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ABSTRACT
Objective  We aimed to investigate the influence of 
environmental risk factors for multiple sclerosis (MS) 
in different genetic contexts, and study if interactions 
between environmental factors and human leucocyte 
antigen (HLA) genes differ in magnitude according to 
heterozygocity and homozygocity for HLA-DRB1*15:01.
Methods  Using population-based case–control studies 
(6985 cases, 6569 controls), subjects with different 
genotypes and smoking, EBNA-1 status and adolescent 
Body Mass status, were compared regarding MS risk, 
by calculating OR with 95% CI employing logistic 
regression. The interaction between different genotypes 
and each environmental factor was evaluated on the 
additive scale.
Results  The effect of each DRB1*15:01 allele on 
MS risk was additive on the log-odds scale for each 
additional allele. Interaction between DRB1*15:01 
and each assessed environmental factor was of similar 
magnitude regardless of the number of DRB1*15:01 
alleles, although ORs were affected. When any of the 
environmental factors were present in DRB1*15:01 
carriers without the protective A*02:01 allele, a 
three-way interaction occurred and rendered high 
ORs, especially among DRB1*15:01 homozygotes 
(OR 20.0, 95% CI 13.1 to 30.5 among smokers, OR 
21.9, 95% CI 15.0 to 31.8 among those with elevated 
EBNA-1 antibody levels, and OR 44.3, 95% CI 13.5 to 
145 among those who reported adolescent overweight/
obesity).
Conclusions  The strikingly increased MS risk among 
DRB*15:01 homozygotes exposed to any of the 
environmental factors is a further argument in favour 
of these factors acting on immune-related mechanisms. 
The data further reinforce the importance of preventive 
measures, in particular for those with a genetic 
susceptibility to MS.

INTRODUCTION
Multiple sclerosis (MS) is an inflammatory disease 
of the central nervous system (CNS) that arises 
from an interplay between genes and lifestyle/envi-
ronmental factors. Gene variants with the strongest 
associations with MS risk are located within the 
human leucocyte antigen (HLA) complex.1 The 
main risk allele is DRB1*15:01, but several other 
alleles from other HLA regions influence the risk of 
MS independently of DRB1*15:01 status. A large 
number of gene loci outside the HLA complex have 

been associated with MS risk in large-scale genome-
wide association studies, but each of these gene 
loci only make weak to modest individual contri-
butions to disease susceptibility.2–4 So far, mapped 
gene variants explain nearly 50% of the herita-
bility.4 Gene–environment interactions are likely 
to contribute to the so-called missing heritability in 
MS. Smoking increases MS risk by 50%, the combi-
nation of the genetic risk factors DRB1*15:01 
and absence of A*02:01 increase MS risk five-
fold, whereas the combination of smoking with 
both these genetic risk factors increases MS risk 
13-fold (OR 12.7, 95% CI 10.8 to 14.9).5 Similar 
interactions have been demonstrated between the 
same MS associated HLA alleles, and both elevated 
EBNA-1 antibody levels and adolescent obesity.6–8 
Since the effect of the DRB1*15:01 allele on the 
susceptibility to MS has been reported to be addi-
tive on the log-odds scale for each additional allele,2 
we aimed to investigate the risks associated with the 
above-mentioned environmental factors in different 
genetic loads, and explore the interactive effects 
between DRB1*15:01 and the environmental 
factors in more detail by taking into consideration 
the number of DRB1*15:01 alleles a person has.

Methods
Study design and data collection
The present report is based on data from Epidemi-
ological Investigation of Multiple Sclerosis (EIMS) 
and Genes and Environment in Multiple Sclerosis 
(GEMS), which are Swedish population-based 
case–control studies.

The study base comprised the Swedish general 
population aged 16–70 years.

EIMS recruited incident cases of MS from 
hospital-based and privately run neurology units. 
Cases were diagnosed by a neurologist located 
at the unit in which the case was entered. Two 
controls per case were randomly selected from the 
national population register, frequency matched for 
the case’s age in 5 year age strata, sex and residential 
area. If a control declined to participate or was not 
traceable, another control was selected using the 
same principles. The study period was April 2005 
to June 2015.

GEMS identified prevalent cases from the 
Swedish National MS-registry.9 One control per 
case, matched by age, gender and residential area 
at the time of disease onset, was randomly selected 
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from the national population register. The study participants 
were recruited between November 2009 and November 2011. 
All cases in both studies were diagnosed according to the 
McDonald criteria.10 11

All participants in both studies were asked to provide blood 
samples and those who did not donate blood were excluded in 
the present report. The number of study subjects in each study 
is presented in online supplemental eTable 1. Ethical approvals 
for EIMS and GEMS were obtained from the Regional Ethical 
Review Board at Karolinska Institute. All participants gave their 
informed consent to participate in the studies.

Data collection and exposure information
Information regarding environmental exposures and lifestyle 
factors was collected using standardised questionnaires. The 
response rate was 93% for cases and 73% for controls in EIMS, 
and 82% for cases and 66% for controls in GEMS.

Information on smoking was obtained by asking about current 
and previous smoking habits. The year of disease onset among 
cases was defined as the index year. The controls were given 
the same index year as their corresponding case. Smoking habits 
were only considered before and at the index year. Subjects were 
classified as ever smokers if they had smoked before or during 
the index year, and as never smokers if they had never smoked 
before or during the index year.

Information was obtained regarding current height and body 
weight at age 20 years. Using current height, we calculated 
adolescent body mass index (BMI) by dividing weight in kilo-
grams by height in metres squared. The WHO’s definitions of 
overweight and obesity were used. A subject with a BMI equal to 
or more than 25 was considered overweight and a person with a 
BMI of 30 or more was considered obese.

Genotyping and measurement of EBNA-1 antibody levels
HLA-DRB1 and HLA-A alleles were determined using the MS 
replication chip4 which is based on an Illumina exome chip to 
which approximately 90 000 custom markers were added with 
extra high density in the HLA region. Classical four-digit HLA 
alleles were imputed with HLA*IMP:02.12

For participants included before August 2013, a multiplex 
serological assay was used for detection of IgG antibodies against 
the EBNA-1 peptide segment (aa 385–420),13 which has been 
identified as the main EBNA-1 fragment associated with MS 
risk.14 Dual-laser flow-based detection was used to quantify the 
antibodies as units of median flourescence intensity. EBNA-1 
antibody levels were dichotomised into high and low EBNA-1 
antibody levels based on the median flourescence intensity 
among controls.

Statistical analysis
Subjects with different genotypes and smoking habits were 
compared with regard to MS risk, by calculating OR with 95% 
CI using logistic regression models. In the same manner, OR 
of MS were calculated for subjects with different genotypes 
and EBNA-1 status, and adolescent BMI status, respectively. 
DRB1*15:01 was entered as a categorical variable.

We investigated the interaction between DRB1*15:01 and 
each of the environmental factors with regard to MS risk, among 
DRB1*15:01 heterozygotes and homozygotes, respectively. 
Additive interaction was defined as departure from additivity 
of effects and evaluated by calculating the attributable propor-
tion due to interaction (AP) together with 95% CI, using the 
delta method.15 16 We also calculated the product terms for the 

interactions between HLA-DRB1*15:01 and each environmental 
factor in logistic regression models to assess interaction on the 
multiplicative scale.

All analyses were adjusted for study, age, sex, residential area, 
ancestry and when appropriate for A*02:01 (as a categorial vari-
able), smoking (ever or never), EBNA-1 antibody status (low or 
high EBNA-1 antibody levels, or unknown) and adolescent BMI 
(normal weight, overweight, obese or unknown). Ancestry was 
dichotomised into Nordic or non-Nordic origin. We also adjusted 
the analyses for the following MS-associated HLA alleles; 
DRB1*03:01, DRB1*13:03, DRB1*08:01, B*44:02, B38:01, 
B44:02, DQA1*01:01, DQB1*03:02 and DQBI*03:01.2 Homo-
zygote correction was made for DRB1*03:01 and when appro-
priate for A*02:01. Furthermore, adjustment was made for 
two SNPs from within the extended major histocompatability 
complex (MHC) region from 29.9 to 33.6 Mb on chromosome 
6; rs9277565[T] and rs2229092[C] which have previously been 
associated with MS.2

The analyses were further adjusted for a large number of 
potential confounding variables that were not kept in the final 
analyses since they only had minor influence on the results. 
These variables were educational level (no postsecondary educa-
tion, postsecondary education without university degree, or 
university degree), passive smoking (ever or never), snuff use 
(ever or never), alcohol consumption and ultraviolet radiation 
(UVR) exposure. Alcohol consumption was categorised into 
subgroups based on the amount of alcohol intake per week: 
low consumption (<50 g/week for women and <100 g/week for 
men), moderate consumption (50–112 g/week for women and 
100–168 g/week for men) and high consumption (>112 g/week 
for women and >168 g/week for men). We used the same cutoffs 
as those used by Statistics Sweden,17 a government agency that 
produces official statistics.

We constructed a continuous variable for sun exposure, based 
on three questions regarding exposure to UVR where each 
answer alternative was given a number ranging from 1 (the 
lowest exposure) to 4 (the highest exposure). The numbers were 
added together and we thus acquired a value between 3 and 12.18

As a sensitivity analysis, we used principal component analysis 
(PCA) vectors based on 3736 ancestrally informative markers to 
adjust for population stratification. In this analysis, population 
outliers were excluded (85 cases and 66 controls). All analyses 
were conducted using Statistical Analysis System V.9.4.

RESULTS
The mean age at onset was 34.4 years in EIMS and 32.1 years in 
GEMS and the median duration from the initial appearance of 
symptoms indicative of MS to study enrolment was 4.5 years in 
EIMS and 18.0 years in GEMS.

The HLA-DRB1*15:01 allele
The increased risk of MS conveyed by the DRB1*15:01 allele 
was additive on the log-odds scale for each additional allele. 
Compared with DRB1*15:01 negative subjects, the adjusted OR 
of developing MS was 3.7 (95% CI 3.3 to 4.1) for DRB1*15:01 
heterozygotes and 7.8 (95% CI 6.4 to 9.5) for DRB1*15:01 
homozygotes (table 1).

Interaction between DRB1*15:01 and each environmental 
factor, with adjustment for A*02:01
Smoking
The OR of MS associated with smoking among DRB1*15:01 
negative subjects was 1.5 (95% CI 1.4 to 1.7). The combination 
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of DRB1*15:01 and smoking increased the risk of MS approx-
imately sixfold among DRB1*15:01 heterozygotes and 12-fold 
among DRB1*15:01 homozygotes with ORs displaying non-
overlapping CIs, compared with never smokers without the 
DRB1*15:01 allele (table 2, online supplemental eTable 2).

EBNA-1 antibody levels
High EBNA-1 antibody levels among DRB1*15:01 negative 
subjects was associated with an increased risk of MS (OR 2.6, 
95% CI 2.3 to 2.9), compared with DRB1*15:01 negative subjects 
with low EBNA-1 antibody levels. DRB1*15:01 in combination 
with elevated EBNA-1 antibody levels increased the risk of MS 
10-fold among DRB1*15:01 heterozygotes and 20-fold among 
DRB1*15:01 homozygotes, compared with DRB1*15:01 nega-
tive subjects with low EBNA-1 antibody levels (table 2, online 
supplemental eTable 3). The CIs were non-overlapping.

Adolescent BMI
Adolescent overweight/obesity was associated with an OR of 
1.4 (95% CI 1.2 to 1.6) among DRB1*15:01 negative subjects. 
Compared with DRB1*15:01 negative subjects with adolescent 
BMI below 25 kg/m2, the risk of MS among those who reported 
adolescent overweight/obesity was increased fivefold among 
DRB1*15:01 heterozygotes, and 12-fold among DRB1*15:01 
homozygotes (table 2, online supplemental eTable 4). The CIs 
were non-overlapping.

An interaction on the additative scale was observed between 
DRB1*15:01 and each of the environmental factors regarding 
risk of developing MS. Interestingly, the magnitude of the 
attributable proportion was similar regardless of the number 
of DRB1*15:01 alleles. Interactions on the multiplicative scale 
were non-significant (table 2, online supplemental eTables 2–4).

Interaction between DRB1*15:01, absence of A*02:01 and 
each environmental factor
As stated before, the increased risk of MS conveyed by the 
DRB1*15:01 allele was additive on the log-odds scale for each 
additional allele. An interaction occurred between DRB1*15:01 
and absence of A*02:01 that was similar among DRB1*15:01 
heterozygotes (AP 0.26, 95% CI 0.17 to 0.35) and DRB1*15:01 
homozygotes (AP 0.24, CI 0.003 to 0.5) (table 3).

When any of the environmental factors were present, a 
three-way interaction occurred among the triple exposed that 
rendered high ORs, especially among DRB1*15:01 homozy-
gotes (table 4 and online supplemental eTables 5–7.

The results presented in online supplemental eTables 5–7 are 
illustrated in figure 1.

Our results remained almost identical after excluding popula-
tion outliers and adjusting the analyses for PCA vectors.

DISCUSSION
We demonstrate that synergistic effects between DRB1*15:01 
on one side, and smoking, elevated EBNA-1 antibody levels 
and adolescent overweight/obesity on the other side take place 
with similar magnitudes among DRB1*15:01 heterozygotes and 
homozygotes. However, in the presence of any of the environ-
mental factors, drastically increased ORs were evident among 
DRB*15:01 homozygotes compared with heterozygotes.

The effect of each DRB1*15:01 allele on the susceptibility to 
MS is additive on the log-odds scale, and may reflect that disease 
development is facilitated by surface expression of the antigen 
presenting molecules encoded by this allele.19 An increased 
surface expression of MS risk class II molecules may thus have 
a major effect on the ability of cells to present so far undeter-
mined peptide antigens activating CD4+ T cells relevant for MS 
pathogenesis.

HLA molecules are also involved in regulating thymic selec-
tion of the mature T-cell repertoire. By central tolerance mech-
anisms, potentially autoaggressive T cells with a propensity to 
recognise CNS autoantigens may to a higher degree survive in 
DRB1*15:01 positive subjects.

The mechanism for the protective association of A*02:01 
carriage is unclear. The molecule encoded by this allele presents 
antigen to CD8+ T cells. One might consider the presentation 
of autoantigens resulting in anti-inflammatory cytokines which 
has been demonstrated in animal models of MS.20 21 Hypothet-
ically, other class I alleles may activate disease driving CD8+ T 
cells. In addition, expression of A*02:01 molecules may increase 
negative selection of CNS autoreactive T cells or modulate their 
autoreactivity.22 Absence of A*02:01 may thus increase the risk 

Table 1  OR with 95% CI of developing MS among subjects 
categorised by DRB1*15:01 status, compared with DRB1*15:01 
negative subjects

DRB1*15:01 ca/co* OR (95% CI)† OR (95% CI)‡

0 3093/4830 1.0 (reference) 1.0 (reference)

1 3406/1719 3.1 (2.9 to 3.3) 3.7 (3.3 to 4.1)

2 732/183 6.2 (5.2 to 7.4) 7.8 (6.4 to 9.5)

*Number of exposed cases and controls.
†Adjusted for study, age, sex, residential area and ancestry.
‡Adjusted for study, age, sex, residential area, ancestry, smoking, anti-EBNA-1 
status, adolescent BMI, rs9277565, rs2229092, DRB1*03:01, DRB1*13:03, 
DRB1*08:01, A*02:01, B*44:02, B*38:01, B*55:01, DQA1*01:01, DQB1*03:02 and 
DQB1*03:01. Homozygote correction was made for DRB1*03:01 and A*02:01.
BMI, body mass index; MS, multiple sclerosis.

Table 2  OR and AP with 95% CI of developing MS among subjects 
with different numbers of DRB1*15:01 alleles exposed to the 
assessed lifestyle/environmental factor, compared with non-exposed 
DRB1*15:01 negative subjects

DRB1*15:01 Smoking ca/co* OR (95% CI)† AP (95% CI)

0 + 1767/2258 1.5 (1.4 to 1.7)

1 + 1881/815 5.6 (4.9 to 6.3) 0.3 (0.2 to 0.4)

2 + 368/77 11.6 (8.8 to 15.3) 0.3 (0.02 to 0.6)

DRB1*15:01 Anti-EBNA-1 IgG ca/co* OR (95% CI)‡ AP (95% CI)

0 High 1474/1747 2.6 (2.3 to 2.9)

1 High 2033/758 10.0 (8.6 to 11.5) 0.5 (0.4 to 0.6)

2 High 445/87 19.5 (14.8 to 25.6) 0.5 (0.4 to 0.7)

DRB1*15:01 Adolescent BMI ca/co* OR (95% CI)§ AP (95% CI)

0 >25 392/467 1.4 (1.2 to 1.6)

1 >25 450/164 5.4 (4.4 to 6.7) 0.3 (0.1 to 0.4)

2 >25 87/15 12.5 (6.9 to 21.6) 0.3 (−0.1 to 0.7)

Based on data from online supplemental tables 2–4.
*Number of exposed cases and controls.
†Adjusted for study, age, sex, residential area, ancestry, EBNA-1 status, adolescent BMI, 
rs9277565, rs2229092, DRB1*03:01, DRB1*13:03, DRB1*08:01, A*02:01, B*44:02, 
B*38:01, B*55:01, DQA1*01:01, DQB1*03:02 and DQB1*03:01. Homozygote correction 
was made for DRB1*03:01 and A*02:01.
‡Adjusted for study, age, sex, residential area, ancestry, smoking, adolescent BMI, 
rs9277565, rs2229092, DRB1*03:01, DRB1*13:03, DRB1*08:01, A*02:01, B*44:02, 
B*38:01, B*55:01, DQA1*01:01, DQB1*03:02 and DQB1*03:01. Homozygote correction 
was made for DRB1*03:01 and A*02:01.
§Adjusted for study, age, sex, residential area, ancestry, smoking, EBNA-1 status, rs9277565, 
rs2229092, DRB1*03:01, DRB1*13:03, DRB1*08:01, A*02:01, B*44:02, B*38:01, B*55:01, 
DQA1*01:01, DQB1*03:02 and DQB1*03:01. Homozygote correction was made for 
DRB1*03:01 and A*02:01. AP, attributable proportion due to interaction.
AP, attributable proportion; BMI, body mass index; MS, multiple sclerosis.
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of autoreactive T cells inducing an immune response against the 
self-antigen.

The biological explanations for the interactions between 
MS-associated HLA genes and the assessed environmental 
factors are far from clear. Smoking initiates chronic inflam-
mation in the lungs and induces post-translational modifica-
tions of peptides that increase their likelihood of activating 
autoimmune CD4+ T cells.23 24 Altered peptides in the lungs 
with structural similarities to CNS antigens could promote a 
CNS-directed autoimmune response in genetically predisposed 
individuals. The lungs also hold potentially autoaggressive 
effector and memory T cells that may become activated by 
smoke-induced inflammation and enter the CNS after assuming 
migratory properties.25 An interaction on the additive scale 
has repeatedly been observed between the same MS risk HLA 
genes and several lung-irritating agents regarding risk of devel-
oping MS,26 27 which supports the view that lung-irritation and 

inflammation are critically involved in the pathways to MS 
among smokers. Epigenetic modifications induced by smoking 
may also contribute to mediate the interaction between smoking 
and HLA alleles in MS development.28

The DRB1*15:01 allele may also influence the risk of MS 
by compromising the immune response to Epstein-Barr virus 
(EBV).29 It has been suggested that infected B cells migrate to 
a particular target organ, depending on the preferential peptide 
binding by allelic variants of MHC class II molecules.30 By cross-
reactivity, structural similarity between EBV and CNS antigens 
may induce an autoaggressive T-cell response and subsequently 
lead to MS in genetically susceptible individuals.8 31–33 The study 
of EBV–HLA interaction is further complicated by the differ-
ence in EBV reactivity between HLA-DRB1*15:01 carriers and 
non-carriers.14

In case of the synergistic effect between HLA genes and 
obesity, we primarily consider a chronic, low-grade inflamma-
tion induced by the secretion of inflammatory mediators driven 
by adipose tissue macrophages.34 The Th1 promoting effects of 
obesity may increase the risk of an HLA restricted activation of 
autoaggressive CD4+ T cells that target CNS autoantigens.

From a public health perspective, the impact of environmental 
factors on MS risk is considerable and preventive measures are 
essential. Approximately 20% of all MS cases in Sweden have 
been estimated to be attributable to smoke exposure, whereas 
this number increased to more than 40% in DRB1*15 positive 
and A*02 negative cases.35 The prevalence of childhood over-
weight and obesity has increased during the last decades36 and 
may, at least to some extent, explain the increasing incidence of 
MS. Accordingly, prevention of smoking and childhood obesity 
may contribute to reduce MS risk. Several clinical trials have 
evaluated the effect of different vaccine strategies against EBV. 
While some of them lowered the rate of infectious mononucle-
osis, none of them protected from infection.37 It is also uncertain 
whether vaccination will lower the viral load among those who 
become infected with EBV. Further research is needed to better 
understand the immune mechanisms that are critical to prevent 
EBV infection.

Our studies were designed as case–control studies and infor-
mation on exposures and lifestyle factors was collected retro-
spectively. EIMS recruited newly diagnosed cases in order to 
minimise recall bias. The potential for recall bias is higher in 
GEMS which used prevalent cases, but the magnitude of memory 
errors does probably not differ between cases and controls. Both 
the EIMS and GEMS questionnaires covered a wide range of 
questions regarding many environmental exposures and no part 
of the questionnaires was given prime focus.

Table 3  OR with 95% CI of developing MS among subjects categorised by DRB1*15:01 and A*02:01 status

DRB1*15:01 A02:01 ca/co* OR (95% CI)† OR (95% CI)‡ AP (95% CI)

0 1–2 1232/2619 1.0 (reference) 1.0 (reference)

0 0 1861/2211 1.8 (1.6 to 2.0) 1.7 (1.5 to 1.8)

1 1–2 1520/974 3.3 (3.0 to 3.7) 3.7 (3.3 to 4.2)

1 0 1886/745 5.4 (4.8 to 6.0) 5.9 (5.4 to 7.1) 0.26 (0.17 to 0.35)

2 1–2 348/105 7.0 (5.5 to 8.8) 8.3 (6.8 to 11.5)

2 0 384/78 10.5 (8.1 to 13.6) 11.5 (9.2 to 16.4) 0.24 (0.003 to 0.5)

Attributable proportion due to interaction (AP).
DRB1*03:01, DRB1*13:03, DRB1*08:01, B*44:02, B*38:01, B*55:01, DQA1*01:01, DQB1*03:02 and DQB1*03:01. Homozygote correction was made for DRB1*03:01 and 
A*02:01.
*Number of exposed cases and controls.
†Adjusted for study, age, sex, residential area and ancestry.
‡Adjusted for study, age, sex, residential area, ancestry, smoking, EBNA-1 status, adolescent BMI, rs9277565, rs2229092.
MS, multiple sclerosis.

Table 4  OR and AP with 95% CI of developing MS among A*02:01 
negative subjects with different DRB1*15:01 status exposed to the 
assessed lifestyle/environmental factor, compared with non-exposed 
A*02:01 positive and DRB1*15:01 negative subjects

DRB1*15:01 A*02:01 Smoking ca/co* OR (95% CI)†

0 0 + 1045/1041 2.6 (2.2 to 3.0)

1 0 + 1016/342 9.3 (7.7 to 11.1)

2 0 + 193/29 20.0 (13.1 to 30.5)

DRB1*15:01 A*02:01 Anti-EBNA-1 IgG ca/co* OR (95% CI)‡

0 0 High 908/767 4.3 (3.5 to 4.9)

1 0 High 1152/334 14.9 (12.4 to 18.3)

2 0 High 237/35 28.7 (19.3 to 42.7)

DRB1*15:01 A*02:01 Adolescent BMI ca/co* OR (95% CI)§

0 0 >25 231/199 2.5 (2.0 to 3.1)

1 0 >25 229/75 8.0 (6.0 to 10.7)

2 0 >25 48/3 44.3 (13.5 to 145)

Based on data from online supplemental tables 5–7.
*Number of exposed cases and controls.
†Adjusted for study, age, sex, residential area, ancestry, EBNA-1 status, adolescent BMI, 
rs9277565, rs2229092, DRB1*03:01, DRB1*13:03, DRB1*08:01, B*44:02, B*38:01, 
B*55:01, DQA1*01:01, DQB1*03:02 and DQB1*03:01. Homozygote correction was made 
for DRB1*03:01.
‡Adjusted for study, age, sex, residential area, ancestry, smoking, adolescent BMI, 
rs9277565, rs2229092, DRB1*03:01, DRB1*13:03, DRB1*08:01, B*44:02, B*38:01, 
B*55:01, DQA1*01:01, DQB1*03:02 and DQB1*03:01. Homozygote correction was made 
for DRB1*03:01.
§Adjusted for study, age, sex, residential area, ancestry, smoking, EBNA-1 status, rs9277565, 
rs2229092, DRB1*03:01, DRB1*13:03, DRB1*08:01, B*44:02, B*38:01, B*55:01, 
DQA1*01:01, DQB1*03:02 and DQB1*03:01. Homozygote correction was made for 
DRB1*03:01.
AP, attributable proportion; MS, multiple sclerosis.
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A potential selection bias may arise during the recruitment of 
cases and controls. Since the public healthcare system in Sweden 
provides equal free of charge access to medical services for all 
citizens, almost all cases of MS are referred to neurological units. 
In both studies, the risk of selection bias was minimised by the 
population-based design. Although the participation rate was 
lower among controls, selection bias is probably modest because 
the prevalence of life style factors, such as smoking and alcohol 
consumption, among the controls was consistent with that of 
the general population.16 Furthermore, there were no signifi-
cant differences with respect to age, gender or smoking habits 
between those who donated blood and those who did not. The 
interaction between environmental exposures and risk genes 
also alleviates some potential biases in the interpretation of the 
influence from these factors on MS risk, since HLA alleles are 
unlikely to determine exposure habits. We thus believe that our 
findings are not affected by bias to a large extent.

In conclusion, the strikingly increased MS risk among 
DRB*15:01 homozygotes exposed to any of the environmental 
factors is a further argument in favour of these factors acting 
on immune-related mechanisms. The data further reinforce the 
importance of preventive measures, in particular for those with 
a genetic susceptibility to MS.
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