_SW_DWN Clear Sky Insolation Incident 
on a Horizontal Surface (MJ/ 
m2/day) 

-(max(x) - x)1/3 

ALLSKY_SFC_LW_DWN Downward Thermal Infrared 
(Longwave) Radiative Flux 
(MJ/m2/day) 

log(x) 

ALLSKY_SFC_SW_DWN All Sky Insolation Incident on 
a Horizontal Surface (MJ/ 
m2/day) 

log(x) 

OpenUVmax UV radiation index x1/3 

WS2M Wind speed at 2 m None 
WS10M Wind speed at 10 m None 
P Pressure x1/2 

Population over 65 (%) Population over 65 (%) None 
Life Expectancy Life Expectancy at Birth 

(years) 
-(max(x) - x)1/2 

Median age Median age (years) -(max(x) - x)1/2 

Youth population Population under 18 (%) log(x) 
Population density Population density (people/ 

km2) 
log(x) 

BUAPC Built Up Area Per Capita 
(km2/people) 

log(x) 

Urban Population Urban Population (%) -(max(x) - x)1/2 

HDI Human development index 
(0–1) Average of education, 
health and standard of living. 
(Mean years of schooling of 
adults aged 25+, Expected 
years of schooling of children 
aged 6 + Life expectancy at 
birth + GNIpc)/3 

-(max(x) - x)1/2 

GDPpc Gross domestic product per 
capita 

log(x) 

Infant mortality rate Infant Mortality Rate (per 
1000 live births) 

-log(x) 

Child mortality Child Mortality (age 1–4, per 
1000 population) 

-log(x) 

Alcohol consumption Adults alcohol consumption 
binge drinking (%) 

log(x) 

Foreign-born population Foreign-born population (%) log(x) 
Obesity Obesity age 20 and older (%) None 
CVD deaths Age 65+ Cardiovascular 

disease deaths per 100000 
people 

log(x) 

Hypertension Adults with Hypertension 
(%) 

log(x) 

High cholesterol Population with high 
cholesterol (%) 

None 

Smoking Population smoking (%) None 
Cardiovascular disease Population with 

cardiovascular disease (%) 
None 

Diabetes Population with diabetes (%) x1/3 

Cancer Population with cancer (%) None 
Chronic kidney disease Population with chronic 

kidney disease (%) 
x1/2 

Chronic obstructive pulmonary 
disease 

Population with chronic 
obstructive pulmonary 
disease (%) 

log(x) 

Multiple chronic conditions Population with multiple 
chronic conditions (%) 

None 

Physical inactivity Population physically 
inactive (%) 

x1/3  

Table 1 (continued ) 

Data Name (units) Transformation f 
(x) 

Male percent Fraction of male in the 
population (%) 

log(x) 

White percent Fraction of white in the 
population (%) 

-log(max(x) - x) 

Black percent Fraction of black in the 
population (%) 

x1/3 

Native percent Fraction of native in the 
population (%) 

log(x) 

Asian percent Fraction of Asian in the 
population (%) 

log(x) 

Latino percent Fraction of Latino in the 
population (%) 

log(x) 

No health insurance children No health insurance under 18 
(%) 

x1/2 

No health insurance adults No health insurance 18–64 
(%) 

None 

No health insurance all No health insurance all 
population (%) 

None 

No insurance black No health insurance black 
(%) 

None 

No insurance native No health insurance native 
(%) 

x1/3 

No insurance Asian No health insurance Asian 
(%) 

x1/2 

No insurance Latino No health insurance Latino 
(%) 

None 

No insurance white No health insurance white 
(%) 

None 

PM2.5 PM2.5 concentration (μg/m3) None 
PM10 PM10 concentration (μg/m3) x1/2 

CO CO concentration (ppm, 
10− 6) 

x1/2 

NO2 NO2 concentration (ppb, 
10− 9) 

None 

SO2 SO2 concentration (ppb) log(x - min(x)) 
O3 O3 concentration (ppm) None 
VOC Volatile organic compounds 

concentration (ppb Carbon) 
log(x) 

Lead Lead concentration (μg/m3) log(x) 
HAPs Hazardous air pollutants 

concentration (μg/m3) 
(x-min(x))1/2 

NONOxNOy Nitrous oxides concentration 
(ppb) 

x1/3 

R0 Estimated basic reproduction 
number 

log(x)  
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exponential scale from numerical zero (OLS regression) to the value 
yielding the intercept-only model. Mean Squared Error (MSE) on the 
cross-validation testing set (200 repeats, 80-20 split) was taken as the 
loss function, and we chose the λ1SE as the simplest model still compa
rable to the optimal one (Krstajic et al., 2014). The final model was 
comprised of all the non-zero coefficients. 

2.8. Elastic net regression 

Elastic Net expands the Lasso regression with an L2 regularization 
and introduces a second hyperparameter α (Friedman et al., 2010; 
Hastie et al., 2009; Zou and Hastie, 2005). The same preprocessing was 
done for the input variables, after which the 2-dimensional grid-search 
with the same λ -scale as in Lasso, and the α linearly equidistant on 
the interval from 0 (Ridge regression) to 1 (Lasso regression) inclusive. 
Cross-validation was performed in the same way as for the Lasso 
regression, but each fold gave a distinct (α, λ) pair of hyperparameters. 
The final chosen value was the pair closest to the centroid of all the folds, 
and these hyperparameters were used to retrain the model on the whole 
dataset. Again, the final model was comprised of all the non-zero 
coefficients. 

2.9. Random forest and gradient boost 

To avoid overfitting, the variables were preselected to exhibit sig
nificant correlations with R0 (with a liberal threshold of P < 0.1) by 
either Pearson, Kendall, or Spearman correlations. Cross-validation and 
hyperparameter selection for Gradient Boost (GBoost) and Random 
Forest (Breiman, 1996, 2001; Freund and Schapire, 1997; Friedman, 
2001; Hastie et al., 2009) was done equivalently as for Lasso and Elastic 
net. For Gradient Boost, maximal number of splits, minimal leaf size, and 
learning rate were chosen through grid search, with the respective 
values: {1, 2, 3, 4, 5, 8, 16}; {1, 2, 3, 4, 5, 8, 16, 18}; { 0.1, 0.25, 0.5, 
0.75, 1}. For Random Forest, the grid values for the maximal number of 
splits and minimal leaf size were, respectively: {6, 12, 18, 22, 24, 26 30, 
35}, {1, 2, …, 7}. In the ensemble, the number of trained decision trees 
was chosen to minimize Mean Square Error (MSE) on the testing set, for 
both methods. The obtained hyperparameters were used to retrain the 
models on the whole dataset, and predictor importance was estimated 

for both methods. 

2.10. Model metrics 

MSE for the testing data, averaged over all cross-validations, was 
used as a metric to compare the performance of different models. For 
easier interpretability, MSE values were scaled by those corresponding 
to the constant model (so that MSE of 1 corresponds to the constant 
model). To assess statistical significance with respect to the constant 
model, a t-test was applied to MSE values obtained through cross- 
validation. 

3. Results 

3.1. Extraction of R0 and feature engineering 

The log(D(t)) in the exponential growth regime for a subset of 
selected USA states is shown in Fig. 1. The linear dependence confirms 
that the progression of the epidemic in the early infection stage is almost 
perfectly exponential and is robustly observed for a wide range of USA 
states, while the same initial exponential growth was previously 
observed for a wide range of world countries (Notari and Torrieri, 2021; 
Salom et al., 2021). We exploited this exponential regime to infer R0 as 
described in Methods, which we further use as our independent 
(response) variable. 

Next, we transformed the variables so that their distribution became 
as close as possible to normal, and removed the outliers, followed by a 
grouping of the variables into subsets and performing PCA on these 
subsets, as detailed in Methods. The results of PCA are shown in Table 2, 
where each group of variables is related to their corresponding PCs in 
that table. For each variable group, we retained as many PCs as needed 
to explain more than 85% of the variability in the subset (standard 
threshold). To each of the PCs listed in Table 2, we assigned an intuitive 
name (e.g., PC1 prosperity, PC1 age) according to the set of variables 
from which they are formed. 

3.2. Feature extraction 

We started from the basic assessment of the variable importance in 
explaining R0, which are pairwise correlations. Note that these do not 
control for the presence of other potentially important variables but are 
a straightforward initial assessment of the relation with R0. In Fig. 2A, 
we show the Pearson correlation constant of the variables with R0, 
where predictors with statistically significant correlations (P < 0.05) are 
shown together with their correlation constants (represented by bars’ 
heights) and statistical significance levels (indicated by stars). Some
what surprisingly, we found that the highest correlation was with PM2.5, 
with R~0.6 and P~10− 4. A large positive correlation between R0 and 
PM2.5 levels can also be observed from the scatter plot in Fig. 2B. 
Additionally, several other variables exhibit statistically significant 
correlations with R0, as indicated in Fig. 2A. Note, however, that some of 
these variables are also significantly correlated with PM2.5. Moreover, 
their correlation with R0 and PM2.5 is in the same direction (Fig. 2C). 
Consequently, their significant correlation with R0 may be, at least in 
part, due to their correlation with PM2.5. 

To partially address this, we performed an analysis that allows us to 
select the most important predictors from the set of correlated variables. 
Specifically, results of Lasso and Elastic net regressions are shown in 
Fig. 3A and B. Both of these methods provide both regularization and the 
ability to select significant predictors through shrinking other co
efficients to zero. Moreover, we standardized all the variables before 
using them in regressions, so that the absolute values of the regression 
coefficients provide estimates of relative importance of the selected 
variables. For each of the two methods, we performed repeated cross- 
validations, together with optimizations of hyperparameters, so that 
methods have maximal predictive power (minimal MSE) on the training 

Table 2 
Grouping of variables and relation to PC.  

PC components Variables 

PC1 temperature T2M, T2MMAX, T2MMIN, T10M, T10MMAX, T10MMIN, TS 
PC1 humidity QV2M, T2MDEW 
PC1 precipitation PRECTOT, TQV 
PC1 wind WS2M, WS10M 
PC1 - PC2 

radiation 
CLRSKY_SFC_SW_DWN, ALLSKY_SFC_SW_DWN, 
ALLSKY_SFC_LW_DWN 

PC1 - PC2 
seasonality 

PC1 temperature, PC1 humidity, PC1 precipitation, PC1 
radiation, PC2 radiation, RH2M, OpenUVmax 

PC1 NO NO2, NONOxNOy 
PC1 - PC2 age Population over 65, Youth population, Median age 
PC1 - PC2 density 1/BUAPC, Urban population, Population density 
PC1 - PC4 

prosperity 
Life expectancy, Infant mortality, GDP, HDI, Child mortality, 
Alcohol consumption, Foreign-born population 

PC1 - PC4 disease Obesity (% age 20 and older), Age 65+ CVD deaths, Adults with 
hypertension (%), Population with high cholesterol (%), 
Population smoking (%), Population with cardiovascular 
disease (%), Population with diabetes%, Population with 
cancer (%), Population chronic kidney disease (%), Population 
chronic obstructive pulmonary disease (%), Population 
multiple chronic conditions (%), Population physical inactivity 
(%), 

PC1 - PC3 ins. No health insurance (% of_children_under_18), No health 
insurance (% of_adults_ages_18–64), No health insurance total 
population (%), No health insurance black (%), No health 
insurance native (%), No health insurance Asian (%), No health 
insurance Latino (%), No health insurance white (%),  
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set (see Methods for details). We obtained that the two methods are 
statistically highly significant compared to the constant model 
(P~10− 19 and 10− 23, for Lasso and Elastic net, respectively). The pre
dictive power of these methods is, however, only moderate, as can be 
seen for the obtained MSE values (MSEs are scaled, so that MSE of 1 
corresponds to the constant model, which is not a large difference from 
0.79 to 0.76, obtained by Lasso and Elastic net, respectively). Note, 
however, that the main purpose of these models was in feature selection, 
while predictability was improved through models employed in the next 
subsection. 

From both Lasso and Elastic net, we again obtained that PM2.5 was 
the most important predictor, positively affecting COVID-19 trans
missibility (so that higher PM2.5 leads to higher transmissibility). A 
similar trend was obtained for CO and PC1 NO (formed from NO2 and 
Nitrogen-oxides concentrations) – CO was also found to be significantly 
related with R0 through pairwise correlations. Additionally, the popu
lation density (PC2 density) appears as an important predictor through 
both Lasso and Elastic net, though with smaller importance (regression 
coefficient), but consistently with pairwise correlations and with a 
tendency to increase transmissibility. Also, through all three approaches 
employed so far (pairwise correlations, Lasso, and Elastic net), we ob
tained that the higher state prosperity (PC1 prosperity) negatively in
fluences R0. Also, chronic diseases significantly influence (increase) R0 
as obtained by both pairwise correlations and Elastic net. Finally, PC2 
ins., which is related to the fraction of the population (in particular 
Latinos) with medical insurance, also negatively correlates with R0 

(through all three methods). Interpretation of these dependencies is 
further addressed in the Discussion section. 

3.3. Variable importance estimates 

Our next goal was to assess variable importance and achieve better 
model predictability through methods that are considered state-of-the- 
art in machine learning for these types of problems. We employed two 
methods based on ensembles of weak learners (decision trees), in 
particular Gradient Boost and Random Forest. They are substantially 
different from Lasso and Elastic net employed in the previous subsec
tion, as they do not assume linear dependence of the response from input 
variables (so-called non-parametric models). Consequently, their 
employment provided an independent check for the importance of PM2.5 
in explaining R0. Our motivation was also to obtain better predictability 
of these models so that we can generate a quantitative estimate of 
pollution variation effects on R0. 

Two methods were implemented similarly to Lasso and Elastic net, i. 
e., model hyperparameters are optimized to achieve maximal predict
ability through repeated cross-validations (see Method for details). As 
these models (i.e., decision trees in general) are prone to overfitting, we 
performed a simple variable selection. That is, only variables with P <
0.1 (according to either Pearson, Kendell, or Spearman correlations) 
were selected, resulting in 13 variables shown on the horizontal axes of 
Fig. 3C and D, which were then used in further analysis. We obtained a 
much better predictive power for both Gradient Boost and Random 

Fig. 1. The time dependence of the detected cases for the different US states during the initial period of the epidemic is shown on a log-linear scale. The linear fit of 
log(D) shows that the spread of COVID-19 is well approximated by exponential growth in this phase. Values on axes are chosen differently for each state to emphasize 
the exponential growth phase. For each state, the start and end dates, the extracted slope λ+, of the exponential regime, are given in Supplementary Table S1. Al – 
Alabama; AK – Arkansas; AR – Arizona; CA – California; CO – Colorado; FL – Florida; GA – Georgia; ID – Idaho; ME – Maine; MD – Maryland; MN – Montana; NE – 
Nebraska; NJ – New Jersey; NM – New Mexico; NY – New York; NC – North Carolina; OH – Ohio; OR – Oregon; PA – Pennsylvania; RI – Rhode Island; SD – South 
Dakota; TN – Tennessee; TX – Texas; VA – Virginia. 
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Forest models (compared to regressions in the previous subsection) with 
MSE of 0.44 and 0.5, respectively, where these differences compared to 
the constant model (MSE = 1) are statistically highly significant 
(P~10− 83 and 10− 84, respectively). 

Estimates of variable importance for both of these models are shown 
in Fig. 3C and D. In both figures, the most prominent feature is PM2.5, 
consistently with all other results obtained so far. Furthermore, PC1 
disease and PC1 NO appear with moderate importance in both methods, 
where GBoost also emphasizes the importance of PC2 ins., which is all 
generally consistent with the analysis presented in the previous sub
section. With respect to the pollution, the only difference is that PM10 
appears as moderately important in GBoost, while not selected by other 
models. Also, CO was selected by Random Forest as moderately 
important (consistent with the previous analysis) but does not appear as 
such in GBoost. Finally, the racial factor (in particular, fraction of black 
population) was selected as important by Random Forest (and also 
appeared as significant through pairwise correlations) but does not 
appear as important in GBoost. A possible interpretation of these find
ings is addressed in the Discussion section. 

3.4. Quantitative estimate of pollution influence on R0 

As we obtained a reasonable model accuracy through both GBoost 
and Random Forrest, we were able to estimate how pollution variations 
(observed through different USA states) affect R0. While we included a 
substantial number of variables (all that we managed to systematically 
assemble) in our analysis, these are of course not all the variables that 
can affect R0, so we only aimed to provide rough estimates. Still, such an 

estimate is useful, as it provides the magnitude by which reasonably 
realistic changes in the pollution levels can affect R0. For example, the 
new SARS-CoV-2 strain that was first detected in Great Britain (known as 
B.1.1.7, or more recently Alpha (Callaway, 2021)), which has, at the 
time of writing, become dominant in many other parts of the world, is 
estimated to lead to up to 1.9 increase in R0 – this value can e.g. be 
compared with our estimated change due to pollution variations. To 
generate predictions for each of the analyzed states, we kept all other 
parameters fixed while changing the pollution values so that the changes 
corresponded to the actual values observed in all 46 states. In this way, 
the relative change in R0, due to observed variations in pollution 
(ΔR0/R0), was estimated, where ΔR0 corresponded to the difference 
between maximal and minimal estimated R0 values. 

The obtained results for ΔR0/R0 for all analyzed states are shown as 
histograms in Fig. 4A (GBoost) and 4B (Random Forest). For GBoost, a 
somewhat larger ΔR0/R0, corresponding to the median of ~40% (and 
going up to ~70%), was obtained, while for Random Forrest, smaller 
values with a median of ~25% were estimated. This can e.g. be 
compared with ΔR0/R0 of up to 90% for the Alpha strain (Davies et al., 
2021) so that estimated changes due to pollution variation are smaller 
but still substantial. Finally, as the two histograms are somewhat 
different, in Fig. 4C we directly test the consistency of their ΔR0/R0 
predictions. It can be seen that they are well consistent, with reasonably 
high correlation (R = 0.73 and P~10− 8). Note that these two methods 
are independent and substantially different (though both based on en
sembles of decision trees), so differences in their predictions are 
expected. 

Fig. 2. Pearson’s correlations for relevant variables. A) Variables significantly correlated (P < 0.05) with the basic reproduction number R0 are shown. The bars’ 
height indicates the value of Pearson’s correlation coefficient (R on the y axis). B) Scatter plot of R0 vs. PM2.5. The dashed line shows linear fit. C) Person’s cor
relations of variables in A) with PM2.5. Variable names are indicated on the horizontal axis. Stars in bar plots represent the level of statistical significance, as indicated 
in the figure legend. 
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4. Discussion 

Figs. 2 and 3 reveal the main result of the paper: PM2.5 pollution is, 
throughout our analysis, consistently singled out as the main driver 
behind SARS-CoV-2 transmissibility in the US. This result was obtained 
through both pairwise correlations of variables with R0, and by the 
applied machine learning approaches. 

The association of the PM2.5 pollution with the rate of COVID-19 
spread per se is not a novel result (Gujral and Sinha, 2021; Gupta and 
Gharehgozli, 2020; Kolluru et al., 2021; Lorenzo et al., 2021; Maleki 
et al., 2021; Stieb et al., 2020). However, the existing studies had several 
methodological limitations (Anand et al., 2021; Bontempi, 2021; Bon
tempi et al., 2020; Villeneuve Paul J. and Goldberg Mark S., 2020), 
outlined in the Introduction, that we here tried to address. Moreover, 
previous studies in the USA obtained non-consistent reports on pollution 
relevance, underlying the importance of more extensive modeling and 

statistical learning approaches that we employed here (Allen et al., 
2021; Gupta and Gharehgozli, 2020; Luo et al., 2021). 

First of all, by explicitly taking into account the infection dynamics, i. 
e., the model-based estimate of R0 as SARS-CoV-2 transmissibility 
measure (instead of, for example, considering case counts) we addressed 
a number of common shortcomings of studies with a similar goal: R0 
obtained in this way (as it depends only on the curve exponent and is 
thus scaling invariant) is prone neither to underreporting bias nor to 
errors due to differences in testing policies (Villeneuve Paul J. and 
Goldberg Mark S., 2020); since we concentrate only on the initial period 
of the local epidemic, our results do not suffer from the problem of 
comparing different stages on the epidemic curves, are not influenced by 
the existence of multiple epidemic peaks nor by the later appearance of 
multiple virus strains, and are unaffected by social measures which alter 
dynamic only later (Bontempi, 2021; Villeneuve Paul J. and Goldberg 
Mark S., 2020); our approach does not rely on time series and thus 

Fig. 3. Values of regression coefficients in A) Lasso and B) Elastic Net regressions, respectively, where the bars’ height corresponds to the coefficients’ values for 
selected variables. Coefficients of all other variables are shrunk to zero (not shown) by the regressions. Variable importance in C) Gradient Boosting (GBoost) and D) 
Random Forest (RF) regressions, with the bars’ height corresponding to estimated importance. Only variables with P < 0.1 (according to either Pearson, Kendall, or 
Spearman correlations with R0) are included in GBoost and RF regressions. MSE values are scaled to the constant value model and averaged over 200 cross- 
validations. P-values correspond to the statistical significance of obtained MSE’s compared to the baseline model. Variable names are indicated on the horizontal axis. 
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avoids the related methodological difficulties (Villeneuve Paul J. and 
Goldberg Mark S., 2020). Next, as our inferences are not based simply on 
mutual correlations of variables alone, but we also robustly obtain the 
same main conclusion by employing four different machine learning 
techniques, including those that can account for potentially highly 
non-linear dependences of R0 on predictors. Consequently, common 
objections to statistical methodology (Bontempi et al., 2020; Villeneuve 
Paul J. and Goldberg Mark S., 2020) do not apply here. Furthermore, by 
taking into account 74 diverse predictors covering a broad scope of 
potentially relevant factors, we avoid the lack of multidimensionality 
and a bias that may result from considering only a narrow class of var
iables – problems otherwise observed in many similar studies (Bon
tempi, 2020b; Bontempi et al., 2020). With regards to that, we note that 
our study was initially conceptualized to explore which parameters, 
from a large collected set, had the most influence on the spread of the 
SARS-CoV-2 virus in the USA (without initial bias towards pollution). As 
our preliminary results singled out air pollution as the major predictor of 
COVID-19 transmission speed, this motivated us to put the pollution 
variables in the spotlight of this research, trying also to differentiate 
which types of pollution mostly contribute to the transmission of 
COVID-19. 

As several limitations still remain in our study, the observed asso
ciation between PM2.5 pollution and COVID-19 cannot be yet taken to 
guarantee the existence of a causal relation. Even with the use of 
advanced statistical learning methods, it is difficult and not always 
possible to disentangle the effects of strongly correlated variables. As we 
will further discuss below, it is particularly problematic to differentiate 
between the independent effects of pollution and the indirect effects of 
factors related to economic and racial disparities, which often go hand in 
hand in the USA (Chakraborty, 2021). Another problem is to select a 
proper proxy (or proxies) for the frequency of human interactions in a 
given society, as there is little doubt that the human-to-human mode of 
transmission is most dominant in COVID-19. In this context, some au
thors (Bontempi, 2020b; Bontempi et al., 2020; Cartenì et al., 2020; Guo 
et al., 2021) rightfully emphasize the importance of properly assessing 
the mobility of the considered population, and suggest possible proxies: 
from specific measures of economic relations and commercial exchanges 
to taking into account the number of job seekers/investors and analysis 
of public transportation statistics. Presently, we have taken into account 
only basic measures of economic prosperity that are expected to indi
rectly but highly correlate with mobility and frequency of human to 
human interactions: human development index, gross domestic product 
per capita, life expectancy, infant/child mortality, and foreign-born 
population. While it is not easy to identify and find further variables 
that could properly reflect these factors and yet be available, in a sys
tematic and unified way, across all studied regions, there is certainly 
room for methodological improvement in this respect. 

Another methodological limitation that cannot be easily overcome is 
the potential difference between indoor and outdoor air pollution. This 
is of obvious relevance since it is estimated that people, on average, 
spend 80–90 percent of their time indoors (Noorimotlagh et al., 2021b). 
In the absence of systematic data sources on indoor pollution, our 
conclusion must rely on a reasonable assumption that indoor and out
door pollution are, in general, highly correlated, as is illustrated in 
(Harbizadeh et al., 2019). The unavoidable trade-off between choosing a 
scope of analysis that exhibits extreme levels (and variations) of air 
pollution on one side, and the need for uniformity of other parameters 
on the other side – that we settled by choosing the USA dataset – presents 
an additional limitation, considering that pollution values in the USA are 
generally not high, and certainly below serious health-hazard levels. 
(The values are far below the levels investigated in the COVID-19 
context in some other locations: for example, in a study done in 
Bangkok (Sangkham et al., 2021) the authors reported much higher 
PM2.5 values but had to face severe methodological limitations of the 
sorts discussed above.) Despite these remaining limitations of our 
research, we believe that this work presents substantial progress in 
terms of methodology and reliability of the obtained results. It thus es
tablishes the link of PM2.5 pollution with COVID-19 transmissibility 
much more firmly than the previous studies and provides further 
motivation for research in this direction. 

Since this study suggested a direct relation between pollution and 
COVID-19 transmissibility, we finally provided a quantitative estimate 
of the established connection in Fig. 4. We estimated that varying the 
pollutant levels (specifically, levels of PM2.5, PM10, CO, and NO2, which 
enter Random Forest and Gradient Boost methods), where changes in 
PM2.5 levels are by far the most important, makes a difference of ~30% 
in terms of the R0 values. While this is smaller compared to reproduction 
number changes due to the appearance of new highly infective strains 
(estimated to increase R0 for up to ~90% higher) (Davies et al., 2021), it 
is still sizable, and clearly illustrates the potential importance of PM2.5 in 
modulating the virus transmissibility. For example, in an exponential 
regime of infection progression (c.f. Eq. (1.7) in Methods) lasting for 
~10 days (a typical period in which exponential growth is observed for 
the USA states), and with typical parameter values, such difference 
would lead to two times larger number of infected, and (at least) equal 
proportion of lost human lives. Aside from increasing transmissibility, 
an additional (and largely independent) effect of larger pollutant levels 
is the potentially increased COVID-19 mortality (due to health hazards 
of pollution), as suggested by several studies (Luo et al., 2021; Pozzer 
et al., 2020; Wu et al., 2020). Overall, this underscores the importance of 
reducing pollutant levels in the epidemiological context, along with 
other established non-pharmaceutical measures (Abboah-Offei et al., 
2021; Anand et al., 2021; Bontempi, 2021). 

While we obtain that PM2.5 pollution is the dominant predictor of 

Fig. 4. Relative change in R0 due to pollution variations observed in USA states. For each state included in the analysis, R0 was predicted for the range of pollution 
values observed throughout all other states. Relative variation in R0 was estimated through both A) Gradient Boost (GBoost) and B) Random Forest (RF) regressions, 
with the models trained as in Fig. 3C) Scatter plot of ΔR0/R0 predictions for GBoost and RF, with indicated Pearson’s correlation coefficient and P-value. 
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virus transmissibility, our results also identify the relevance of other 
factors. First, a few other pollutants are also selected through our 
analysis, most notably NO2 and its related nitrogen oxide derivatives 
(where its particularly high importance was assigned by the Random 
Forest method, see Fig. 3D), and to some extent CO and PM10. These 
results are partially in line with findings that several pollutants, more 
precisely particulate matter (Comunian et al., 2020; Sagawa et al., 
2021), but also NO2 (Paital and Agrawal, 2020), cause overexpression of 
ACE-2 in respiratory cells, thus increasing the likelihood of infection. 
This is not the only potentially relevant mechanism, as some studies 
point to the prolonged exposure to pollutants as a cause of a general 
weakening of the immune system (Glencross et al., 2020; Qu et al., 
2020). However, the relatively low importance of NO and CO pollutants 
that we obtained more speaks in favor of the hypothesis that PM 
pollution, by binding to virus droplets, mechanically facilitates 
SARS-CoV-2 spread through the air - both extending the range of virus 
diffusion and allowing its direct transport into deeper pulmonary re
gions (Qu et al., 2020). This suggested mechanism of the 
pollution-to-human mode of transmission should be seen in the light of 
substantial evidence for COVID-19 airborne transmission via aerosols 
(Anand et al., 2021; Kenarkoohi et al., 2020; Noorimotlagh et al, 2021a, 
b) and of established positive correlation between the concentration of 
certain pathogens in air and PM pollution (Chen et al., 2010; Harbizadeh 
et al., 2019). The fact that we were here considering short-term (acute) 
pollution values precisely in the initial days of the outbreak, and the fact 
that pollution levels in the US are well below serious health hazards, are 
also in favor of this mechanistic interpretation of the 
pollution-COVID-19 link, rather than of the explanation via general 
adverse effects of pollution on the immune system. On the other hand, 
the inferred large difference in the influence of PM2.5 and PM10 particles 
may be understood through the difficulty of particulate matter larger 
than 5 μm to reach ACE2 receptors located in type II alveolar cells (Copat 
et al., 2020; Zhu et al., 2020). It should be noted that our study is not the 
only one suggesting a substantial difference between the effect of PM2.5 
and PM10 particles on the spread of COVID-19 (Copat et al., 2020; 
Lorenzo et al., 2021; Zhu et al., 2020). 

Another factor (unsurprisingly) related to the susceptibility of an 
organism to infections, is the presence of different comorbidities and, in 
general, any diseases that could potentially compromise the immune 
system (Allel et al., 2020; Coccia, 2020; Liu et al., 2020). Indeed, all 
applied analysis methods except for Lasso find the prevalence of chronic 
diseases in the population (i.e., its dominant principal component 
PC1-disease) to be an important R0 predictor. 

Additionally, our applied methods also identify a group of three 
mutually interrelated factors: the dominant PC reflecting the overall 
prosperity of the state (PC1 prosperity), the percentage of the black 
population, and the PC2 insurance component (this component effec
tively reflects the insurance coverage among the Hispanic population). 
Our recent study of the effects of various demographic and weather 
parameters on the spread of COVID-19 based on the data from 118 world 
countries (Marko Djordjevic et al., 2021) also pointed to the essential 
role of the country’s prosperity, but we note a disagreement in the sign 
of the correlation: whereas, worldwide, the more developed countries 
suffered from higher COVID-19 expansion rates, data on US states show 
an opposite trend - wealthier and more developed areas of US on average 
seem to exhibit lower R0 values (Gupta and Gharehgozli, 2020). How
ever, this difference may be expected: on the global level, there are 
substantial variations in the development level between countries, and 
this level effectively becomes a proxy for the frequency of social contacts 
(reflecting business and cultural activity, population mixing due to 
work/education, international travel, etc.) (Bontempi, 2020b; Bontempi 
et al., 2020; Gangemi et al., 2020). On the other hand, US states have 
highly developed societies and the dominant effect of these more subtle 
differences is likely different: within this prosperity range, the better off 
population has more means to prioritize and practice precautionary 
behavior (e.g., have professions that require less physical contacts, 

fewer comorbidities, healthier lifestyle, higher awareness of the infec
tion risks, etc.). Furthermore, compared to the global analysis, we note 
that air pollution also played a role in that study, though a less promi
nent one, via a principal component that turned out to encapsulate also 
other measures of unhealthy living conditions and lifestyle. While the 
influence of PM2.5 on COVID19 transmission should, of course, exist 
everywhere and cannot be effect unique to the territory of the USA, we 
note that this influence is much more difficult to observe when consid
ering more diverse areas/populations, as it might be overshadowed by 
more dominant factors. 

The COVID-19 pandemic has also emphasized a specific racial aspect 
of healthcare disparities. The correlation between the percentage of the 
black population and R0 observed in our data (Fig. 2A), as well as the 
results of the Random Forrest regression method (Fig. 3D), agree with 
the already established conclusion that the black minority is by far 
overrepresented not only among COVID-19 fatalities (Luo et al., 2021; 
Wu et al., 2020) but also among the total infected population (Chakra
borty, 2021). Another relevant factor is the health insurance coverage 
(PC2 insurance), which consistently through our analysis shows that 
COVID-19 infection is spreading faster among people without medical 
insurance (Figs. 2 and 3). Both the percentage of the black population 
and the prevalence of insurance coverage are significantly correlated 
with pollution, in particular with PM2.5, as can be seen in Fig. 2C 
(curiously, our data do not show such correlation with the PC1 pros
perity component). Further complicating this relation of poverty, 
pollution and COVID-19, are the findings that indicate the importance of 
high quality and well maintained artificial ventilation (which is not 
equally affordable to everyone) in reducing indoor pollution with 
possible consequent effects on COVID-19 transmission (Harbizadeh 
et al., 2019; Noorimotlagh et al., 2021b). It has been already argued that 
the influence of factors related to a more economically disadvantaged 
population (overrepresentation of minorities, absence of medical in
surance,…) is inherently hard to disentangle from the effects of pollu
tion (Chakraborty, 2021). While this standpoint is also in part supported 
by our analysis, we also note that PM2.5 consistently appeared with 
much larger importance through all analyses compared to these 
economically disadvantaged factors (Chakraborty, 2021; Stieb et al., 
2020). In this sense, based on our results, it seems more plausible to 
associate PM2.5 (rather than these other factors) with R0 changes. 

It is also interesting to consider which parameters did not show up as 
important in our results. The absence of seasonal principal components 
from the final sets of significant predictors may indicate that the 
importance of the weather parameters such as temperature, UV radia
tion, and humidity on the SarS-CoV2 transmission is lesser than 
commonly assumed. While there are substantial arguments that high 
temperatures and humidity levels should suppress virus transmission 
(Byun et al., 2021; Fu et al., 2021; Noorimotlagh et al., 2021a; Notari, 
2021; Sarkodie and Owusu, 2020), the literature is not fully unison on 
this conclusion, with some even reporting the opposite effects (Kolluru 
et al., 2021; Lorenzo et al., 2021; Sangkham et al., 2021). The results 
presented here seem to side with some authors who disagree that 
weather factors bear a significant influence on the course of the 
COVID-19 epidemic (Wang et al., 2021). One should however note that 
variations of meteorological factors are much larger on a global scale, 
where indeed we find out a larger significance of these factors (Salom 
et al., 2021). Another somewhat surprising conclusion is the moderate 
significance of the population density that we obtain. While there is a 
significant correlation of PC2 density component with R0, it further 
appeared significant only in Lasso regression, and even there with not a 
quite high coefficient. While in disagreement with common expectation 
and some studies (Chakraborty, 2021), this is however in line with 
several other studies, that also didn’t assign a high significance to 
population density (Carozzi et al., 2020; Hamidi et al., 2020; Pour
ghasemi et al., 2020; Rashed et al., 2020). Rather than interpreting such 
an outcome simply as the irrelevance of population density, we, as 
already argued in (Salom et al., 2021), see it as an indication that more 
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subtle measures of density (that would more accurately reflect effective 
proximity of individuals in everyday scenarios) are needed. 

5. Conclusion and outlook 

Starting from 74 initial parameters and by using five different 
analysis approaches, we obtained the results that robustly select PM2.5 
pollution as a major predictor of SARS-CoV-2 transmissibility in the 
USA. Using R0 as a transmissibility measure and non-linear dynamics to 
extract its values for different USA states, these results are largely 
insensitive to the differences in the state policies. The obtained large 
quantitative estimate of the magnitude of the PM2.5 effect on virus 
transmissibility may be intuitively unexpected and is not that far from 
estimated differences in transmissibility caused by virus mutations. 

The main issue to be addressed in future studies is that of causality, i. 
e., disentangling the effects of pollution from those of socio- 
demographic factors with which it is correlated. This clearly cannot be 
achieved through studies with low resolution, such as the one employed 
here, despite using sophisticated statistical (machine) learning methods 
and studiously taking into account the infection progression dynamics. 
Carefully crafted, and high-resolution, longitudinal epidemiological 
studies may be a way forward in this regard. The results obtained here, 
and by other similar studies, may provide a basis for these high- 
resolution studies, particularly in terms of factors that should be 
considered, their expected relative importance, and the magnitude of 
the effects that may be expected. 
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