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Abstract

Background and objective: Direct measurement of muscle-tendon junction (MTJ) position is 

important for understanding dynamic tendon behavior and muscle-tendon interaction in healthy 

and pathological populations. Traditionally, obtaining MTJ position during functional activities is 

accomplished by manually tracking the position of the MTJ in cine B-mode ultrasound images – a 

laborious and time-consuming process. Recent advances in deep learning have facilitated the 

availability of user-friendly open-source software packages for automated tracking. However, 

these software packages were originally intended for animal pose estimation and have not been 

widely tested on ultrasound images. Therefore, the purpose of this paper was to evaluate the 

efficacy of deep neural networks to accurately track medial gastrocnemius MTJ positions in cine 

B-mode ultrasound images across tasks spanning controlled loading during isolated contractions to 

physiological loading during treadmill walking.

Methods: Cine B-mode ultrasound images of the medial gastrocnemius MTJ were collected from 

15 subjects (6M/9F, 23 yr, 71.9 kg, 1.8 m) during treadmill walking at 1.25 m/s and during 

maximal voluntary isometric plantarflexor contractions (MVICs). Five deep neural networks were 

trained using 480 manually-labeled images, defined as the ground truth, collected during walking, 

and were then used to predict MTJ position in images from novel subjects 1) during walking 

(novel-subject), and 2) during MVICs (novel-condition).

Results: We found an average mean absolute error of 1.26±1.30 mm and 2.61±3.31 mm between 

the ground truth and predicted MTJ positions in the novel-subject and novel-condition evaluations, 

respectively.

Conclusions: Our results provide support for the use of open-source software for creating deep 

neural networks to reliably track MTJ positions in B-mode ultrasound images. We believe this 
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approach to MTJ position tracking is an accessible and time-saving solution, with broad 

applications for many fields, such as rehabilitation or clinical diagnostics.
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1. Introduction

Ultrasound imaging is an increasingly popular tool for quantifying in vivo muscle-tendon 

dynamics in humans, with fidelity to do so during functional activities such as walking and 

running (1, 2). Tracking distinct anatomical landmarks in recorded ultrasound images - 

namely, the muscle-tendon junction (MTJ) - allows researchers the ability to differentiate 

muscle from tendon behavior with applications in clinical gait analysis (3), rehabilitation 

from injury (4, 5), and efficacy of exercise interventions (6). Traditionally, analyzing cine B-

mode ultrasound images requires the researcher to manually label landmarks of interest 

within each frame in a video sequence. This process is time consuming and labor intensive 

(e.g., a single 2 s video recorded at 70 frames/s would require labeling 140 frames) and is 

thereby not practical for larger datasets across multiple cohorts with many experimental 

manipulations or conditions. In recent years, several semi- or fully-automated tracking tools 

have been developed for the purpose of tracking and quantifying muscle fascicle length and 

orientation (7-9), but these approaches are generally ineffective at tracking MTJ 

displacement. Some semi-automated and fully-automated methods for tracking MTJ 

displacement have been previously developed using optical flow (10, 11) or block-matching 

approaches (12). However, these methods work best when MTJ displacement between 

frames is relatively small, and may therefore be unreliable during activities involving large 

changes in MTJ position over short periods of time, such as walking or maximal voluntary 

contractions (MVCs). Additionally, these methods often require manual user input to correct 

tracking errors, which may unintentionally introduce measurement error and/or bias. Thus, 

there is a need for alternative solutions to accurately and efficiently track the MTJ during a 

wide range of functional activities.

Deep learning approaches to image processing have been successful in medical image 

analysis (13) and may be a promising technique for automated MTJ tracking. Recent 

advancements in deep neural networks (DNNs), such as the use of convolutional layers, have 

improved performance across a wide range of feature detection tasks (14, 15). DNN-based 

architectures consist of multiple hidden layers (i.e. deep layers) that ‘learn’ common features 

of the training images, such as shading or shapes, and then use that learned knowledge to 

recognize those features in future images(16). The addition of deep convolutional and 

deconvolutional layers allows DNNs to detect learned features anywhere in the image, which 

makes this approach particularly well-suited for analysis of medical images (e.g., 

ultrasound). Leitner et al. (2020) recently demonstrated that deep learning with a 

convolutional neural network can successfully track the MTJ during isolated maximal 

contractions and passive rotation (17). However, to our knowledge, these methods have not 

been evaluated on ultrasound images recorded during more functional activities with 

physiological loading such as walking. Further, it is unknown the extent to which a DNN 
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that was trained on images from one movement type can be generalized to tracking a novel 

movement.

Widespread adoption of deep-learning methods for image processing in the biomechanics 

community has been limited by the availability of accessible solutions for researchers 

without extensive experience in deep learning. User-friendly open-source software packages, 

such as DeepLabCut (18, 19), have removed this barrier to deep learning methods but their 

efficacy has not yet been demonstrated for tracking MTJ displacements in cine B-mode 

ultrasound images. Therefore, the purpose of this paper was to evaluate the efficacy of deep 

neural networks constructed with DeepLabCut (18, 19) at accurately tracking medial 

gastrocnemius MTJ positions in cine B-mode ultrasound images across tasks spanning 

controlled loading during isolated contractions to physiological loading during treadmill 

walking. We aim to benchmark the performance of these analytical techniques against 

conventional manual tracking approaches. Pretrained models presented in this paper are 

publicly available at https://github.com/rlkrup/MTJtrack

2. Methods

2.1 Subjects

15 healthy young adult subjects (6M/9F, 23 yr, 71.9 kg, 1.8 m) participated in this study. 

Prior to participation, subjects were screened and excluded if they reported injury or fracture 

to the lower-extremity within the previous six months, neurological disorders affecting the 

lower-extremity, or were currently taking medications that cause dizziness. All subjects 

provided written informed consent according to the University of North Carolina Biomedical 

Sciences Institutional Review Board.

2.2 Data Collection

Ultrasound images of the gastrocnemius MTJ used in this study were collected as part of a 

larger experiment that took place over the course of two sessions. For both sessions, prior to 

data collection, subjects pre-conditioned their triceps surae by walking for six minutes at 

1.25 m/s on an instrumented treadmill (Bertec, Columbus, Ohio) (20). During the first 

session, cine B-mode ultrasound video was recorded while subjects performed a maximal 

voluntary isometric plantarflexor contraction (MVIC) (Biodex Medical Systems, Shirley, 

NY). During the second session, a 10-s ultrasound video was recorded while subjects 

walked for two minutes at 1.25 m/s. Ultrasound images were recorded using A 10 MHz, 60 

mm linear array ultrasound transducer (LV7.5/60/128Z-2, Telemed Echo Blaster 128, 

Lithuania) operating at 38-68 frames/s. Three subjects were collected at 38 frames/s due to 

an unanticipated change to the settings file, the remaining 12 subjects were collected with 

frame rates between 60-76 frames/s – the later range of frame rates reflects differences in 

window sizes (e.g 80% vs 100% window) between subjects.

2.3 Data Processing

From the isolated contraction data, we trimmed the video so that it begins with the subject in 

a relaxed state and ends when the subject reaches peak torque (corresponding to greatest 

MTJ displacement). From the walking data, two consecutive full strides of walking were 
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identified and isolated using GRF data to determine the timing of gait events. One 

investigator manually labeled the gastrocnemius MTJ in each frame of each video, the 

results of which we present as our ground truth measurement. The position of the MTJ was 

identified as the most distal insertion of the muscle into the free tendon (Fig. 1A). To 

account for between-subject differences in stance time and framerates, 80 frames were 

randomly chosen from each subject (1200 frames total) for use in training and evaluation of 

the networks. The full subject set of walking videos (n=15) was then randomly split into five 

different combinations of training set (n=12) and test set (n=3), such that each subject was 

represented in the test set in one of the five combinations (Fig. 2). The MVIC videos were 

set aside for use in a later testing stage (novel condition testing), as described below, and 

were not used to train the networks.

2.4 Network

We used DeepLabCut (Version 2.1.6.4) (18) to construct and train our networks. 

Specifically, each network used 960 labeled images taken from 12 subjects. Networks were 

based on MobileNetV2-1.0, pretrained on ImageNet (21) with default parameters for 18,000 

iterations with a batch size of 20. We selected our frame number parameter by 

systematically varying the size of the training set to train 45 distinct networks (five each of 

80, 60, 40, 20, 10, 5, 2, and 1 frame(s) per subject included in the training sets).

2.4 Evaluation

After training, each network was used to predict the position of the MTJ in the videos from 

each network’s respective test subjects (Fig. 2). Each prediction is accompanied by a 

confidence score (0-1) which represents the probability that the MTJ is visible in the frame 

(18). To reduce noise from outlier data points, we applied a modified median filter to 

predictions with low confidence scores (<0.98). The default window size was seven frames, 

such that a low confidence prediction at frame i is replaced with the median of the set of 

predictions from frames i − 3 to i + 3. This window size was reduced at the beginning and 

end of videos to maintain symmetry around the target frame. For example, at frame i = 2 and 

i = 3, the window size is reduced to three (frames 1-3) and five (frames 1-5) frames 

respectively. We report both unfiltered and filtered data in the results.

Novel Subject Evaluation: The trained networks were used to track MTJ position during 

walking for the three respective test subjects corresponding to each network (Fig. 1B).

Novel Condition Evaluation: To further characterize generalizability, the networks were also 

used to track MTJ position during MVICs for the three respective test subjects 

corresponding to each network (Fig 1B).. One subject was excluded from this analysis due 

to data loss (n=14). Novel condition images were not used in any of the training sets.

Network performance was quantified using root mean square error (RMSE), mean absolute 

error (MAE), and the absolute value of MTJ excursion discrepancies. RMSE was calculated 

for the Euclidean distance between the predicted and ground truth MTJ positions. MAE was 

calculated as the Euclidean distance between the predicted and ground truth MTJ positions. 

RMSE and MAE were calculated for each individual subject. We also report overall RMSE, 

which represents the RMSE of all subjects, and average MAE, calculated as the group 
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average MAE. Finally, we report the percentage of valid or invalid predictions. A valid 

prediction was defined as being within a 5 mm radius of the ground truth (17).

2.5 Speed Benchmarking

We evaluated GPU inference speed on Nvidia Tesla V100-SXM2 16 GB and Nvidia 

GeForce GTX1080 with a batch size of 64. CPU inference speed was evaluated on a 2.5 

GHz Intel Xeon (E5-2680 v3) processor with batch sizes of 64 and 8. Average inference 

speed (frames/s) is reported for the novel-subject evaluation.

3. Results

3.1 Training parameters

After a steep initial drop at ~3,000 training iterations, RMSE fell below 5 mm and remained 

stable as the number of iterations increased. RMSE was minimized at ~18,000 training 

iterations. (Fig. 3A). For training set size (i.e. total number of frames in training set), we 

found that RMSE and MAE decreased with a greater number of frames and were both 

relatively stable from 500 to 1000 frames. A training set size of 480 total frames (40 frames 

per subject) was sufficient to achieve an overall RMSE of less than 3 mm and an overall 

MAE less than 2 mm (Fig. 3B).

3.2 Novel-subject evaluation: medial gastrocnemius MTJ displacements during walking

Overall unfiltered RMSE in the novel-subject evaluation was 2.72 mm, with an average 

unfiltered MAE of 1.26±1.30 mm (Table 1). The modified median filter reduced overall 

RMSE by 0.35 mm (2.37 mm) and MAE by 0.09 mm (1.17±1.23 mm). 94 and 95% of 

unfiltered and filtered predicted novel-subject MTJ positions were classified as valid (i.e., ≤ 

5 mm of ground truth) (Table 2). MAE for three subjects in the novel-subject evaluation was 

greater than two standard deviations from the mean (Fig. 3A). Removing these subjects 

resulted in a smaller overall RMSE (Unfiltered: 1.36 mm; Filtered: 1.11 mm) and a smaller 

average MAE (Unfiltered: 0.70±0.49 mm; Filtered:0.65±0.35 mm).

3.3 Novel-condition Evaluation: medial gastrocnemius MTJ displacements during MVICs

Overall unfiltered RMSE in the novel-condition evaluation was 6.23 mm, with an average 

unfiltered MAE of 2.61±3.31 mm (Table 1). The modified median filter reduced overall 

novel-condition RMSE by 1.18 mm (5.05 mm), and average MAE by 0.43 mm (2.18±2.64 

mm) (Table 1). 88 and 90% of unfiltered and filtered predicted MTJ positions were 

classified as valid (Table 2). MAE for three subjects was greater than two standard 

deviations from the mean (Fig. 3B). Removing these subjects resulted in smaller overall 

RMSE (Unfiltered: 2.48 mm; Filtered: 2.10 mm) and smaller average MAE (Unfiltered: 

1.05±0.83 mm; Filtered: 0.92±0.60 mm).

3.4 Inference Speed

Inference speed was fastest on Nvidia GeForce GTX1080 (25.55±1.39 frames/s), followed 

by Nvidia Tesla V100-SXM2 (9.10±1.10 frames/s). CPU inference speed was considerably 
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slower than GPU inference speed and was slowest with a smaller batch size (64 batch: 

0.90±0.04 frames/s, 8 batch: 0.59±0.01 frames/s).

3.5 MTJ Excursion

Average MTJ excursion was not different between manual and automatically labeled data for 

walking in the X direction (Unfiltered: 95% CI [−0.590 9.64], Filtered: 95% CI [−0.89 

5.69]) and Y direction (Unfiltered: 95% CI [−1.58 6.19], Filtered: 95% CI [0.05 0.50]) or for 

MVC data in the X direction (Unfiltered: 95% CI [−10.20 0.83], Filtered: 95% CI [−12.44 

−0.31]) or Y direction (Unfiltered: 95% CI [−9.00 2.60], Filtered: 95% CI [−15.04 0.80]).

4. Discussion

The purpose of this paper was to evaluate the efficacy of deep neural networks constructed 

with open-source software (18, 19) to accurately track medial gastrocnemius MTJ positions 

in cine B-mode ultrasound images collected during muscle actions spanning isolated 

contractions to walking. MTJ position data are important for understanding the interaction 

between the Achilles tendon and gastrocnemius muscle and for guiding clinical decision 

making. As one example, ultrasound imaging has been previously used characterize muscle-

tendon disruption during walking in children with cerebral palsy – and plays a key role in 

informing surgical interventions (22). Traditional analysis of muscle-tendon kinematics 

using in vivo ultrasound imaging requires a time-consuming and labor-intensive process of 

manual labeling from one frame to the next. Here, we show that deep neural networks, 

trained using a small subject pool typical of biomechanics research studies, are effective and 

efficient for automated tracking of MTJ positions across a diverse range of contraction types. 

Accordingly, based on our cumulative findings, we feel confident advocating for the use of 

these deep neural networks as a suitable alternative to manual tracking of MTJ position from 

in vivo ultrasound images.

Our novel-subject evaluation during walking (Unfiltered RMSE: 2.72 mm, Filtered RMSE: 

2.37 mm) performed better than the optical flow method presented by Cenni et al. (2019), 

who reported an RMSE of 6.3 mm for automated tracking and 4.7 mm for automated 

tracking with manual adjustments using images recorded from healthy adults during 

treadmill walking. Additionally, our networks outperformed those introduced recently by 

Leitner et al. (2020), who used deep learning methods to train and track MTJ positions 

during isolated contractions (17). Leitner et al. (2020) report a novel-subject MAE of 2.55 

mm, with 88% of frames classified as valid using a 5 mm tolerance radius, compared to our 

novel-subject MAE of 1.26 mm with 94% of frames classified as valid. We note three 

subjects with outlier MAE values in the novel-subject evaluation (Fig.3A). These outliers 

may be the result of our intentionally small subject pool to represent sample sizes common 

in biomechanics studies; our networks were not trained on an expansive catalog of MTJ 

characteristics, resulting in larger errors when presented with an uncharacteristic MTJ 

feature, such as narrow space between the deep and superficial aponeuroses (i.e. small 

medial gastrocnemius muscle width), or aponeuroses that don’t fully converge (see 

Supplemental Figure 1).
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Overall RMSE was higher (i.e., worse performance) in the novel-condition evaluation than 

in the novel-subject evaluation. The relatively worse performance in the novel-condition 

evaluation may be due to differences in tissue deformation (i.e. muscle shape change) in 

maximal (MVICs) vs submaximal (walking) contractions. Thus, since our networks were 

only trained using images collected during walking, they may have been less capable of 

identifying MTJ image characteristics during maximal contractions. We purposefully 

withheld MVC images from the training set in order to assess the generalizability of the 

training set in a dynamic condition other than walking. We found that even when presented 

with novel-condition images, our networks performed with similar RMSE compared to 

semi-automated tracking techniques (10), and similar RMSE and MAE compared to fully 

automated deep-learning techniques (17)

Filtering the data with a modified median filter resulted in moderate reductions in overall 

RMSE and MAE for both the novel-subject and novel-condition evaluations. The filter was 

only applied to individual frames in which the confidence score of the predicted MTJ 

position was less than was <0.98. Subjects with MAE values greater than two standard 

deviations from the mean had a higher proportion of predictions with confidence scores 

<0.98 (Novel-subject evaluation: 28%, Novel-condition evaluation: 54%) compared to the 

remaining subject set (Novel-subject evaluation: 3%, Novel-condition evaluation: 13%). As 

such, when these subjects were removed, the difference between unfiltered and filtered 

values was relatively small in both the novel-subject and novel-condition evaluations. A 

modified median filter may be an ideal method for maintaining data integrity, while also 

smoothing erroneous data points.

To complement network performance metrics, we also now calculate the absolute difference 

between MTJ excursion using manually-labeled and automatically-labeled MTJ position 

data. Our excursion values are similar to literature values for both walking (10) and isolated 

contractions (23). Absolute longitudinal difference between manually and automatically 

tracked MTJ excursion (Unfiltered: 4.79±9.10 mm, Filtered: 2.68±5.80 mm) was 

comparable to Cenni et al. (2019) who reported a 4.9±5.6 mm difference in MTJ excursion 

between manually and automatically labeled images.

We note a few limitations to this technique. First, ground truth positions are manually 

labeled and are therefore prone to human error. However, manual labeling is the current gold 

standard for identifying MTJ position in ultrasound images. In addition, the networks we 

describe here are only appropriate for tracking videos in which the MTJ is visible in all 

frames. Future studies should explore options to manage frames in which the MTJ is not 

visible, such as specifically training networks to infer position when the target is out of view 

(24). We also note that our networks were trained using images from healthy young adults, 

which may not generalize well to pathological populations due to differences in image 

features (e.g. echogenicity (25)). Investigating the clinical application of these networks is 

warranted. Our networks were based on MobileNetV2-1.0 (21), which is a shallower 

network (compared to ResNet network architectures) and may not be suitable for large 

images without downscaling. However, this network allows for faster training and analysis 

and can be run without a high-end GPU, which makes it ideal for researchers with limited 

computing resources. The fast processing speed of MobileNet also makes it ideal for future 
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studies that aim to track in real-time. Finally, except for increasing the batch size, we used 

default DeepLabCut settings in order for these methods to be easily replicated. However, 

fine-tuning the settings may result in faster or more accurate performance.

There are many potential future directions for automated ultrasound image processing in the 

biomechanics and rehabilitation fields. For example, automated tracking with a trained 

network does not require the level of skill and experience of manual MTJ tracking. Thus, 

publicly available trained networks may encourage the adoption of tracking techniques in 

other fields, such as clinical diagnostics. Additionally, further development of these 

networks may facilitate real-time MTJ tracking, which could be a useful tool in 

rehabilitation and sports performance settings. Direct measurement of MTJ position from 

cine B-mode ultrasound images is important for reliably estimating tendon behavior and 

muscle-tendon interaction during functional activities. Although it is possible to indirectly 

measure tendon behavior by subtracting muscle fascicle length from muscle-tendon unit 

length, this indirect measurement frequently yields implausible outcomes (26). Thus, tools 

that can quickly and accurately estimate MTJ position have the potential to not only improve 

data processing speed, but also accelerate scientific discovery. Our results provide support 

for the use of open-source software for creating deep neural networks to reliably track MTJ 

positions in B-mode ultrasound images. In addition to the models presented in this paper, we 

also provide a single model trained on all available data presented in this paper, available 

here: https://github.com/rlkrup/MTJtrack.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Muscle-tendon junction (MTJ) position is important for understanding 

dynamic tendon behavior

• Obtaining MTJ position in cine B-mode ultrasound images is labor intensive

• Deep neural networks created with open-source software can reliably track 

MTJ position

• This approach is accessible and efficient, with applications in rehabilitation or 

clinical diagnostics
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Figure 1. 
A) MTJ position was manually labeled (ground truth) for each frame of B-mode ultrasound 

video collected during walking. Five training sets were created, consisting of 80 frames from 

12 subjects. B) Networks were based on MobileNetV2-1.0, pretrained on ImageNet with 

default parameters, and then trained on our training sets for 24,000 iterations. During 

training, the networks were saved intermittently (i.e. a snapshot was taken) to allow for 

evaluating the effect of training time on performance. C) Each training set was associated 

with a test set consisting of three subjects that were not included in the respective test set 

(i.e., novel subjects). D) The trained networks were used to predict the location of the MTJ 

in each frame of the videos from the novel subjects in the test set. A modified median filter 

was applied to predictions with low confidence scores (<0.98) to reduce noise from outlier 

data points.
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Figure 2. 
Illustration of training/test set shuffles. Each box represents a subject; each row represents 

one network. White boxes represent subjects that were used for training the network and 

black boxes represent subjects that were used for testing the respective network. Test 

subjects were not used to train the respective network. The full subject set of walking videos 

(n=15) was randomly split into five different combinations of training set (n=12) and test set 

(n=3).
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Figure 3. 
A) Root mean square error (RMSE) between ground truth and predicted MTJ position was 

evaluated every 240 iterations during training. RMSE showed a steep initial drop and 

subsequent plateau around 4,000 iterations, and was minimized at 18,000 iterations. B) 

RMSE and MAE decreased with an increasing number of frames, but was relatively stable 

from 500 to 1000 frames. 480 labeled frames (40 frames per subject) were sufficient to 

achieve an overall RMSE of less than 3 mm and an overall MAE less than 2 mm. RMSE is 

reported in pixels (left axis) and mm (right axis).
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Figure 4. 
Unfiltered (black) and filtered (white) root mean square error (RMSE) for A) each individual 

subject in the novel subject evaluation (walking), and B) each individual subject in the novel 

condition evaluation (MVIC). RMSE is reported in pixels (left axis) and mm (right axis).
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Table 1.

Model performance metrics (mm)

RMSE MAE (mean±SD)

Novel-subject (walking)

  Unfiltered 2.72 1.26±1.30

  Filtered 2.37 1.17±1.23

Novel-condition (MVIC)

  Unfiltered 6.24 2.61±3.31

  Filtered 5.05 2.18±2.64

RMSE: root mean square error, MAE: mean absolute error
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Table 2.

Subject-specific and average prediction validity (%)

Novel-subject (walking) Novel-condition (MVC)

Unfiltered Filtered Unfiltered Filtered

Sub001 100 100 - -

Sub002 100 100 100 100

Sub003 90 96 100 100

Sub004 100 100 68 80

Sub005 100 100 48 55

Sub006 100 100 93 93

Sub007 100 100 98 98

Sub008 88 91 100 100

Sub009 71 73 95 98

Sub010 100 100 100 100

Sub011 100 100 100 100

Sub012 100 100 83 93

Sub013 100 100 100 100

Sub014 61 63 48 50

Sub015 100 100 100 100

Mean 94 95 88 90

Values represent the proportion of predictions that were within 5 mm of the ground truth.
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Table 3.

MTJ Excursion (mm)

Novel-subject (walking) Novel-condition (MVCs)

Unfiltered Filtered Unfiltered Filtered

MTJ Excursion Manual

 longitudinal 19.20±5.37 - 26.97±15.57 -

 transverse 1.26±0.42 - 10.01±14.87 -

MTJ Excursion Automatic

 longitudinal 23.72±10.29 21.59±8.13 22.28±12.47 20.59±10.51

 transverse 3.57±7.08 1.54±0.46 6.81±11.57 2.89±2.62

Absolute Discrepancy

 longitudinal 4.79±9.10 2.68±5.80 4.69±9.55 6.38±10.51

 transverse 2.36±6.99 0.38±0.31 3.20±10.05 7.12±13.72

Group mean ± standard deviation. Absolute discrepancy is the absolute difference between manual and automatic MTJ excursion.
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