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Abstract

The functional complexity of native and replacement aortic heart valves are well known, 

incorporating such physical phenomenons as time-varying non-linear anisotropic soft tissue 

mechanical behavior, geometric non-linearity, complex multi-surface time varying contact, and 

fluid-structure interactions to name a few. It is thus clear that computational simulations are 

critical in understanding AV function and for the rational basis for design of their replacements. 

However, such approaches continued to be limited by ad-hoc approaches for incorporating tissue 

fibrous structure, high-fidelity material models, and valve geometry. To this end, we developed an 

integrated tri-leaflet valve pipeline built upon an isogeometric analysis (IGA) framework. A high-

order structural tensor (HOST) based method was developed for efficient storage and mapping the 

two-dimensional fiber structural data onto the valvular 3D geometry. We then developed a neural 

network (NN) material model that learned the responses of a detailed meso-structural model for 

exogenously cross-linked planar soft tissues. The NN material model not only reproduced the full 

anisotropic mechanical responses but also demonstrated a considerable efficiency improvement, as 

it was trained over a range of realizable fibrous structures. Results of parametric simulations were 

then performed, as well as population based bicuspid aortic heart valve fiber structure, that 
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demonstrated the efficiency and robustness of the present approach. In summary, the present 

approach that integrates HOST and NN material model provides an efficient computational 

analysis framework with increased physical and functional realism for the simulation of native and 

replacement tri-leaflet heart valves.
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1 INTRODUCTION

1.1 The native and replacement aortic heart valve

Functionally, the aortic heart valve (AV) is a tri-leaflet structure that ensures unidirectional 

blood flow between the left ventricle and aorta. Along with the pulmonary heart valve, it is 

often termed a ‘semi-lunar’ valve due to the characteristic shape of the leaflets. The AV is 

primarily a passive soft tissue structure in that it responds to local hemodynamic forces and 

changes in aortic root diameter over the cardiac cycle. However, this apparently simple 

purpose does not adequately describe the complexity of its physiological function. The AV’s 

underlying mechanical function is multi-modal, multi-scale, and repeated every second of 

life to a total of approximately three billion times in the course of a typical lifetime. In spite 

of this staggering level of durability, almost 300,000 heart valve surgeries are performed 

annually world-wide [1]. Of these, a majority of the replacements are for the treatment of 

calcific aortic valve disease, which is an active multi-factorial degenerative process [2,3,4]. 

In addition to the general population, approximately 2% of the US population have the 

bicuspid aortic valve (BAV) congenital anomaly. In this pathology, a pair of AV leaflets are 

fused to varying degrees, while the remaining leaflet can be distorted. In reality, the BAV 

pathology is a continuous range of malformations that range from a single leaflet to four 

(quadcusp). Irrespective of the exact anatomy, just the presence of BAV is an important risk 

factor for aortic stenosis.

Regardless of the underlying causes, the primary treatment for AV disease remains 

replacement with an artificial valve, with current clinical approaches using a bioprosthetic 

heart valve (BHV) [5,6]. BHV are a tri-leaflet design with leaflets fabricated from xenograft 

pericardial biomaterials. Use of BHV continues to increase worldwide [7,8, 9], largely due 

to the development of percutaneous BHV designs that are emerging as an alternative to 

standard surgical designs [6,10]. In general, it is expected that this new technology will 

rapidly develop, especially in the elderly population, which has a higher operative risk. 

However, BHV durability continues to remain limited to the range of 10–15 years; often 

achieved only in patient ages 57 years or older.

1.2 Tri-leaflet valve simulation-based studies

Overall, rigorous simulation with the objective of complementing exploratory 

experimentation and technological invention will be crucial to the development of BHV 

designs. This is a daunting challenge; both the native and replacement aortic heart valve are 

functionally complex, incorporating such physical phenomenons as non-linear anisotropic 
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soft tissue mechanical behavior, geometric non-linearity, complex contact, and fluid-

structure interactions. It is thus no surprise that that computational simulations are critical in 

understanding their function and for the rational basis for the development of improved 

replacement valves. Indeed, computational simulations, either alone or in conjunction with 

clinical studies, have been used to define how evolving biomechanical properties drive 

native heart valve disease as well as replacement valve function and performance [11]. Many 

groups have approached heart valve simulations, with a focus such important aspects as 

high-fidelity time-evolving material modeling, patient specific geometries, and fluid-

structure interactions [11,12,13,14,15].

Yet, despite these substantial advancements in simulation technology and its 

implementation, critical issues remain in the simulation of native and replacement heart 

valves. This is due to the fact that, ironically, while heart valves are essentially fluidic 

components, the mechanisms of their pathologies and degeneration lie mainly in the 

behaviors of the constituent cells and tissues. Thus, while organ level simulations can assist 

in understanding how the valve dynamically responds over the cardiac cycle, leaflet tissue 

remodeling, degeneration, and ultimately failure are a direct result of our poor understanding 

of the underlying processes. In the long term, these processes need to be understood, 

quantified, modeled mathematically, and ultimately incorporated into organ and system level 

simulations [16,17]. Moreover, means to systematically integrate organ-level geometric 

features with finer structures (e.g local fiber architecture) are still typically performed in an 

ad-hoc manner with varying degrees of fidelity.

1.3 Key simulation advancements needed for more realistic and robust AV simulations

1.3.1 AV leaflet fiber architecture representations—Both native and bioprosthetic 

AV leaflets are composed of layered soft tissues mainly composed of collagen fibers. The 

fibrous architecture thus dictates the direction and degree of mechanical anisotropy, as well 

as the overall elastic responses [18,19]. This is especially the case in diseased states. As an 

example, we have quantified the structure of human normal and bicuspid AV leaflets in the 

early disease stage [20]. The regularity in the observed of the fibrous structure in the 

measured population was a surprising finding. It suggested that consistent population based 

tissue structural metrics for the human BAV population exist and could potentially be used 

for patient specific simulations. However, such information is generally experimentally 

obtained as a two dimensional (2D) field of excised valve tissues using point-wise 

probability orientation distribution functions (ODFs). To be useful in a simulation context, 

such information must be mapped from the 2D in-vitro measurement state to the in-vivo 3D 

leaflet geometry. The ODF mapping methods should be efficient and completely 

generalized; allowing for rotations, translations, and affine deformation-based 

transformations. Moreover, newer measurement methods such as polarized spatial frequency 

domain imaging, have pixel-level resolution and can generate gigabytes of structural 

information for a single leaflet alone [21,22]. There is thus a need to develop efficient 

storage and rapid mapping techniques to transfer of high resolution in-vitro derived collagen 

fiber ODFs to the 3D leaflet surface geometry.
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1.3.2 Use of machine learning in high-fidelity material modeling in finite 
element analyses—An often overlooked, critical limitation we address herein for AV 

simulations is their substantial computational cost. This is particularly important in practical 

applications where patient specific pipelines that involve complex multiple surgical outcome 

scenarios need to be explored in clinically relevant time-frames. The same is true in earlier 

design stages to explore various, including patient specific, valve designs rapidly. This 

situation becomes particularly acute when the modeled material responses go beyond basic 

elastic responses to simulate more complex time-dependent phenomena, such as tissue 

remodeling or leaflet biomaterial fatigue. As an example, we have recently developed a 

detailed, microstructurally based mechanism underlying the BHV fatigue process [23]. To 

model the permanent set effect, we assume that the exogenously crosslinked matrix 

undergoes changes in its reference configurations over time. The changes in the collagen 

fiber architecture due to dimensional changes allowed us to predict subsequent changes in 

mechanical response. However, the mathematical formulation contains double and quadruple 

integrals, making it computationally intractable as-is. We developed an effective constitutive 

model which can fully reproduce the response of a wide range of planar soft tissues [24]. 

While this approach preformed well in a variety of heart valve simulations, its response time 

was still too long to be usable in rapid calculations. This is in part due to the fact that the 

effective model parameters needed to be refit for each change in the microstructural model at 

each successive time point. Thus, while effective constitutive modeling approaches and 

related model reduction methods can significantly improve the computational efficiency and 

numerical robustness of multi-scale and meso-scale models, these approaches remain too 

computationally expensive for extensive parametric studies or high speed clinical usage.

One approach to address these issues is the use of machine learning model representations of 

the material models themselves. The most popular approach has been the use of neural 

networks (NN). This approach has a long and rich history, including such application areas 

as elastomeric foams [25], fiber reinforced polymeric composites [26], and fatigue 

modeling. In most of these approaches, the analytical model is replaced with an NN 

representation [27,28], and an autoprogressive method is then used for training NNs to learn 

complex stress-strain behaviour of materials using load-deflection response measured in 

experimental structural tests [29]. NNs represent an exciting branch of computational 

science as they have shown an ability to reproduce the behaviors of many complex systems 

efficiently, often with substantial performance enhancements over other established 

methods. Yet, while able to reproduce experimental findings, current NN approaches are 

dependent on an extensive and appropriate experimental database, which is not always 

available or even practically obtainable. The underlying physical mechanisms are also lost, 

as well as mathematical issues such as convexity are not necessarily guaranteed. Clearly, 

while NNs offer great potential for advanced material modeling, they need to be 

incorporated into simulation pipelines in way that preserves and extends our physical 

understanding of the underlying mechanisms, along with the appropriate mathematical 

constraints.

1.3.3 Attribute-rich NURBS based methods for geometric description and 
finite element analyses.—Interest in parametric studies of native and replacement heart 
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valve leaflet geometry dates back to at least Thubrikar [30] and later Reul [31]. More 

contemporary approaches based on non-uniform rational B-splines (NURBS) [32] offers 

greater flexibility to perform both parametric and patient-specific parametric studies. 

Further, the use of NURBS has allowed for direct integration into finite element (FE) solvers 

using isogeometric analysis (IGA) [33,34,35,36]. The use of IGA is of particular importance 

as shell elements are typically used to represent the leaflets, and IGA provides a very smooth 

representation ideal for leaflet accurate contact simulations. NURBS-based approaches also 

have a largely untapped capability to store and spatially map scalar, vector, and tensor fields 

as attributes directly onto the AV geometry. For example, material model parameters (which 

can vary point wise) and the fibrous architectures from individual [37] or more recently 

population based data [20] are just a few of the examples. The recent availability of 

population based data is of particular interest for mapping, as one can typically obtain high 

resolution patient specific geometry but not other detailed attributes. Thus, the ability to 

spatially map population-derived attributes to patient specific geometries remains a largely 

unmet need.

1.4 Study organization

As a step towards addressing the above issues, we have developed an integrated tri-leaflet 

valve simulation pipeline built upon an IGA framework, which allowed for a unified 

description of geometry that readily integrated application-specific attributes. In brief, a 

high-order structural tensor (HOST) based method was developed for efficient storage and 

mapping the fiber structure onto the valvular geometry. We then developed a neural network 

material model that learned the responses of a detailed meso-structural model for 

exogenously cross-linked heart valve leaflet tissues, which is more complex than the 

responses of native tissues that also relies on the fiber dispersion (splay) and can be learned 

using the same approach. We opted for use of this tissue model as opposed to our native 

tissue, with no loss of generality, as we were also interested replacement heart valve 

applications which utilize cross-linked pericardial tissues. We then demonstrated the efficacy 

of this using detailed parametric studies, along with invivo derived bicuspid aortic heart 

valve fiber structure. We organized the manuscript as follows. Given the necessary length of 

the developmental aspects of this work, we present methods and intermediate results for 

each major step first, followed by a formal Results section of the key parametric studies of 

the fully development model. A detailed discussion is then presented, along with necessary 

appendices.

2 METHODS

2.1 Study overview

In the present study we have developed a comprehensive pipeline that addresses the above 

issues (fig. 1) that includes the following major components:

1. Development of a HOST method to represent fiber ODFs. This approach allows 

for efficient storage and representation, as well as tensor coordinate 

transformation methods to facilitate mapping to the NURBS based geometric 

representations of heart valve leaflet geometry.
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2. Development of a finite element implementation of an NN representation of 

structural constitutive model for native and cross-linked tissues[23]. This 

approach allows for direct simulation of the full range of fiber architecture that 

can predict the resultant tissue stress-strain responses, without the need for 

evaluation of multiple integrals or parameter refitting for different structures at 

run-time.

3. Integration of the HOST mapping and NN-based material model into an 

integrated AV IGA-based model, all built in the the Unified Form Language of 

the FEniCS open source package [38].

4. Demonstration of the efficacy of the approach in parametric studies, as well as 

using human derived, population-based normal and BAV leaflet data [20].

Details are presented in the following sections.

2.2 The structural constitutive model for native and xenograft heart valve tissues

Material modeling of soft tissues has a long rich history, and includes a wide variety of 

biomedical applications [39]. As in many applications, heart valve tissues phenomenological 

approaches can mathematically relate stress and strain states with good accuracy [40]. Yet, 

there is a more critical aspect of tissue modeling which involves the underlying mechanisms 

of growth, remodeling, and degeneration in both native and bioprosthetic heart valve tissues. 

For example, there is evidence that vavlular tissues undergo plastic deformation. An 

important finding is that the underlying collagen fiber architecture has a limiting effect on 

the maximum changes in geometry that the permanent set effect can induce. Thus, our 

group’s approach has been to take a structural approach to elucidate and simulate the 

underlying mechanisms [18].

We start by reviewing the formulation of a recently developed structural constitutive model 

for native and xenograft heart valve tissues, as described in detail in [41,23,24], which forms 

the rationale for the development of the methods developed herein. In brief, the constitutive 

model assumes that the total tissue strain energy Ψ is the summed contributions from the 

collagen fibers Ψcol, fiber-fiber interactions Ψint, and the non-fibrous matrix Ψmat. 

Assuming incompressiblity due to the high water content, this yields

Ψ = ϕmatΨmat + ϕcolΨcol + ϕcolΨint − p(J − 1), (1)

where ϕmat is the mass fraction of matrix, ϕcol is the mass fraction of the collagen fibers, the 

scalar p is the indeterminate Lagrange multiplier, and J = det(F), where F is the deformation 

gradient tensor. Note that for non-crosslinked (native) tissues no fiber-fiber interactions are 

assumed to occur, so that Ψint = 0. The specific form of Ψi for each model component i (i = 

mat, col, int) are given as follows. For the matrix contribution Ψmat a modified Yeoh model 

is used

Ψmat = ηmat
2

1
a I1 − 3 a + r

b I1 − 3 b ,   with   1 < a < b, ab < 2, r ≥ 0. (2)
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Here, ηmat is the modulus parameter, I1 is the first invariant of the right Cauchy-Green 

deformation tensor C = FTF, a, b are the shape parameters, and r is the weight between the 

two terms. For the collagen fibers Ψcol is an ensemble average over the fiber orientation 

distribution function Γ, and the recruitment distribution function, Γs, i.e.,

Ψcol = ηcol∫
θ

Γ(θ)∫
1

λθ
Γs λs

λθ
λs

− 1
2
dλsdθ . (3)

where, ηC is the modulus of the collagen fibers, λθ = θ ⋅ C ⋅ θ is the stretch in θ direction, λs 

is the slack stretch, and λθ/λs is the true stretch after collagen fibers are straightened. In a 

similar fashion, the interaction term, Ψint, is an ensemble level term integrated over all 

possible pairs ensembles

Ψint  = ηint 
2 ∫

α
∫β

Γ(α)Γ(β)∫
1

λα∫
1

λβ
Γs xα Γs xβ

λαλβ
xαxβ

− 1
2
dxαdxβdαdβ . (4)

We assumed that the tissue incompressibility is determined solely by the matrix phase. To 

determine the expression for the second Piola-Kirchhoff stress tensor S, we utilized 

S = 2∂Ψ(C)
∂C − pC−1. The resulting complete expression for 2∂Ψ(C)

∂C  is given by

2∂Ψ(C)
∂C = ϕmatηmat I1 − 3 a − 1 + r I1 − 3 b − 1 I − C33C−1 + ϕcolηc∫

θ
Γ(θ

) ∫
1

λθ Γs(x)
x

1
x − 1

λθ
dx nθ ⊗ nθ dθ + ϕcolηint∫

α
∫β

Γ(α)Γ(β

) ∑
i ∈ α, β

ni ⊗ ni
λi ∫

1

λα∫
1

λβ 2λβΓs xα Γs xβ
xαxβ

λαλβ
xαxβ

− 1
2
dxαdxβ

+ ∑
i, j ∈ α, β , i ≠ j

ni ⊗ ni
λi ∫

1

λj
Γs xj

λj
xj

− 1
2
dxj dαdβ,

(5)

while the Lagrange multiplier p for the incompressibility constraint can be determined by 

the plane stress condition. It should be noted that the coupling term in eqn. 5 is a relatively 

new addition to this class of models and has been shown to be required by chemically cross-

linked tissues such as the pericardial xenograft tissues used in BHV, as well as more 

structurally complex tissues such as myocardium [42]. More importantly, while both 

accurate and predictive, eqn. 5 as presented remains impractical for high speed 

computational simulations.

2.3 HOST: High Order Structural Tensors to represent in planar fiber orientation 
distributions

Introduction.—As underscored in the preceding section, fibrous structures play an 

important role in the function and mechanical behavior of soft biological tissues [39]. 

Moreover, imaging technologies have now progressed to the point where very high density 

information (e.g. at the pixel level) can be acquired in near real-time on soft tissue fibrous 

structure [22,21,43]. This represents an unprecedented opportunity to further develop 
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computational modeling approaches for soft tissue structures that incorporate such high-

fidelity structural information in the underlying constitutive models. This is especially the 

case where disease or damage has occurred, where the local structural can be quite complex 

(e.g. [44,20]).

However, such information is typically acquired as 2D maps of excised, flattened tissues, 

and thus cannot be directly used in 3D geometries. Mathematically, the planar fiber 

orientation distribution function is represented as Γ(X, n), which describes the probability of 

the relative number of fibers at a position X having an orientation described by the unit 

vector n, with X, n ∈ ℝ2 n 2 = 1 . In general, Γ(X, n) will need to be translated and rotated 

from the 2D measurement to the 3D surface. In addition to these rigid body transformations, 

mapping will also need to include incorporation in-surface stretch and compression to 

account for the in-vivo pre-strains known to exist in native valve tissues [45,46], which are 

released when the tissue is excised prior to 2D mapping measurements. Moreover, we seek 

to develop a method for efficient storage, as newer imaging methods for structural analysis 

can produce gigabytes of data for a single leaflet [22].

To summarize, we seek to develop an efficient means to represent and transform high-

fidelity structural information for FE model development, which includes the following 

major goals:

1. A means for efficient storage and representation.

2. A means to facilitate translation, rotation, and in-surface deformations associated 

from the 2D data to the 3D leaflet surfaces. This should include both geometries 

used for data acquisition (e.g. the unloaded state) and remapped (e.g. when the 

data was acquired in a loaded configuration but needs to be mapped back to the 

reference state, as in [47]). Note that the affine transformation has been shown to 

be valid in native heart valve tissues [48]).

3. Integrate as an attribute attached to NURBS-based geometric representations.

We present our methodology in the following.

Basic characteristics of Γ.—We start by establishing the basic characteristics of Γ. It 

should be noted that the following can also be utilized for single and multiple layered tissue 

models, such as the that developed for the mitral valve [19]. Due to the inherent symmetries 

in any fiber ODF, Γ will be a symmetric function of n so that

Γ(n) = Γ( − n) . (6)

Taking advantage of this relation, we further define n = n(θ) with θ ∈ Ω = [−π/2, π/2]. The 

normalization requirement of an ODF thus requires

∫
Ω

Γ[n(θ)]dθ = 1. (7)

From Γ, several key fiber orientation characteristics can be derived. The preferred fiber 

direction, θp, is determined using
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θp = ∫
Ω

Γ[n(θ)]θdθ . (8)

High order structural tensor representations—Structural tensors have a long history 

in the analysis of texture in materials, with general frameworks formulated for a wide range 

materials for 3D distributions based on spherical harmonics [49] and planar distributions 

using Fourier series [49,50]. In the present work, we specialize these approaches for planar 

soft tissue representations, with an emphasis on efficient representation and tensor 

coordinate transformation to facilitate the mapping process. Lower rank (n=4) structural 

tensors have been used for several micro-mechanical applications (e.g. [50]). While a 4th 

rank approach will work for mildly aligned fibrous tissues, they perform poorly for much 

more aligned fibrous architectures. To develop the method for higher rank representations of 

Γ, we start with the following truncated Fourier series representation

Γ[n(θ)] = 1
2π 1 + ∑

j = 1

7
a2jcos(2jθ) + b2jsin(2jθ) , (9)

where ai and bi are constants determined using standard methods. We note that an upper 

harmonic limit of j = 7 was found to be more than sufficient to capture highly aligned soft 

tissue fiber orientation distribution behaviors (Figure 2).

Next, we introduce an mth rank deviator tensor Di1, i2, …, im, which is a fabric tensor of the 

third kind [49]. Di1, i2, …, im has a number of favorable mathematical properties, such as

Di, j = Dj, i
Di, j, k, l = Dj, i, k, l = Dk, i, j, l = Dl, i, j, k = Dk, l, i, j, …
Di, i = 1
Di, j = Di, j, k, k,

(10)

with the summation convention enabled. It can be shown for any order m that certain 

components of Di1, i2, …, im are directly related to Fourier coefficients ai and bi in eqn. 9 

using

Di1, i2, …, im =
( − 1)k/2am k:  even 

( − 1)(k − 1)/2bm k:  odd 
(11)

where k is the number of value “2” indices. All other remaining coefficients can be 

determined by symmetry using eqn. 10. For example, the 4th rank Di1, i2, i3, i4 has only five 

independent components determined directly from the Fourier coefficients. (Table 1). 

Similar expressions can be obtained for Di1, i2, …, im for any rank m. Once the components of 

Di1, i2, …, im are established, Γ can then be easily recovered, with D0=1 to satisfy the 

normalization requirement in eqn. 7, using
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Γ(n) = 1
2π 1 + Di1, i2ni1ni2 + Di1, i2, i3, i4ni1ni2ni3ni4 + ⋯ + Di1, i2…imni1ni2…nim

.
(12)

where Einstein summation convention is used for contractions over indices i1, …, im and 

ni1, …, nim are the corresponding components of n. When applied to the highly aligned mitral 

valve leaflet tissue, this approach worked very well (Figure 2). Once Γ is so obtained, it is 

commonly required to determine the axes of symmetry of Γ as required by the symmetry 

property (eqn. 6). This is easily done using the eigenvalues of the second rank deviator 

tensor Di1, i2, which acts essentially as a low-pass filter. The resulting eigenvectors of Di1, i2, 

which indicates the axes of symmetry for Γ, can be physically interpreted as the preferred 

ePD and cross-preferred eXD fiber (unit vector) directions (Fig. 2). When eqn. 12 is truncated 

to 14th rank structural tensor, only 14 Fourier series coefficients need to be stored for 

mapping Γ(n) in comparison to the 360 values in the experimental data obtained at each 

measurement point.

HOST-based generalized coordinate transformations of Γ.—One major benefit of 

the HOST approach is that it facilitates generalized coordinate system mapping of Γ. To do 

this, we represent a coordinate mapping from each point in the reference configuration X0 to 

the new mapped configuration X by the deformation gradient tensor F(X0), where dX = 

F(X0) · dX0 locally under the assumption of affine transformation. This adopted form is a 

fully generalized mapping approach for planar fibrous structures. To develop the method, Γ 
is transformed using the following two steps. First, we separate the deformation and rigid 

body rotation components using the polar decomposition F = R·U, where R are the 

orthogonal rotation and U the stretch tensors, respectively. We first account for the effects 

the local stretch U, under the assumption of affine transformation, on Γ in the deformed (but 

not rotated) state using [51]

Γ′(n) = Γ(n)n ⋅ Cn
J2D

(13)

where J2D = det(U) and C = U2. Once Γ′ has been determined, the associated transformed 

Fourier series constants and deviator tensors Di1, i2, …, im are then determined (see §2.3). 

Next, to account for the rigid body rotation R, the all deviator tensors are transformed using 

standard tensor coordinate transformation rules. For example, the 4th rank fabric tensor 

expressed in the mapped coordinate system Di1, i2, i3, i4′  can be determined using

Di1, i2, i3, i4′ = Ri1, j1Ri2, j2Ri3, j3Ri4, j4Dj1, j2, j3, j4 (14)

and the HOST form in eqn. 12, which is a function of these Fourier coefficients, is used to 

rotate/distort the Γ(n) when performing the mapping operations to obtain Γ′(n). This is 

required to map the 2D experimentally acquired Γ(n) data to Γ′(n) on 3D surfaces, such as 

the 3D heart valve leaflet. Further, distortion is important when trying to account for the 

effects of tissue contraction after removal from the in-vivo environment. This approach thus 
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produces high-fidelity representations of generalized forms of Γ(n) with only 14 parameters 

at each data point, as well as facilitating straightforward generalized geometric mapping 

using only conventional tensor coordinate transformations, which are both easy to use and 

computationally efficient.

2.4 A machine learning model of native and cross-linked heart valve tissue mechanical 
behaviors

Background.—To numerically implement the structural model (eqn. 5) using Gaussian 

quadrature, the quadruple integral of the interaction term alone requires up to 104 quadrature 

points. This gives rise to the need of a dramatically more computationally efficient approach 

that can replicate the response of high fidelity structural models. We have explored the use 

of simplified analytical model forms to avoid the computational demands of the necessary 

integrations [24]. However, such approaches can reproduce only one state at a time, so that 

their parameters have to be re-determined for each state change (e.g. change in initial or 

current fiber orientation). While the high fidelity and physically accurate aspects of the 

structural approaches remain attractive to make the necessary mechanistic connections, new 

approaches must thus be developed to address these computational demands.

Our goal herein is thus to develop machine-learning based computational representation of 

heart valve tissue mechanical behaviors. Our goal was thus not to develop alternative NN 

based material models but rather efficient computational representations using NN methods. 

In doing so we avoid constructing NN models directly from raw experimental data. This 

approach, while popular, often requires a large quantities of data that is typically not 

available. “Data” is also not necessarily a homogeneous body of information; it is typically 

dependent on many specific conditions and methods unique to a particular study. Collected 

data thus may or may not be appropriate for the modeling tasks at hand. There are also 

mathematical restrictions on the strain energy equivalent of the NN model, such as ellipticity 

and convexity, that need to be enforced. Moreover, the mechanistic, highly predictive, 

mature nature of available structural models are an attractive alternative source of material 

behaviors to be represented.

We thus focus our approach instead on a NN representations of our high fidelity physics-

based material model (eqn. 5) for the purpose of computational speed and to facilitate rapid 

parametric studies. This approach allowed accurate computational representation of the 

material models that also closely obey various necessary mathematical properties, such as 

convexity and symmetry (since they are trained on physics models that have these 

properties). Once the NN model is thus trained, it can replace the original physics-based 

model in the finite element model under consideration to dramatically speed up subsequent 

simulations. We detail our approach in the following.

Formulation of a NN model for Ψfsm.—For each material point, the mapped Γ was 

incorporated as follows. ePD was taken as the local x1 in the undeformed configuration, eXD 

as x2 to form a Cartesian coordinate system. While the complete Γ is available at each 

material point using the methods laid out in §2.3, we seek to demonstrate the efficacy of this 

approach in the present work. Thus, to simplify NN architecture and training, we assumed 
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that the mapped Γ can be represented as a truncated normal distribution NT(θ ∣ μ, σ), 
wherein μ = θp so that ePD = np and is aligned to the local x1 direction, and σ is the standard 

deviation of Γ. Thus, the local x1 direction now represents the local dominant (i.e. stiffer) 

material axial direction. This reduces the Γ mapping to a single local scalar variable σ, 

which is dispersion of the fiber splay about the local x1 direction. This allowed use to utilize 

only a single scalar variable to describe the local Γ.

In the present work, we use the components of the Green-Lagrange strain tensor E referred 

to the material axes [23]. These are defined using

EPD = ePD ⋅ E ⋅ ePD, EXD = eXD ⋅ E ⋅ eXD, Eϕ = ePD ⋅ E ⋅ eXD . (15)

Since the preferred direction ePD is aligned with the local coordinate x1, the NN model only 

needs to have EPD, EXD, Eϕ, and σ as the inputs, and outputs second Piola-Kirchhoff stress 

tensor predicted components with respect to the same bases, i.e.,

SPD = ePD ⋅ S ⋅ ePD, SXD = eXD ⋅ S ⋅ eXD, Sϕ = ePD ⋅ S ⋅ eXD . (16)

Thus, the complete forward model of the NN model is denoted as

SPD, SXD, Sϕ = fNN EPD, EXD, Eϕ, σ . (17)

which serves as a simulacrum to the structural model (eqn. 5) over the physiological range 

of σ while other structural parameters are fixed. In both NN model training and parametric 

studies, by simply varying the local σ, the NN model can predict the range of responses 

from high anisotropy to nearly isotropy.

To take the advantage of the expressive power of a fully connected NNs were used to 

approximate the response of the full structural model. Given the fact that the full structural 

model is differentiable and unbounded, the softplus function ℎ:ℝ ℝ, ℎ(x) = log 1 + ex  is 

chosen as the activation function in the NN. The softplus function is a smoothed version of 

the rectified linear unit (ReLU). In the overall design of the NN, the neurons on the l-th layer 

xl ∈ ℝdl l = 1, …, nl , can be obtained by a composition of an affine transformation A of the 

neurons on the previous layer, xl − 1 ∈ ℝdl − 1 and the nonlinear activation function h, using

xl = ℎ ∘ A xl − 1 = ℎ Wl ⋅ xl − 1 + bl (18)

The affine transformation A:ℝdl − 1 ℝdl is defined by its weights Wl ∈ ℝdl × dl − 1 and bias 

bl ∈ ℝdl, and the activation function h is applied in an element-wise fashion. The dimension 

of the output layer dnl = 3. The loss function defined later for training the NN is an 

aggregated quantity which means the NN is driven to minimize the error on average not any 

particular local misfits. Numerically, the trained NN without such enforcement will output a 

small but nonzero Sϕ when Eϕ = 0, therefore, the third output of the output layer is post-

multiplied by the shear strain Eϕ to enforce the constraint that Sϕ = 0 when Eϕ = 0. Steps 

involved in the computation of (17) is described in Algorithm 1.
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Algorithm 1

The forward model of the NN model with nl − 1 hidden layers

1: Initialize x0 ← (EPD, EXD, Eϕ, σ)

2: for l = 1 : nl do

3:   xl = h (Wi · xl−1 + bi)

4: (SPD, SXD, Sϕ) ← xnl, 1, xnl, 2, xnl, 3 × Eϕ

5: return (SPD; SXD; Sϕ)

Training NN models for Ψfsm and the final NN model form.—The training data 

were generated by the full structural model eqn. 5 using ηmat = 100 kPa, ηcol = 302039.9656 

kPa, ηint = 2785.73 kPa, a = 1, b = 1, r = 0. The recruitment distribution Γs(λs) was kept 

constant, and was considered independent of θ, in keeping with our other work [41]. To 

model Γs(λs), we utilized the following Beta Distribution [41]. First, we map λs to the [0, 1] 

domain

y =
λs − λlb

λub − λlb
,

where λlb and λub represent the lower and upper bounds, respectively, with values λlb = 1.0 

and λub = 1.2130. Next, Γs(y) is determined using

Γs(y) = yα − 1(1 − y)β − 1
B(α, β) λub − λlb

where α = 8.0525, β = 1.1378, and B(α, β) is a normalization constant that depends on α 
and β. The training dataset Dtr defined as

Dtr = EPD
(i) , EXD

(i) , Eϕ
(i), σ(i), SPD

(j) , SXD
(j) , Sϕ

(j)
i = 1
ntr , (19)

are evenly spaced data points in prescribed bounded ranges, such that 

EPD
(i) , EXD

(i) , Eϕ
(i), σ(i) ∈ EPD

lb , EPD
ub ⊗ EXD

lb , EXD
ub ⊗ Eϕ

lb, Eϕ
ub ⊗ σlb, σub  for all i = 1, …, ntr, 

where ntr is the number of training points. The range of the training dataset covers the 

physiologic range in which the deformation of heart valve tissues most likely to occur. We 

generated ntr = 114 training data points with the full structural model, using extant 

parameters for crosslinked bovine pericardium (See §2.2) that were evenly spaced within the 

bounds EPD
lb = EXD

lb = 0, EPD
ub = 0.17, EXD

ub = 0.23, Eϕ
ub = − 0.15, Eϕ

ub = 0.15, σlb = 10° and 

σub = 50° (Fig. 5). Note that the data points with stress components with higher than 1500 

kPa are removed since they were considered beyond the physiological range. While we can 

retain the data points outside the physiological range for training the NN, it will undermine 

the fitting quality of the NN within the physiological range due to the fact that larger stress 
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values have larger contribution to the relative mean squared error, and can thus skew the 

trained model.

Training for the NN commenced using randomly uniform distributions to initialize NN 

parameters. The relative mean squared error (MSE) between the predicted stresses of the NN 

model and those generated by the full structural model, which is defined using

e =
∑j = 1

n fNN EPD
(j) , EXD

(j) , Eϕ
(j), σ(j) − SPD

(j) , SXD
(j) , Sϕ

(j)
2
2

∑j = 1
n SPD

(j) , SXD
(j) , Sϕ

(j)
2
2 . (20)

was chosen as the loss function for training the NN model. The training was accomplished 

strictly offline, thus all training data are generated before parameter optimization. For a 

faster and stable convergence, the parameters are updated by the limited memory BFGS 

algorithm. Backpropagation was used to compute the gradient of the loss function with 

respect to the NN parameters (Wl, bl for l = 1, …, nl). The validation data are generated in 

the same fashion as sampling the training data but do not contain any training data. The 

relative MSE in eqn. 20 is also used to quantify the fitting quality on validation dataset.

Development of the final form of the NN model.—The observed predictive power of 

the NN was directly related to the specified complexity of the NN. We thus first trained a 

number of NNs with different number of hidden layers and neurons on the same training 

data (Fig. 3). The 1-layer NNs were not able to describe the behavior of the full structural 

model with given error threshold, while 2-layer or 3-layer NNs had sufficient complexity to 

replicate the full structural model. In our particular application, there is a trade-off between 

complexity and efficiency for 2/3-layer NNs. Based on these results, we choose a 2-layer 

NN model with 10 neurons in each layer, as it was computationally less-expensive than a 3-

layer one and yet has similar performance.

Good convergence characteristics were found for the optimizer for training the NN with 2 × 

10 neurons (Fig. 4a). Validation error tests of this model against the full structural model 

were conducted. We obtained the validation error eval, given by eqn. 20, on validation data 

sets with different numbers of samples. Evidently, the relative validation error is around 6e
−3 (Fig. 4b). To visualize the validation results, a random σ is selected and then we plot the 

3 stress components on 3 strain planes (Fig. 5), which shows that the NN model fitted the 

full structural model quite well.

Convexity and related considerations.—A concern when simulating an elastic 

constitutive model is the convexity of the strain energy function, as well as the positive 

definiteness and symmetry of the associated elasticity tensor ℂ = ∂S/ ∂E. In general, while 

NN’s have the property of being universal approximations of continuous functions, 

underlying symmetries are not guaranteed to be reproduced exactly. This can be enforced on 

the DNN by first transforming the inputs to a set of symmetric functions, as for reproducing 

the symmetry of a strain energy function based on the symmetry group of the material [52].
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In the present application, we note that the structural model is intrinsically convex, and the 

symmetry of the ℂ is merely a consequence of the double derivative of the continuously 

differentiable strain energy function [53]. Equivalent convexity constraints can be enforced 

into parameter estimation of alternative conventional models (e.g. [24]) when the 

mathematical form of the model is simple. Since the present NN model is nonlinear in the 

parameters, the number of convexity constraints would be as large as the training dataset, 

and is thus impractical. Thus, in the present NN model the convexity constraint is not 

explicitly enforced.

To verify that this approach did not appreciably affect simulation accuracy, we calculated the 

eigenvalues of ℂ in the training dataset. This test demonstrated that 97.7% of the data points 

have the positive definite stiffness matrix. In the validation dataset, the eigenvalues of ℂ
were all real numbers. The ℂ that have negative eigenvalues were located on the boundary of 

the fitting range, where there are less data points that can regulate the response of the NN 

model. In all cases the convexity is retained in the interior of the fitting range or 

physiological range. Additionally, at most only one out of three eigenvalues of each 

elasticity tensor was negative, and it is significantly smaller than the positive ones. The ℂ of 

the present NN model is generally not perfectly symmetric [28]. Since the NN is fitted to the 

stress response, ℂ is expected to have lower order of accuracy than the stress. The resulting 

effective “numerical” symmetry of ℂ can be measured by the ratio of the squared norm of 

the symmetric part to the squared norm of the matrices using eqn. 21 using all data points in 

the test dataset Dtest. In the present study, we found that the resulting ratio was 97.89%, 

which meant the symmetric part of ℂ was very dominant. Finally, we note that the NN 

model (Fig. 6) the third output was post-multiplied with the shear strain Eϕ, which gives the 

shear stress Sϕ, resulting in that zero shear strain gives zero shear stress.

r =
∑i ∈ Dtest symm ℂ E(i) 2

∑i ∈ Dtest ℂ E(i) 2 , (21)

2.5 NURBS-based tri-leaflet geometric representation

The methods for the formulation of the NURBS based representation of a tri-leaflet heart 

valve used in this study has been previously presented [54]. Briefly, starting from the 

NURBS surface representation of the geometry used in [55], valve leaflets were 

parametrically designed by picking nine “key points” located on the ends of commissure 

lines and the bottom of the sinuses. This method was used to parametrically change the free 

edge and belly curve, and therefore change the valve design to match the shape of the valve 

taken from [55]. This procedure was implemented in an interactive geometry modeling and 

parametric design platform based on Rhinoceros 3D and Grasshopper. A NURBS mesh with 

20×26 control points is generated for each heart valve leaflet. The NURBS mesh has open 

uniform knots so that the Dirichlet boundary conditions can be directly imposed by setting 

the values of corresponding control points. The NURBS mesh is degree 2 in order to give C1 

continuous basis functions for Kirchhoff–Love shell analysis.
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We first describe the mid-surface of each leaflet in the reference (undeformed) configuration 

X ξ1, ξ2 :ℝ2 ℝ3 and current (deformed) configuration x ξ1, ξ2 :ℝ2 ℝ3 are parameterized 

by ξ1 and ξ2. The covariant basis vectors, and the unit surface normal vector are

aα = x, α =
∂x ξ1, ξ2

∂ξα , a3 = a1 ∧ a2
a1 ∧ a2 2

, (22)

Aα = X, α =
∂X ξ1, ξ2

∂ξα , A3 = A1 ∧ A2
A1 ∧ A2 2

, (23)

where α = 1, 2. To map the 2D fiber coordinate system information defined on 2D excised 

leaflet X0 ∈ ℝ2 (Fig. 7b) onto the 3D leaflet X ∈ ℝ3 (Fig. 7c), the point correspondence 

X X0 :ℝ2 ℝ3 between them is first established by fitting the NURBS patch to the 2D 

leaflet triangular mesh (Fig. 7a) where the raw fiber data is stored [20]. The B-Spline mesh 

(Fig. 7c) has two degenerate points at the left the right corners. For simulation purposes, the 

NURBS mesh (Fig. 7c) is cropped at the corner of the commissures and annulus to improve 

the mesh quality with structured quadrilateral elements (Fig. 7d). The leaflet geometry is 

minimally modified after cropping the corner, and the element quality and the convergence 

of the simulation are improved. This small change will have limited effect on the simulation 

results since the geometry is changed minimally. The corresponding pushforward F = ∂X/

∂X0 can be obtained. Given F, the deformed ODFs (eqn. 13) and transformed structural 

tensor can be obtained. Thus, the preferred direction on the 3D leaflet can be transformed by 

ePD = RePD
2D . For simulation purposes, we only need to store its components on the covariant 

basis of the reference configuration, ePD = λ1A1 + λ2A2, ∥ePD∥2 = 1 (Fig. 8). The cross 

direction eXD (∥eXD∥2 = 1) in the tangent space is assumed to be orthogonal to ePD. Using F 
= RU, we can via eqn. 14 and recover its corresponding point-wise Γ on the 3D leaflet 

surface. Note that, in general, R is not enough to transform Γ since the mapping also 

involves in-surface stretches. As an example, we demonstrate this method using the mapped 

σ for the normal and bicuspid valves taken from [20] (Fig. 9).

2.6 FEniCS isogeometric formulation and implementation

The heart valve finite element implementation was based on related previous studies [54,56]. 

Briefly, we model heart valve leaflets as thin shells based on the K-L theory. With IGA basis 

functions, e.g., B-spline, NURBS, the C1 continuity requirement for the K-L element is 

easily satisfied. The simulations were implemented with tIGAr [57], which is a Python 

library for isogeometric analysis (IGA) using FEniCS [38], an open-source finite element 

(FE) open source software.

FEniCS implementation.—The current and reference configuration x(ξ1, ξ2) and X(ξ1, 

ξ2) of the mid-surface of a leaflet are discretized by IGA basis functions defined on the 

mesh described in §2.5. The IGA basis functions can be represented by FE basis functions 

using a global variant of Bézier extraction [57]. This makes it possible to use FEniCS to 

implement IGA. To illustrate how this is implemented in tIGAr, we consider the 
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homogeneous IGA scalar basis function NA
IGA,hom ξ1, ξ2  which can be obtained by a linear 

transformation MBA of FE basis functions NA
FE ξ1, ξ2  such as Lagrange basis functions,

NA
IGA,hom ξ1, ξ2 = ∑

B
MBANB

FE ξ1, ξ2 . (24)

The rational IGA basis functions can be obtained with

NA
IGA ξ1, ξ2 =

wA
IGANA

IGA,hom ξ1, ξ2

∑BwB
IGANB

IGA,hom ξ1, ξ2 . (25)

Thus, the current configuration defined by an IGA function x = ∑ApA
IGANA

IGA can be 

expressed in homogeneous representation, as can the reference configuration 

X = ∑AqA
IGANA

IGA. The covariant basis aα and Aα can be obtained by eqn. 22 and eqn. 23, 

respectively.

By the assumption of negligible trough-thickness shear deformations in K-L shells, the 

covariant basis vectors in the current and reference configuration of the 3D medium of the 

shell are gα = aα + ξ3a3,α and Gα = Aα + ξ3A3,α. By the second fundamental form of the 

surface, we have bαβ = g3 · gα,β and Bαβ = G3 · Gα,β where

g3 = g1 ∧ g2
g1 ∧ g2 2

, G3 = G1 ∧ G2
G1 ∧ G2 2

. (26)

Then, the metric tensors are g = a − 2ξ3b and G = A − 2ξ3B, and the strain is defined as 

Eαβ = 1
2 gαβ − Gαβ  in the local in-plane curvilinear system. Given the fiber structure 

mapping, we can transform Eαβ into Eij on a local Cartesian system consistent with the 

material axis ePD and an orthogonal in-plane direction eXD. The in plane stresses can be 

obtained by the NN model with σ, i.e., S = fNN(E, σ)−pC−1. In the variational problem, the 

internal virtual work is defined as

δW int = ∫Ω0
∫−ℎtℎ/2

+ℎtℎ/2
δEijSijdξ3dX . (27)

The Lagrange multiplier p for the incompressible constraint of the matrix material is 

determined by p = 2C33∂Ψmat/∂C33.

2.7 Verification of the full model

We first verified the implementation of the NN material model in planar biaxial test 

simulations under multiple loading protocols against the mathematical expression of the NN 

model. The NN model is implemented in FEniCS using UFL (§5.1). A unit square domain is 

discretized by a 10 × 10 bi-linear quadrilateral mesh. The preferred and cross directions are 

aligned with the edges of the square. The Dirichlet boundary conditions were uniformly 

imposed on each edge of the square. The prescribed displacement is imposed according to 
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three different protocols: EPD : EXD = 1 : 1, 0.17 : 0.23, and 1 : 3. Since the strains are 

uniform on the domain, the stress of the IGA simulation is uniform as well. We then verified 

the stress-strain relationship in FE with that obtained from the NN model in Fig. 10.

The full structural model is very accurate and quite predictive in terms of the observed 

mechanical behavior. However, the model involves double and quadruple integrals, which is 

intractable for simulation. The effective model, as developed by us [24] can fully reproduce 

the responses of the full structural model when fit to it, and is also quite efficient for 

simulations. For validation purpose, the effective model first fit to the full structural model, 

then used in place of the full structural model in the actual simulations to compare the 

simulation results with the NN material model. The porcine aortic valve properties, which is 

softer than bovine pericardium, is used in the simulations. The relative error of the trained 

NN model against the effective model is 5.1 × 10−5. Two material models gives visually 

indistinguishable Maximum in-plane Green-Lagrange strain (MIPE) distributions (Fig. 11) 

with the same geometry and boundary conditions. For one iteration of the FE simulation, the 

elapsed time for assembly and solution is 3.1200 s for the NN model and 1.8745 s for the 

effective model. While the effective model is a phenomenological model that can reproduce 

the responses of the full structural model with fixed combination of parameters. With a 

moderate increase of the computational expense, a trained NN material model can represent 

the responses from highly anisotropic behaviors to nearly isotropic behaviors by varying the 

standard deviation of the fiber orientation, σ. While a single effective model can only 

represent the responses for a fixed σ. When σ is changed, the effective model needs to be 

refitted. This gives additional expense if the effective model is used for simulations with 

spatially varying fiber structure.

2.8 Numerical simulations conducted

The impact of the fiber structures to the strain distribution are further studied in a sequence 

of parametric simulations. Given different values of σ or different fiber directions 

(horizontal fiber and circumferentially aligned fibers (Fig. 12)), the strain distributions in the 

deformed state are obtained to demonstrate the impact of the fiber structures to the 

responses. Given the architectural trends in the normal and bicuspid aortic valves [20], we 

also exam the impacts of such population-based fiber structure to provide insights into 

mechanical factors affecting valvular function. A summary of fiber structures considered in 

the simulations is listed in Table 2. In all tri-leaflet simulations, the leaflet density and 

thickness are set to 1.0 g/cm3 and 0.0386 cm, respectively. The leaflet materials are 

crosslinked linked bovine pericardium. The tri-leaflet valves are loaded with an uniform 

pressure field of 80 mmHg to model the physiologic quasi-static transvalvular pressure at the 

closing stage. The penetration through the symmetric planes between the valve leaflets is 

penalized by a quadratic function of the penetration to simulate the contact between leaflets. 

The quasi-static solutions are approximated by dynamics simulations with mass damping to 

achieve steady states.
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3 RESULTS

Effects of overall fiber directions.

The strain distributions with circumferentially and horizontally aligned fibers are shown in 

Fig. 13. The MIPE with horizontal fibers (Fig. 13a) is higher than the one with 

circumferentially aligned fibers (Fig. 13b). The maximum MIPE is slightly higher than 0.2. 

The fiber orientation on the heart valve significantly affects the strain fields. The overall 

MIPE distributions for both fiber directions have similar pattern. As shown in Fig. 13b and 

13d, the MIPE for the circumferentially aligned fibers is close to the EPD for most part 

except the region near the annulus. While the EPD and EXD for the horizontal fibers is very 

different especially on the belly and annulus. The effect of the fiber orientation to the strain 

is due to the high anisotropy of the material. The more anisotropic the material is, the more 

the effect of the fiber orientation.

Effects of overall σs.

To demonstrate the effects of the dispersion of fiber splay σ we vary σ uniformly in the 

quasi-static simulations. The fibers are all circumferentially aligned. As σ increasing, the 

magnitude of EPD is slowly increasing (Fig. 14) since less fibers are aligned 

circumferentially. This induces increasiong fibers dispersion so that more fibers are close to 

the cross directions. Thus, the magnitudes of EXD on the belly region are significantly 

reducing (Fig. 15) as σ decreasing. Overall, the MIPE (Fig. 16) is gradually smoothed and 

achieves minimum average for σ = 30° among the four different σs due to the contribution 

of both EPD and EXD. This highlights the importance of the fiber structure mapping, 

showing how structural information impacts the overall deformation.

Native AV and BAV fiber structures.

The NN model is integrated with the σ(ξ1, ξ2) distribution for both BAV and TAV (Fig. 9) 

mapped on to each 3D valve leaflet. The NN model can predict the stresses at each material 

point with given local strains and σ(ξ1, ξ2), and fiber directions using S(ξ1, ξ2) = fNN(E(ξ1, 

ξ2), σ(ξ1, ξ2)) − pC(ξ1, ξ2)−1. The strain distributions with σ mapping (Fig. 17) 

demonstrate significant differences from those with homogeneous distribution of σ 
especially for the strains in the preferred and cross directions (Fig. 14 and 15). Due to the 

heterogeneouty of the mapped fiber structures, fine-grained details emerge, which 

emphasizes the importance of the ability of NN models to predict the responses for a range 

of fiber structures. All three BAV strain fields (MIPE, EPD, and EXD) are overall higher and 

more heterogeneous than the TAV ones. The corresponding stress concentration may more 

likely leads to low heart valve durability.

4 DISCUSSION

Overview.

In the present study, we developed an integrated tri-leaflet valve simulation pipeline built 

upon an IGA framework. A high-order structural tensor (HOST) based method was 

developed for efficient storage and mapping the fiber structure onto the valvular geometry. 

We then developed an artificial neural network (NN) material model that learned the 
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responses of a detailed meso-structural model for both native and exogenously cross-linked 

heart valve leaflet tissues.

HOST representations of collagen fiber architectures.

Since the fiber orientation PDFs dictates the high anisotropy of the soft tissue mechanical 

responses, the AV simulations cannot give faithful clinical evaluation without mapped fiber 

structures. We have shown that with only 14 independent parameters the HOST 

representation can recover the ODFs of valvular tissues with negligible errors. The 

capability of the HOST method to facilitate the fiber structure mapping is further explored. 

A two-step procedure is established given the polar decomposition of the deformation tensor 

that represents the push forward from the excised flattened valvular tissue to the 3D in-vivo 

geometry. First, the stretched ODFs are obtained by the affine transformation of ODFs and 

the stretch tensor. Second, the HOST representations of stretched ODFs on the 3D surface 

are easily obtained by the standard tensor coordinate transformation using the rotation 

matrix. Finally, the deformed ODFs are recovered from the HOST representation. Thus, the 

HOST method is an efficient and robust representation of the ODFs that bridge that gap 

between the 2D fiber information obtained from the excised tissues and the 3D simulation 

models.

NN representations of material models.

The soft tissue material model needs to be not only informed by the fiber structure to give 

predictive capabilities but also efficient enough for trileaflet heart valve simulations 

performed in clinically relevant time-frames. The high-fidelity structural models and its 

extension for modeling long-term fatigue process [23] are based on the microstructural 

mechanism, however, it is in nature an ensemble model that involves double and quadruple 

integrals for native and crosslinked soft tissues. Even though the use of phenomenological 

models, such as the effective model we developed [24] can improve the computational 

efficiency significantly, it is not straight forward to extend such models to incorporate the 

structural parameters.

The NN material models were introduced to represent the stress-strain responses by training 

directly on the experimental data [29,27,25], which limits their predictability to prescribed 

protocols and specimens. While the present NN material models are trained on the responses 

generated by high-fidelity structural material models, which makes it predictable for the full 

range of physiological strains and structural parameters such as σ. Training on the responses 

generated by well-defined material models is also implicitly regulating the behavior of the 

NNs. As we examined in §2.4, even though symmetry and convexity constraints are not 

imposed in the training process, the violation of those constraints are not considerable.

Given the expressive power of the NNs, the use of NN material models presents a direct way 

to include the structural parameters that dictate the soft tissue responses. In this work, we 

trained a NN material model for crosslinked valvular material with a range of σ which 

dictates the anisotropy of the mechanical responses. The lower σ is, the more anisotropic the 

responses are. The trained NN material model is able to replicate the responses of the 

structural model for a range of σ, which demonstrates its expressive power for such 
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applications. It not only fits the responses within the training range of strains with 

satisfactory relative errors but also captures trends of the responses two times more than the 

upper limit of the training stresses. This may be attributed to the unboundedness of softplus 

functions used as activation functions in the NN. The ability of capturing the response trends 

beyond the fitting range is useful for AV simulations when the resultant maximum strain is 

not known a prior. The use of the continuously differentiable softplus function also enables 

the NN material models to have continuous tangential stiffness matrices. This property is 

very important for the stability and convergence of AV simulations.

IGA implementation.

The NURBS geometry model for the fiber information storage and IGA simulations 

provides a modeling and analysis pipeline. The NURBS geometry can further streamline the 

iterating process of design and analysis. In this work, we explore the possibilities using 

NURBS to build an attributed-rich AV simulation model. It is enhanced with the population-

based fiber structures for normal and bicuspid leaflets. The tIGAr library along with the 

FEniCS framework provides a unified framework for the IGA simulation with the NN 

material model. The analytical functions of the NN models represent are written in almost 

mathematical expressions in the Unified Form Language. The automatic differentiation of 

the FEniCS framework eliminates the need to manually derive the elasticity tensor and its 

implementation. With minimal modification of the present implementation, the NN material 

model is extensible to incorporate other structural parameters. The IGA formulation of K-L 

shell analysis provides C1 solutions and smooth contact results. Although the AV models are 

equipped with NN material models, we show that it does not affect the computational speed 

significantly in comparison with the effective model. The simulation results with different σ 
distributions and fiber directions demonstrate the need to equip the AV simulation with 

realistic fiber information. The simulation results with the population-based fiber structures 

for normal and bicuspid leaflets show that the bicuspid leaflet have a more heterogeneous 

strain distribution and higher strains on the belly, which may ultimately reduce the durability 

of the leaflet in the long term.

Limitations.

For practical considerations, while the full Γ form was available, we only considered a 

simplified normal distribution, setup with the local coordinate system so that only one 

structural parameter σ was required. This allowed us to only require one structural parameter 

in the NN material model. It was clearly sufficient for demonstration of how a NN model 

trained complex structural model can produce highly flexible and accurate in-silico 

simulation results. That said, when greater fidelity of the Γ is required, the present NN 

model can be extended to include increasing numbers of the Fourier series components (up 

to 14). Most likely, for practical applications simplified forms (e.g. Gaussian Mixture 

models) can be developed to capture the level of mapped structural detail as needed. In any 

case, having a high fidelity local mapped structure will remain useful. The current UFL 

implementation of the NN models relied on the automatic differentiation to calculate the 

tangential stiffness matrix, which can be replaced by direct computation to reduce the 

computational overhead. This will also be needed for efficient implementation of IGA in 

FEniCS, wherein the UFL compilation adds to total compute time. Finally, we note too that 
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there are alternative approaches for ODF mapping. For example, diffusion tensor imaging 

characterizes the diffusivity profile of tissue invivo by a single oriented 3D Gaussian 

probability distribution function. Methods to map ODFs include spherical harmonics and 

constructing a Riemannian space of the generalized ODFs, similar to that of traditional 

ODFs [58]. The present method retains advantages of both efficient storage and ease of 

mapping using tensor methods. That said, continued development of novel tissue imaging 

technologies will likely necessitate development of new mapping methods.

Future directions.

Regardless of the details of the design or delivery method all BHV exhibit limitations in 

durability, which continues to be in the range of 10–15 years. Moreover, these levels are 

often achieved only in patient ages 57 years or older [7]. BHV leaflet tissue failure results 

from leaflet structural deterioration mediated by fatigue and/or tissue mineralization [59,60]. 

These and other findings clearly demonstrate the need for an understanding the mechanisms 

of valve design/function and tissue degeneration to improve long-term durability.

To address these issues, the methods presented herein can assist in developing the next 

generation of replacement heart valves. Specifically while retaining the benefits of a high 

fidelity of the structural model, the present NN material models drastically reduced the 

computational cost. In comparison to the phenomenological models, regardless of specific 

form, the NN material model does not increase the computational cost for AV simulations. 

NN material models, as universal approximators, can be extended to represent more complex 

soft tissue mechanical behaviors, such as plasticity, fatigue, and related time-dependent 

behaviors [23]. Finally, with the advance of the in-vivo imaging techniques, the present AV 

model can be easily adapted to patient specific geometry and fiber structures when such data 

is available. In such circumstances, the predictability of the AV simulation will be 

significantly improved from a patient specific point of view.
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5: APPENDICES

5.1 Implementation of the NN material model in FEniCS

The NN model can be easily embedded in the simulation with the help of the fiber structure 

mapping. The forward pass of NN model which gives the stress has an analytic and 

differentiable expression, fNN(E, σ). The weight matrix Wl and bias vector bl (l = 0, …, nl) 

for the nl-layer NN can be defined as constant matrix and vector. The element-wise softplus 

function can be defined as element-wise operator in the unified form language (UFL), which 

is part of the FEniCS project. A Python code snippet using UFL is shown in Listing 1. The 

FEniCS-based library can facilitate the resulting nonlinear variational problem solving by 

using the automatic differentiation capability. Thus, the overall simulation with NN models 

and fiber structure mapping can be conducted in the FEniCS framework.
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Listing 1:

The Python code snippet for the NN material model

def E2S(E_PD, E_XD, E_phi, sigma, W0, b0, W1, b1, W2, b2):

  ″″″Compute the stress components using the NN material model.

  Wi and bi (i = 0,1,2) are the weights and biases of the NN model.″″″

  # An element–wise softplus function

  def softplus (x, beta = 1., threshold = 20.):

    def _elem_softplus (x, beta=beta, threshold=threshold):

      return 1./beta*ln(exp(beta*x) + 1)

    y = elem_op (_elem_softplus, x)

    return y

  # The NN model prediction

  inputs = as_vector ([E_PD, E_XD, E_phi, sigma])

  y1 = softplus (dot(W0, inputs) + b0)

  y2 = softplus (dot(W1, y1) + b1)

  outputs = dot (W2, y2) + b2

  # Impose zero shear stresses for zero shear strains

  multiplier = as_vector ([1., 1., E[2]])

  S = elem_mult (multiplier, outputs)

  return S

References

1. Schoen FJ, Current Opinion in Biotechnology 22(5), 698 (2011). DOI 10.1016/
J.Copbio.2011.01.004. URL ://WOS:000296114600014 [PubMed: 21315575] 

2. Schoen FJ, Levy RJ, Ann Thorac Surg 79(3), 1072 (2005). URL http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15734452 [PubMed: 
15734452] 

3. Schoen FJ, Cardiovasc Pathol 14(4), 189 (2005). URL http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16009317 [PubMed: 16009317] 

4. Schoen FJ, Circulation 118(18), 1864 (2008). DOI 10.1161/CIRCULATIONAHA.108.805911. URL 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18955677 [PubMed: 18955677] 

5. Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, Boon NA, N Engl J Med 
352(23), 2389 (2005). DOI 10.1056/NEJMoa043876. URL http://www.nejm.org/doi/pdf/10.1056/
NEJMoa043876 [PubMed: 15944423] 

6. Rajamannan NM, Current Treatment Options in Cardiovascular Medicine 7(6), 437 (2005). DOI 
10.1007/s11936-005-0028-9 [PubMed: 16283970] 

7. Kurtz CE, Otto CM, Medicine (Baltimore) 89(6), 349 (2010). DOI 10.1097/MD.0b013e3181fe5648 
[PubMed: 21057260] 

8. Yu PJ, Skolnick A, Ferrari G, Heretis K, Mignatti P, Pintucci G, Rosenzweig B, Diaz-Cartelle J, 
Kronzon I, Perk G, Pass HI, Galloway AC, Grossi EA, Grau JB, The Journal of Thoracic and 
Cardiovascular Surgery 138(1), 196 (2009). DOI 10.1016/j.jtcvs.2008.10.045 [PubMed: 19577079] 

Zhang et al. Page 23

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15734452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15734452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16009317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16009317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18955677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18955677
http://www.nejm.org/doi/pdf/10.1056/NEJMoa043876
http://www.nejm.org/doi/pdf/10.1056/NEJMoa043876


9. Parolari A, Tremoli E, Cavallotti L, Trezzi M, Kassem S, Loardi C, Veglia F, Ferrari G, Pacini D, 
Alamanni F, Heart 97(7), 523 (2011). DOI 10.1136/hrt.2010.215046. URL http://heart.bmj.com/
content/97/7/523.full.pdf [PubMed: 21270077] 

10. Siu SC, Silversides CK, J Am Coll Cardiol 55(25), 2789 (2010). DOI 10.1016/j.jacc.2009.12.068. 
URL http://www.ncbi.nlm.nih.gov/pubmed/20579534 [PubMed: 20579534] 

11. Soares JS, Feaver KR, Zhang W, Kamensky D, Aggarwal A, Sacks MS, Cardiovascular 
Engineering and Technology 7(4), 309 (2016). DOI 10.1007/s13239-016-0276-8. URL 10.1007/
s13239-016-0276-8 [PubMed: 27507280] 

12. Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu MC, Journal of biomechanics 74, 
23 (2018). DOI 10.1016/j.jbiomech.2018.04.012 [PubMed: 29735263] 

13. Hsu MC, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks 
MS, Computational mechanics 55, 1211 (2015). DOI 10.1007/s00466-015-1166-x [PubMed: 
26392645] 

14. Votta E, Le TB, Stevanella M, Fusini L, Caiani EG, Redaelli A, Sotiropoulos F, J Biomech 46(2), 
217 (2013) [PubMed: 23174421] 

15. Sturla F, Votta E, Stevanella M, Conti CA, Redaelli A, Medical Engineering and Physics 35, 1721 
(2013) [PubMed: 24001692] 

16. Aggarwal A, Sacks M, Lecture notes in Computer Science 9126, 285 (2015)

17. Aggarwal A, Sacks MS, Biomechanics and modeling in mechanobiology pp. 1–24 (2015) 
[PubMed: 24718853] 

18. Billiar KL, Sacks MS, J Biomech Eng 122(4), 327 (2000). URL http://www.ncbi.nlm.nih.gov/
pubmed/11036555 [PubMed: 11036555] 

19. Zhang W, Ayoub S, Liao J, Sacks MS, Acta Biomater 32, 238 (2016). DOI 10.1016/
j.actbio.2015.12.001. URL http://www.ncbi.nlm.nih.gov/pubmed/26712602 [PubMed: 26712602] 

20. Aggarwal A, Ferrari G, Joyce E, Daniels MJ, Sainger R, Gorman JH 3rd, Gorman R, Sacks MS, 
Ann Biomed Eng 42(5), 986 (2014). DOI 10.1007/s10439-014-0973-0. URL http://
www.ncbi.nlm.nih.gov/pubmed/24488233 [PubMed: 24488233] 

21. Goth W, Lesicko J, Sacks MS, Tunnell JW, Annual review of biomedical engineering 18, 357 
(2016). DOI 10.1146/annurev-bioeng-071114-040625

22. Goth W, Potter S, Allen ACB, Zoldan J, Sacks MS, Tunnell JW, Annals of biomedical engineering 
47, 1250 (2019). DOI 10.1007/s10439-019-02233-0 [PubMed: 30783832] 

23. Zhang W, Sacks MS, Journal of the mechanical behavior of biomedical materials 75, 336 (2017). 
DOI 10.1016/j.jmbbm.2017.07.013 [PubMed: 28780254] 

24. Zhang W, Zakerzadeh R, Zhang W, Sacks MS, Journal of the mechanical behavior of biomedical 
materials 89, 168 (2019). DOI 10.1016/j.jmbbm.2018.09.016 [PubMed: 30286376] 

25. Liang G, Chandrashekhara K, Engineering Structures 30(7), 2002 (2008). DOI 10.1016/
j.engstruct.2007.12.021

26. Haj-Ali R, Kim HK, Mechanics of Materials 39(12), 1035 (2007). DOI 10.1016/
j.mechmat.2007.05.004

27. Ghaboussi J, Sidarta D, Computers and Geotechnics 22(1), 29 (1998). DOI 10.1016/
s0266-352x(97)00034-7

28. Hashash YMA, Jung S, Ghaboussi J, International Journal for Numerical Methods in Engineering 
59(7), 989 (2004). DOI 10.1002/nme.905

29. Ghaboussi J, Pecknold DA, Zhang M, Haj-Ali RM, International Journal for Numerical Methods in 
Engineering 42(1), 105 (1998). DOI 10.1002/(SICI)1097-0207(19980515)42:1h105::AID-
NME356i3.0.CO;2-V. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI
%291097-0207%2819980515%2942%3A1%3C105%3A%3AAID-NME356%3E3.0.CO%3B2-V

30. Thubrikar M, Piepgrass WC, Shaner TW, Nolan SP, Surg Forum 30, 241 (1979). URL http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=538608 [PubMed: 538608] 

31. Chandran KB, Kim SH, Han G, J Biomech 24(6), 385 (1991). URL http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1856239 [PubMed: 
1856239] 

Zhang et al. Page 24

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://heart.bmj.com/content/97/7/523.full.pdf
http://heart.bmj.com/content/97/7/523.full.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20579534
http://www.ncbi.nlm.nih.gov/pubmed/11036555
http://www.ncbi.nlm.nih.gov/pubmed/11036555
http://www.ncbi.nlm.nih.gov/pubmed/26712602
http://www.ncbi.nlm.nih.gov/pubmed/24488233
http://www.ncbi.nlm.nih.gov/pubmed/24488233
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2819980515%2942%3A1%3C105%3A%3AAID-NME356%3E3.0.CO%3B2-V
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2819980515%2942%3A1%3C105%3A%3AAID-NME356%3E3.0.CO%3B2-V
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=538608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=538608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=538608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1856239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1856239


32. Piegl L, Tiller W, The NURBS Book, 2nd edn. (Springer, 1997)

33. Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJ, 
Comput Methods Appl Mech Eng 284, 1005 (2015). DOI 10.1016/j.cma.2014.10.040. URL http://
www.ncbi.nlm.nih.gov/pubmed/25541566 [PubMed: 25541566] 

34. Hsu MC, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks 
MS, Computational Mechanics pp. 1–15 (2015). URL 10.1007/s00466-015-1166-x

35. Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR, 
A variational immersed boundary framework for fluid–structure interaction: Isogeometric 
implementation and application to bioprosthetic heart valves. Tech. rep (2014)

36. Hsu MC, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR, Computational Mechanics 54, 1055 
(2014) [PubMed: 25580046] 

37. Sacks MS, Smith DB, Hiester ED, Journal of Biomedical Materials Research 41(1), 131 (1998) 
[PubMed: 9641633] 

38. Logg A, Mardal KA, Wells G, Automated Solution of Differential Equations by the Finite Element 
Method the FEniCS Book, 2012th edn. Lecture Notes in Computational Science and Engineering, 
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2012). URL http://UTXA.eblib.com/patron/
FullRecord.aspx?p=885214

39. Kassab GS, Sacks MS (eds.), Structure-Based Mechanics of Tissues and Organs (Springer US, 
2016). DOI 10.1007/978-1-4899-7630-7

40. May-Newman K, Yin FC, J Biomech Eng 120(1), 38 (1998). URL http://www.ncbi.nlm.nih.gov/
htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=0009675679 [PubMed: 9675679] 

41. Sacks MS, Zhang W, Wognum S, Interface Focus 6(1), 20150090 (2016). DOI 10.1098/
rsfs.2015.0090. URL http://rsfs.royalsocietypublishing.org/royfocus/6/1/20150090.full.pdf 
[PubMed: 26855761] 

42. Avazmohammadi R, Hill M, Simon M, Zhang W, Sacks M, Biomechanics and modeling in 
mechanobiology 16(2), 561 (2017) [PubMed: 27696332] 

43. Yang B, Lesicko J, Sharma M, Hill M, Sacks MS, Tunnell JW, Biomed. Opt. Express 6(4), 1520 
(2015). DOI 10.1364/BOE.6.001520. URL http://www.osapublishing.org/boe/abstract.cfm?
URI=boe-6-4-1520 [PubMed: 25909033] 

44. Smith DB, Sacks MS, Pattany PM, Schroeder R, J Heart Valve Dis 8(1), 25 (1999) [PubMed: 
10096478] 

45. Amini R, Eckert CE, Koomalsingh K, McGarvey J, Minakawa M, Gorman JH, Gorman RC, Sacks 
MS, Ann Biomed Eng 40(7), 1455 (2012). DOI 10.1007/s10439-012-0524-5. URL http://
www.ncbi.nlm.nih.gov/pubmed/22327292 [PubMed: 22327292] 

46. Aggarwal A, Pouch AM, Lai E, Lesicko J, Yushkevich PA, Gorman Iii JH, Gorman RC, Sacks MS, 
Journal of biomechanics 49, 2481 (2016). DOI 10.1016/j.jbiomech.2016.04.038 [PubMed: 
27207385] 

47. Lee CH, Rabbah JP, Yoganathan AP, Gorman RC, Gorman JH 3rd, Sacks MS, Biomech Model 
Mechanobiol 14(6), 1281 (2015). DOI 10.1007/s10237-015-0674-0. URL http://
www.ncbi.nlm.nih.gov/pubmed/25947879 [PubMed: 25947879] 

48. Lee CH, Zhang W, Liao J, Carruthers CA, Sacks JI, Sacks MS, Biophys J 108(8), 2074 (2015). 
DOI 10.1016/j.bpj.2015.03.019. URL http://www.ncbi.nlm.nih.gov/pubmed/25902446 [PubMed: 
25902446] 

49. Kanatani KI, International Journal of Engineering Science 22(2) (1984)

50. Advani S, Tucker C III, Journal of Rheology 31(8), 751 (1987)

51. Fan R, Sacks MS, Journal of Biomechanics 47, 2043 (2014) [PubMed: 24746842] 

52. Teichert G, Natarajan A, der Ven AV, Garikipati K, Computer Methods in Applied Mechanics and 
Engineering 353, 201 (2019). DOI 10.1016/j.cma.2019.05.019

53. Lanir Y, Journal of Applied Mechanics-Transactions of the Asme 61(3), 695 (1994). URL ://
A1994PJ70400029

54. Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu 
MC, International journal for numerical methods in biomedical engineering (2017). DOI 10.1002/
cnm.2938

Zhang et al. Page 25

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/pubmed/25541566
http://www.ncbi.nlm.nih.gov/pubmed/25541566
http://UTXA.eblib.com/patron/FullRecord.aspx?p=885214
http://UTXA.eblib.com/patron/FullRecord.aspx?p=885214
http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=0009675679
http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=0009675679
http://rsfs.royalsocietypublishing.org/royfocus/6/1/20150090.full.pdf
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-6-4-1520
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-6-4-1520
http://www.ncbi.nlm.nih.gov/pubmed/22327292
http://www.ncbi.nlm.nih.gov/pubmed/22327292
http://www.ncbi.nlm.nih.gov/pubmed/25947879
http://www.ncbi.nlm.nih.gov/pubmed/25947879
http://www.ncbi.nlm.nih.gov/pubmed/25902446


55. Sun W, Abad A, Sacks M, Journal of Biomechanial Engineering 127(6), 905 (2005)

56. Zakerzadeh R, Hsu MC, Sacks MS, Expert review of medical devices 14, 849 (2017). DOI 
10.1080/17434440.2017.1389274 [PubMed: 28980492] 

57. Kamensky D, Bazilevs Y, Computer Methods in Applied Mechanics and Engineering 344, 477 
(2019). DOI 10.1016/j.cma.2018.10.002

58. Du J, Goh A, Qiu A, in Biennial International Conference on Information Processing in Medical 
Imaging (Springer, 2011), pp. 448–462

59. Atkins SK, Cao K, Rajamannan NM, Sucosky P, Biomech Model Mechanobiol 13(6), 1209 (2014). 
DOI 10.1007/s10237-014-0567-7. URL http://www.ncbi.nlm.nih.gov/pubmed/24599392 
[PubMed: 24599392] 

60. Atkins SK, Sucosky P, World J Cardiol 6(12), 1227 (2014). DOI 10.4330/wjc.v6.i12.1227.URL 
http://www.ncbi.nlm.nih.gov/pubmed/25548612 [PubMed: 25548612] 

Zhang et al. Page 26

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2021 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/pubmed/24599392
http://www.ncbi.nlm.nih.gov/pubmed/25548612


Fig. 1: 
A schematic of the computational pipeline for integrated IGA-based model utilizing the NN 

material model and tensor-mapped fiber structure
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Fig. 2: 
Example of the 14th rank structural tensor fit to Γ from the anterior leaflet of the mitral 

valve, showing an excellent fit. Also shown are the axes of symmetry as determined by 

eigenvectors of second rank structural tensor Di1, i2. The blue and black lines represent 

angular locations of the first and second eigenvectors, respectively, of the second rank 

deviator tensor Di1, i2. These eigenvectors define the local preferred ePD and cross-preferred 

eXD fiber (unit vector) directions, respectively.
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Fig. 3: 
The training error of NNs with different numbers of layers and neurons.
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Fig. 4: 
The training history and validation errors of the final NN model with 2 × 10 neurons.
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Fig. 5: 
Graphical depiction of the strain ranges used to train the NN model. Also shown are the 

validation results for the final NN model for σ = 25.48°.
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Fig. 6: 
A schematic of the final fully connected NN model for planar mechanical behavior of native 

and replacement heart valve leaflet soft tissues. The input nodes consist of the strain tensor 

components and the Γ standard deviation. The output is the three stress tensor components. 

Note that the shear stress term is post-multiplied with the shear strain, resulting in that zero 

shear strain gives zero shear stress as fitting constraint (see text for details).
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Fig. 7: 
The 2D triangular mesh (a) is first fit by a 2D NURBS mesh (b) to interpolate fiber ODFs on 

the NURBS mesh. Then the fiber ODFs at a point X0 on the 2D NURBS mesh can be 

mapped to the corresponding point X on the 3D leaflet geometry (c). The NURBS mesh (d) 

for simulations consists of three identical 3D leaflet geometries with cropped corner to 

improve the mesh quality.
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Fig. 8: 
The preferred direction and cross direction defined on the tangent space.
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Fig. 9: 
The σ distribution of normal AV (a) and bicuspid AV (b) on the 2D geometries are mapped 

to (c) and (d) on the 3D NURBS leaflet surfaces, respectively.
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Fig. 10: 
Verification of the FE implementation with the NN model for three planar biaxial test 

protocols: EPD : EXD = 1 : 1, 0.17 : 0.23, 1 : 3.
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Fig. 11: 
Verification of the simulation of tri-leaflet valves with the native porcine aortic valves 

properties using the NN model against an effective material model.
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Fig. 12: 
Two tri-leaflet heart valve models with different fiber directions (red lines).
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Fig. 13: 
Strain distributions (MIPE, EPD on the fiber direction, EXD on the crossed in-plane 

direction) of the intact tri-leaflet valves with different fiber directions.
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Fig. 14: 
EPD distribution of the intact tri-leaflet valves with σ = 10°, 20°, 30°, 50°.
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Fig. 15: 
EXD distribution of the intact tri-leaflet valves with σ = 10°, 20°, 30°, 50°.
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Fig. 16: 
MIPE adistribution of the intact tri-leaflet valves with σ = 10°, 20°, 30°, 50°
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Fig. 17: 
Strain distributions of the intact tri-leaflet valves using native bovine pericardium properties 

with σ mapping from BAV and TAV.
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Table 1:

An example showing the five independent component values for a 4th rank fabric tensor Di1, i2, i3, i4 in terms of 

the associated Fourier series coefficients.

Di1, i2, i3, i4 k independent component

D1111 0 a4

D1112 1 b4

D1122 2 −a4

D1222 3 −b4

D2222 4 a4
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Zhang et al. Page 45

Table 2:

Fiber structures for the numerical simulations conducted in the parametric studies.

θ σ(ξ1, ξ2)

circumferential 32.66° everywhere

horizontal 32.66° everywhere

circumferential mapped σ using BAV data

circumferential mapped σ using TAV data

circumferential 10° everywhere

circumferential 20° everywhere

circumferential 30° everywhere

circumferential 50° everywhere

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2021 June 24.


	Abstract
	INTRODUCTION
	The native and replacement aortic heart valve
	Tri-leaflet valve simulation-based studies
	Key simulation advancements needed for more realistic and robust AV simulations
	AV leaflet fiber architecture representations
	Use of machine learning in high-fidelity material modeling in finite element analyses
	Attribute-rich NURBS based methods for geometric description and finite element analyses.

	Study organization

	METHODS
	Study overview
	The structural constitutive model for native and xenograft heart valve tissues
	HOST: High Order Structural Tensors to represent in planar fiber orientation distributions
	Introduction.
	Basic characteristics of Γ.
	High order structural tensor representations
	HOST-based generalized coordinate transformations of Γ.

	A machine learning model of native and cross-linked heart valve tissue mechanical behaviors
	Background.
	Formulation of a NN model for Ψfsm.


	Algorithm 1
	NURBS-based tri-leaflet geometric representation
	FEniCS isogeometric formulation and implementation
	FEniCS implementation.

	Verification of the full model
	Numerical simulations conducted

	RESULTS
	Effects of overall fiber directions.
	Effects of overall σs.
	Native AV and BAV fiber structures.

	DISCUSSION
	Overview.
	HOST representations of collagen fiber architectures.
	NN representations of material models.
	IGA implementation.
	Limitations.
	Future directions.

	APPENDICES
	Listing 1:
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	Fig. 8:
	Fig. 9:
	Fig. 10:
	Fig. 11:
	Fig. 12:
	Fig. 13:
	Fig. 14:
	Fig. 15:
	Fig. 16:
	Fig. 17:
	Table 1:
	Table 2:

