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Abstract

While the spatial topological persistence is naturally constructed from a radius-based filtration, it 

has hardly been derived from a temporal filtration. Most topological models are designed for the 

global topology of a given object as a whole. There is no method reported in the literature for the 

topology of an individual component in an object to the best of our knowledge. For many 

problems in science and engineering, the topology of an individual component is important for 

describing its properties. We propose evolutionary homology (EH) constructed via a time 

evolution-based filtration and topological persistence. Our approach couples a set of dynamical 

systems or chaotic oscillators by the interactions of a physical system, such as a macromolecule. 

The interactions are approximated by weighted graph Laplacians. Simplices, simplicial 

complexes, algebraic groups and topological persistence are defined on the coupled trajectories of 

the chaotic oscillators. The resulting EH gives rise to time-dependent topological invariants or 

evolutionary barcodes for an individual component of the physical system, revealing its topology-

function relationship. In conjunction with Wasserstein metrics, the proposed EH is applied to 

protein flexibility analysis, an important problem in computational biophysics. Numerical results 

for the B-factor prediction of a benchmark set of 364 proteins indicate that the proposed EH 

outperforms all the other state-of-the-art methods in the field.
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1 Introduction

Homology, a tool from traditional algebraic topology, provides an algebraic structure which 

encodes topological structures of different dimensions in a given space, such as connected 

components, closed loops, and other higher dimensional analogues [48]. To study 

topological invariants in a discrete data set, one uses the structure of the data set, such as 

pairwise distance information, to build a simplicial complex, which can be loosely thought 

of as a generalization of a graph, and then compute the homology of the complex. However, 

conventional homology is blind to scale, and thus retains too little geometric or physical 

information to be practically useful. Persistent homology, a new branch of algebraic 

topology, embeds multiscale information into topological invariants to achieve an interplay 

between geometry and topology [18,37,45,50,46,60].

Given a continuum of topological spaces, called a filtration, persistence encodes the 

changing homology as a proxy for the shape and size of the data set by keeping track of 

when homological features appear and disappear over the course of the filtration. This 

flexibility means that the choice of filtration allows the use of persistent homology to be 

tailored to the data set given and the question asked. As a result, it has been utilized for 

analysis of data sets arising from many different domains. For biology related areas [63], 

persistence has been used in bioinformatics [52,72,15,13], neuroscience [82,32,33,31], and 

protein folding [92,90,93,43].

The 0-dimensional version of persistent homology was originally introduced under the name 

“size function” [40,41,77–79]. The generalized persistent homology theory and a practical 

algorithm was formulated by Edelsbrunner et al. [38]; the algebraic foundation was 

subsequently established by Zomorodian and Carlsson [96]. Recently, there have been 

significant developments and generalizations of persistent homology methodology 

[8,28,30,25,22,20,81,19,94, 11,69,36], further understanding of metrics and stability 

[27,24,29,12,34], and computational algorithms [67,35,59,84,62,7,6]. Persistent homology is 

often visualized by barcodes [23,45] where horizontal line segments called bars represent 

homology generators that survive over different filtration scales. The persistence diagram 

[37] is an equivalent representation that plots the births and deaths of the generators in a 2D 

plane.

Persistent homology is a versatile tool for data analysis. However, the difficulties inherent in 

the interpretation of the topological space of persistence barcodes [57,86,61] means that the 

most success in combining these topological signatures with machine learning methods has 

been found by turning persistence barcodes into features in a well-behaved space suitable for 

machine learning. Options for this procedure are quickly growing, and include persistence 

landscapes [10], algebraic constructions [2,21,51], persistence images [1, 93,13], kernel 

methods [76,92], and tent functions [74]. In 2015, Cang et al. constructed one of the first 

topology based machine learning algorithms and applied it for protein classification 
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involving tens of thousands of proteins and hundreds of tasks [14]. This approach has been 

generalized for the predictions of protein-ligand binding affinity [16] and mutation-induced 

protein stability change [15], and further combined with convolutional neural networks and 

multi-task learning algorithms [17].

Although most persistent homology formulations are based on spatial data, such as point 

clouds, the use of homology for the analysis of dynamical systems and time series analysis 

predates and intertwines with the beginnings of persistent homology [50,58,44,4,78,77,79]. 

More recently, there has been increased interest in the combination of persistent homology 

with time series analysis [80]. Some common methods include computing the persistent 

homology of the Takens embedding [73,72,71,54,53,55], studying the sublevelset homology 

of movies [56,85], and working with the additional structure afforded by persistent 

cohomology [81,9,87]. Wang and Wei have defined temporal topological persistence via the 

solution of a time-dependent partial differential equation derived from differential geometry 

[88]. This method encodes spatial connectivity into temporal persistence in the Laplace-

Beltrami flow, and offers accurate quantitative prediction of fullerene isomer stability in 

terms of total curvature energy for over 500 fullerene molecules. Stolz et al. have recently 

constructed persistent homology from time-dependent functional networks associated with 

coupled time series [83]. This work uses weight rank clique filtration over a defined 

parameter reflecting similarities between trajectories to characterize coupled dynamical 

systems.

All the aforementioned methods concern the global topology of a given data, such as the 

topology of the point cloud of a protein. Topology is inherently a global concept and 

describes a data as a whole. Such a global topology is useful for the global property of the 

object under description, e.g. band gap of a solid material, the binding affinity of an entire 

protein-ligand complex, and solubility of a molecule. It is noticed that relative homology 

was applied to extract the global topology of a localized region [39] and has been used to 

compare maps [3]. However, in science, engineering, and other fields, it is often desirable to 

understand the local property of an individual component of object, such as the topological 

property of a given atom in a molecule, the impurity in a solid, and a node in a network.

The objective of the present work is to introduce a new type of topological methods, called 

evolutionary homology (EH). The proposed EH describes the topological properties of an 

individual component that is determined by the given individual and its adjacency in a data. 

To this end, we embed the data into a dynamical system and systematically perturb each 

individual element (oscillator) of the dynamical system to generate topological response, 

which is recorded as temporal persistence. Specifically, simplicial complex filtration based 

on the trajectories of a set of chaotic oscillators coupled via the interactions of a physical 

system to obtain temporal topological persistence. We are particularly interested in the 

encoding of the topological connectivity of a real physical system into the chaotic dynamical 

system and the decoding of physical properties from the EH. To this end, we regulate the 

dynamical system by a generalized graph Laplacian matrix defined on the physical system 

with a distinct geometric structure. As such, the regulation encodes the structural 

information into the time evolution of the dynamical system. We use two well-studied 

dynamical systems, the Lorenz system and the Rössler system, to facilitate the control and 
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synchronization of chaotic oscillators by weighted graph Laplacian matrices. These 

dynamical systems are chosen for their simplicity, rich dynamics and well-known chaotic 

behaviors. We create machine learning features from the EH barcodes by using the 

Wasserstein and bottleneck metrics. The resulting outputs in various topological dimensions 

are directly correlated with the physical properties of the dataset.

To demonstrate the quantitative analysis power of EH, we apply the present method to the 

prediction of protein thermal fluctuations characterized by experimental B-factors of Cα 
atoms. In this application, protein residues are represented by individual dynamical systems 

connected by a coupling matrix derived from given pairwise interactions of the residues. The 

protein flexibility is characterized by analyzing how the perturbations introduced to the 

systems are propagated and relaxed among oscillators, which create EH. We show that these 

coupled nonlinear dynamical systems provide more information compared to other methods. 

It is found that the present EH provides some of the most accurate B-factor predictions for a 

benchmark set of 364 proteins.

2 Methods

This section is devoted to the methods and algorithms. In Sec. 2.2, we give a brief discussion 

of coupled dynamical systems and their stability control via a correlation (coupling) matrix 

which embeds topological connectivity of a physical system into the dynamical system. We 

review persistent homology and persistence barcodes in Sec. 2.3. We formulate local 

topology or evolutionary homology on coupled dynamical systems in Sec. 2.4. Finally, we 

discuss the treatment of barcodes, the associated metrics, and the methods for learning in 

Sec. 2.5.

2.1 Overview

We aim to extract topological information from a coupled dynamical system for the 

prediction of its physical properties. In the coupled dynamical system, all objects are 

represented by the same set of mathematical rules. We assume that a measurement of 

pairwise interactions is given a priori. This pairwise interaction induces couplings among the 

individual objects such as atoms on a protein which leads to the synchronization of the 

system if the coupling is sufficiently strong. Then a perturbation is applied to an individual 

object which will be propagated through the coupled system and finally relax to the 

synchronous state. We define simplicial complexes and algebraic groups on the dynamical 

motion or trajectories of the coupled system. The time evolution plays the role of filtration 

and allows us to further define evolutionary homology. The resulting topological persistence 

over time enables us to predict the physical properties of the embedded system, such as 

protein flexibility, protein-protein binding interactions, and the affinity of protein-drug 

binding.

Protein flexibility analysis is considered a specific application to illustrate and validate our 

approach. Protein flexibility is an important property that strongly correlates to many protein 

functions, such as reactivity, allosteric signaling, DNA binding specificity, Alzheimer’s 

disease, etc. In our formulation, every protein residue is represented by a nonlinear 

oscillator. The pairwise interaction among protein residues is characterized by a spatial 
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distance valued graph Laplacian function. The method introduced in this work describes the 

formation and change of high order topological invariants and how they quantify protein 

residue flexibility. This approach has shown to provide more accurate flexibility prediction 

than current state-of-the-art methods.

2.2 Coupled dynamical systems

The time evolution of complex phenomena is often described by dynamical systems, i.e., 

mathematical models built on differential equations for continuous dynamical systems or on 

difference equations for discrete dynamical systems. Most dynamical systems have their 

origins in Newtonian mechanics. However, these mathematical models typically only admit 

highly reduced descriptions of the original complex physical systems, and thus their 

continuous forms do not have to satisfy the Euler-Lagrange equation of the least action 

principle. Although a low-dimensional dynamical system is not expected to describe the full 

dynamics of a complex physical system, its long-term behavior, such as the existence of 

steady states (i.e., fixed points) and/or chaotic states, offers a qualitative understanding of the 

underlying system. Focused on ergodic systems, dynamic mappings, bifurcation theory, and 

chaos theory, the study of dynamical systems is a mathematical subject in its own right, 

drawing on analysis, geometry, and topology. Dynamical systems are motivated by real-

world applications, having a wide range of applications to physics, chemistry, biology, 

medicine, engineering, economics, and finance.

The dynamical systems employed in this work are well-known chaotic oscillators, namely 

the Lorenz system and the Rössler system. These systems are selected for the following 

reasons. 1) They have well-known chaotic behavior. For certain parameter regions and initial 

conditions, these systems admit chaotic behavior resembling real world phenomena. This 

information is used to encode the interactions of the physical system. 2) The chaoticity of 

the Lorenz system and the Rössler system can be easily controlled via a coupling strategy 

[66,49,89,91] which enables us to appropriately design the proposed EH method. 3) 

Although the dynamics of the Lorenz system and the Rössler system are quite rich, they are 

easy to compute. Therefore, interactions of physical systems, such as protein residue-residue 

interactions and protein-ligand interactions, can be easily encoded to regulate their chaotic 

dynamics. The resulting dynamics are used in the computation of persistence.

2.2.1 Systems configuration—A brief review is given to establish notation and 

facilitate our topological formulation, largely following the work of Hu et al. [49] and Xia 

and Wei [91]. We consider a system with N objects, such as N atoms in a molecule or N 
neurons in a brain. We regard each object as an n-dimensional dynamical system, i.e., an n-

dimensional oscillator. As such, the internal dynamics of N objects is governed by

dui
dt = g ui , i = 1, 2, ⋯, N,

where ui = {ui,1,ui,2, ⋯ ,ui,n}T is a column vector of size n.
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In reality, objects are interacting with each other. As a result, there are external couplings 

among objects. The coupling of the objects can be very general. We consider an N ×N graph 

Laplacian matrix A defined for pairwise interactions

Aij =
I(i, j), i ≠ j
− ∑

l ≠ i
Ail, i = j,

where I(i, j) is a value describing the strength of influence on the ith object induced by the 

jth object. We assume undirected graph edges, so I(i, j) = I(j, i).

For specific application to protein flexibility, we consider a set of N atoms at positions 

ri ∈ ℝ3
i = 1
N

. Then, I(i, j) represents non-covalent interactions between the ith atom and the 

jth atom and can be well-approximated by a radial basis function defined via the Euclidean 

distance between them [91].

Let u = {u1, u2, ⋯, uN}T be a column vector (of size N ∗ n) with ui = {ui,1, ui,2,·⋯ ,ui,n}T. 

The coupled system is an N ×n-dimensional dynamical system

du
dt = G(u) + ϵ(A ⊗ Γ )u, (1)

where G(u) = g u1 , g u2 , ⋯, g uN
T , ϵ is a parameter, and Γ is an n×n predefined linking 

matrix. Weights are used so that the interaction strength between the objects represented by 

the oscillators can be quantitatively described. The term (Ai ⨂ Γ)u describes the difference 

between oscillator i and the other oscillators. Since the rows of A add up to 0, the oscillators 

will reach synchronized state given enough coupling strength.

The Lorenz attractor is described by

gl ui =
δ ui, 2 − ui, 1

ui, 1 γ − ui, 3 − ui, 2
ui, 1ui, 2 − βui, 3

(2)

where δ, γ, and β are parameters determining the state of the Lorenz oscillator. The Rössler 

attractor is governed by

gr ui =
−ui, 2 − ui, 3
ui, 1 + aui, 2

b + ui, 3 ui, 1 − c
(3)

where a, b, c are model parameters. Both the Lorenz attractor and the Rössler attractor have 

three components and three parameters, but they have different phase space structures and 

chaotic behaviors.
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2.2.2 Stability and controllability—Let s(t) satisfy ds/dt = g(s). We say the coupled 

systems are in a synchronous state if

u1(t) = u2(t) = ⋯ = uN(t) = s(t) .

The stability can be analyzed using v = {u1 − s, u2 − s, ⋯, uN − s}T with the following 

equation obtained by linearizing Eq. (1)

dv
dt = IN ⊗ Dg(s) + ϵ(A ⊗ Γ ) v, (4)

where IN is the N × N unit matrix and Dg(s) is the Jacobian of g on s.

The stability of the synchronous state in Eq. (4) can be studied by eigenvalue analysis of 

graph Laplacian A. Since the graph Laplacian A for undirected graph is symmetric, it only 

admits real eigenvalues. After diagonalizing A as

Aϕj = λjϕj, j = 1, 2, ⋯, N,

where λj is the jth eigenvalue and ϕj is the jth eigenvector, v can be represented by

v = ∑
j = 1

N
ϕj ⊗ wj(t) .

Then, the original problem on the coupled systems of dimension N ×n can be studied 

independently on the n-dimensional systems

dwj
dt = Dg(s) + ϵλjΓ wj, j = 1, 2, ⋯, N . (5)

Let Lmax be the largest Lyapunov characteristic exponent of the jth system governed by Eq. 

(5). It can be decomposed as Lmax = Lg + Lc, where Lg is the largest Lyapunov exponent of 

the system ds/dt = g(s) and Lc depends on λj and Γ. In many numerical experiments carried 

out in this work, we set Γ = In, an n × n identity matrix. Then the stability of the coupled 

systems is determined by the second largest eigenvalue λ2. The critical coupling strength 0 

can, therefore, be derived as ϵ0 = Lg/(−λ2).. A requirement for the coupled systems to 

synchronize is that ϵ > ϵ0, while ϵ ≤ ϵ0 causes instability.

An example of chaos controlled by coupling is shown in Fig. 1. In this example, each alpha 

carbon atom (Cα) of protein PDB:1E68 is associated with a Lorenz oscillator and the 

underlying locations of the oscillators are used to construct the coupling matrix. The specific 

coupling matrix A = Ageo + Aseq used in this example is a sum of a graph Laplacian matrix 

defined using the geometric coupling,
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Aij
geo =

−1, if i ≠ j and dij
org < ϵd,

− ∑
l ≠ i

Ail
geo , i = j,

and another which takes the amino acid sequence into account,

Aij
seq =

ϵseq, if (i + 1 + N) mod N = j,
−ϵseq, if (i − 1 + N) mod N = j,
0, otherwise .

Here, dorg is the distance function in the original space; that is, the Euclidean distance 

between atoms in this example. The mod operator is used because the protein in this 

example is circular. The parameters used for the example of Fig. 1 are ϵseq = 0.7 for 

sequence coupling, ϵd = 4Å for spatial cutoff, and δ = 10, γ = 60, and β = 8/3 for the Lorenz 

system. The parameters in Eq. (1) are ϵ = 10 and

Γ =
0 0 0
1 0 0
0 0 0

.

Initial values for all oscillators are randomly chosen.

2.3 Homology analysis preliminary

In this section, we review the TDA background that is essential for us to establish notations 

and facilitate our formulations. The interested reader can find further specifics in, e.g., 

Carlsson [18], or Edelsbrunner and Harer [37].

2.3.1 Simplicial complex and homology—Topological spaces can be approximated, 

represented, and discretized by simplicial complexes. An (abstract) simplicial complex is a 

(finite) collection of sets K = {σi}i where each σi is a subset of a (finite) set K0 called the 

vertex set. We require that this collection satisfies the following condition: if σi ∈ K and τ is 

a face of σi (that is, if τ ⊆ σj commonly denoted τ ≤ σi), then τ ∈ K. If σi has k + 1 vertices, 

{v0, v1, ⋯, vk} where every pair of vertices is nonequivalent, σi is called a k-simplex. The 

k-skeleton of a simplicial complex K is the subcomplex of K consisting of simplices of dimension 

k and below. See Fig. 2 for an example.

The homology group for a fixed simplicial complex gives a topological characterization 

which encodes holes of different dimensions. Homology groups are built using linear 

transformations called boundary operators. A k-chain of the simplicial complex K is a finite 

formal sum of the k-simplices in K, α = ∑aiσi with coefficients ai ∈ ℤ2. The group of all k-

chains with addition given by the addition of the coefficients is called the k-th chain group 

and is denoted by Ck(K) or simply Ck when the choice of complex is obvious. Note that 

because ℤ2 is a field, Ck(K) is, in fact, a vector space.
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The boundary operator ∂k : Ck → Ck−1 is the linear transformation generated by mapping 

any k-simplex to the sum of its codim-1 faces; namely,

∂k v0, v1, ⋯, vk = ∑
i = 0

k
v0, ⋯, vi, ⋯, vk ,

where vi means that vi is absent. The kth cycle group, Zk(K), is the kernel of the boundary 

operator ∂k with elements called k-cycles. The kth boundary group, Bk(K), is the image of 

the boundary operator ∂k+1 and its elements are called k-boundaries. Since ∂k ∘ ∂k+1 = 0, 

Bk(K) is a subgroup of Zk(K). Thus we can define the kth homology group, Hk(K), to be the 

quotient group Zk(K)/Bk(K). Each equivalence class in Hk(K) can be thought of as 

corresponding to a k-dimensional “loop” in K going around a k + 1-dimensional “hole”: 1-

dimensional classes give information about loops going around 2D voids, 2-dimensional 

classes give information about enclosures of 3D voids, etc. While the analogy is not as nice, 

0-dimensional classes give information about connected components of the space.

2.3.2 Filtration of a simplicial complex and persistent homology—We now turn 

to the case where we have a changing simplicial complex and want to understand something 

about its structure. Consider a finite simplicial complex K and let f be a real-valued function 

on the simplices of K which satisfies the following: f(τ) ≤ f(σ) for all τ ≤ σ simplices in K. 

We will refer to this function as the filtration function. For any x ∈ ℝ, the sublevelset of K 
associated to x is defined as

K(x) = σ ∈ K ∣ f(σ) ≤ x .

Note first that because of our assumptions on f, K(x) is always a simplicial complex, and 

second that K(x) ⊆ K(y) for any x ≤ y. Further, as x varies, K(x) 

only changes at the function values defined on the simplices. Since K is assumed to be finite, let {x1 < x2 

< ⋯ < xℓ} be the sorted range of f. The filtration of K with respect to f is the ordered 

sequence of its subcomplexes,

∅ ⊂ K x1 ⊂ K x2 ⊂ ⋯ ⊂ K xl = K . (6)

The filtration of a simplicial complex sets the stage for a thorough topological examination 

of the space under multiple scales of the filtration parameter which is the output value of the 

filtration function f. Our choice of the filtration function f for coupled dynamical systems 

will be given in Sec. 2.4.2.

We are interested in studying the structure of a filtration like that of Eq. (6). Functoriality of 

homology means that such a sequence of inclusions induces linear transformations on the 

sequence of vector spaces

Hk K x1 Hk K x2 ⋯ Hk K xn . (7)

Persistent homology not only characterizes each frame in the filtration {K(xi)}i, but also 

tracks the appearance and disappearance (commonly referred to as births and deaths) of 
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nontrivial homology classes as the filtration progresses. A collection of vector spaces {Vi} 

and linear transformations fi : Vi → Vi+1 is called a persistence module, of which Eq. (7) is 

an example. It is a special case of a much more general theorem of Gabriel [42] that 

sufficiently nice persistence modules can be decomposed uniquely into a finite collection of 

interval modules [26,68]. An interval module I[b, d) is a persistence module for which 

V i = ℤ2 if i ∈ [b, d) and 0 otherwise; and fi is the identity when possible, and 0 otherwise.

Therefore, given the persistence module of Eq. (7), we can decompose it as ⊕[b, d) ∈ Bk I[b, d), 

and thus fully represent the algebraic information by the discrete collection Bk. These 

intervals exactly encode when homology classes appear and disappear in the persistence 

module. The collection of such intervals can be visualized by plotting points in the 2D half 

plane {(x, y) | y ≥ x} which is known as a persistence diagram; or by stacking the horizontal 

intervals, which is known as a barcode. In this paper, for no reason other than convenience, 

we represent our information using barcodes. We call the barcode resulting from a sequence 

of trivial homology groups the empty barcode and denote it by ∅. Thus, for every interval 

[b, d) ∈ Bk, we call b the birth time and d the death time.

2.4 Evolutionary homology and its barcode representation

2.4.1 Kinematics—Consider a system of N not yet synchronized oscillators {u1, ⋯, uN} 

associated to a collection of N embedded points, r1, ⋯, rN ⊂ ℝd. We assume the global 

synchronized state is a periodic orbit denoted s(t) for t ∈ [t0, t1] where s(t0) = s(t1). For 

flexibility and generality, we work on post-processed trajectories obtained by applying a 

transformation function on the original trajectories, ui(t): = T ui(t) . The choice of function T 

is flexible and should fit the applications; in this work, we choose

T ui(t) = min
t′ ∈ t0, t1

ui(t) − s t′ 2,
(8)

which gives 1-dimensional trajectories for simplicity. Further, in our specific example, 

s(t): = T ( s(t)) = 0, but, again, this is not necessary in general.

We wish to study the effects on the synchronized system of N oscillators (an (N ×3)-

dimensional system) after perturbing one oscillator of interest. To this end, we set the initial 

values of all the oscillators except that of the ith oscillator to s(t ) for a fixed t ∈ t0, t1 . The 

initial value of the ith oscillator is set to ρ(s(t )) where ρ is a predefined function playing the 

role of introducing disturbance to the system. After the system starts running, some 

oscillators will be dragged away from and then go back to the periodic orbit as the 

disturbance is propagated and relaxed through the system. Let uj
i(t) denote the modified 

trajectory of the jth oscillator after perturbing the ith oscillator at t = 0. We focus on the 

subset of nodes that are affected by the perturbation,

V i = nj ∣ max
t > 0

min
t′ ∈ t0, t1

uj
i(t) − s t′ 2 ≥ ϵp
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for some fixed ϵp determining how much deviation from synchronization constitutes “being 

affected”.

2.4.2 Filtration function defined for coupled dynamical systems—Assuming we 

have perturbed the oscillator for node ni, let M = |Vi|. We will now construct a function fi on 

the complete simplicial complex, denoted by K or KM with M vertices. Here, we abuse 

notation and write Vi = {n1, ⋯, nM}. The filtration function f :KM ℝ is built to take into 

account the temporal pattern of the propagation of the perturbance through the coupled 

systems and the relaxation (going back to synchronization) of the coupled systems. It 

requires the advance choice of three parameters:

• ϵp ≥ 0, mentioned above, which determines when a trajectory is far enough from 

the global synchronized state, s(t) to be considered unsynchronized,

• ϵsync ≥ 0 which controls when two trajectories are close enough to be considered 

synchronized with each other, and

• ϵd ≥ 0 which is a distance parameter in the space where the points ri are 

embedded, giving control on when the objects represented by the oscillators are 

far enough apart to be considered insignificant to each other.

We will define the function fi by giving its value on simplices in the order of increasing 

dimension. Define

tsynci = min t ∣ ∫t
∞

uj
i t′ − uk

i t′ 2dt′ ≤
ϵsync

2 , ∀j, k .

That is, tsynci  is the first time at which all oscillators have returned to the global synchronized 

state after perturbing the ith oscillator. The value of the filtration function for the vertex nj is 

defined as

fi nj = min {t ∣ min
t′ ∈ t0, t1

uj
i(t) − s t′ 2 ≥ ϵp} ∪ {tsync

i } . (9)

Next, we give the function value fi for the edges of K. To avoid the involvement of any 

insignificant interaction between oscillators, an edge between nj and nk denoted by ejk is 

allowed in the earlier stage of the filtration only if djk
org ≤ ϵd where djk

org  is the distance 

between ri and rj in ℝd. Specifically, the value of the filtration function for the edge ejk is 

defined as
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fi ejk =

max{min{t ∣ ∫
t

∞
uj

i t′ − uk
i t′ 2dt′ ≤ ϵsync }, fi nj , fi nk }, if djk

org ≤ ϵd

tsync
i , if djk

org > ϵd .

(10)

It should be noted that to this point, f defines a filtration function because when 

djk
org ≤ ϵd, fi nj ≤ fi ejk  according to the definition given in Eq. (10). The property also 

holds when djk
org > ϵd because fi nj ≤ tsync according to the definition in Eq. (9) and fi(ejk) 

equals tsync in this case.

We extend the function to the higher dimensional simplices using the definition on the 1-

skeleton. A simplex σ of dimension higher than one is included in K(x) if all of its 1-

dimensional faces are already included; that is, its filtration value is defined iteratively by 

dimension as

fi(σ) = maxτ ≤ σfi(τ),

where the max is taken over all codim-1 faces of σ. Taking the filtration of K using this 

function (c.f. Eq. (6)) means that topological changes only occur at the collection of function 

values fi nj j ∪ fi ejk j ≠ k. Fig. 3 shows the filtration constructed for an example 

consisting of three trajectories.

2.4.3 Computation of evolutionary homology—The previous section gives a 

function fi:K V i ℝ defined on the complete simplicial complex with |Vi| vertices for each 

i = 1, ⋯, N. From the filtration defined by fi, we then compute the persistence barcode for 

homology dimension k, which we call the kth EH barcode, denoted Bi
k. The persistent 

homology computation for dimension ≥ 1 on the filtered simplicial complex is done using 

the software package Ripser [6] using the fact that k-dimensional homology only requires 

knowledge of k and k + 1-dimensional simplices. The 0-dimensional homology is computed 

with a modification of the union-find algorithm.

Fig. 4 gives an example of the geometric configurations of two sets of points associated to 

Lorenz oscillators and their resulting EH barcodes. The EH barcodes effectively examine the 

local properties of significant cycles in the original space which is important when the data 

is intrinsically discrete instead of a discrete sampling of a continuous space. As a result, the 

point clouds with different geometry but similar barcodes using traditional persistence 

methods1 may be distinguished by EH barcodes.

1Here, traditional means the Vietoris-Rips filtration on the point cloud induced by the embedding
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2.5 Topological learning

2.5.1 Metrics on the space of barcodes—The similarity between persistence 

barcodes can be quantified by barcode space distances. The most commonly used metrics 

are the bottleneck distance [27] and the p-Wasserstein distances [29]. The definitions of the 

two distances are summarized as follows.

The l∞ distance between two persistence bars I1 = [b1, d1) and I2 = [b2, d2) is defined to be

Δ I1, I2 = max b2 − b1 , d2 − d1 .

The distance between a bar I = [b, d) and null is analogously measured as

λ(I): = (d − b)/2 = min
x ∈ ℝ

Δ(I, [x, x)) .

For two finite barcodes of dimension k, B1
k = Iα

1
α ∈ Ak and B2

k = Iβ
2

β ∈ Bk, a partial 

bijection is defined to be a bijection θ:Ak′ Bk′ where Ak′ ⊆ Ak to Bk′ ⊆ Bk. In order to 

define the p-Wasserstein distance, we have the following penalty for θ

P (θ) = ∑
α ∈ A′

Δ(Iα1, Iθ(α)
2 )p + ∑

α ∈ Ak\Ak
λ(Iα1)p + ∑

β ∈ Bk\Bk′
λ(Iβ

2)p
1/p

Then the p-Wasserstein distance is defined as

dW , p B1
k, B2

k = min
θ ∈ Θ

P (θ),

where Θ is the set of all possible partial bijections from Ak to Bk. Intuitively, a partial 

bijection θ is mostly penalized for connecting two bars with large difference measured by 

Δ(·), and for connecting long bars to degenerate bars (the diagonals of persistence diagram), 

measured by λ(·).

The bottleneck distance is an L∞ analogue to the p-Wasserstein distance. The bottleneck 

penalty of a partial matching θ is defined as

P (θ) = max max
α ∈ A′

Δ Iα1, Iθ(α)
2 , max

α ∈ Ak\Ak
λ Iα1 , max

β ∈ Bk\Bk′
λ Iβ

2 .

The bottleneck distance is defined as

dW , ∞ B1
k, B2

k = min
θ ∈ Θ

P (θ) .
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2.5.2 Learning with barcodes—Evolutionary homology provides a relatively abstract 

characterization of the objects of interest. It is potentially powerful in many applications, but 

may be difficult to use out of the box for machine learning or quantitative data analysis 

techniques. In regression analysis or the training part of supervised learning, with Bi being 

the collection of sets of barcodes corresponding to the ith entry in the training data, the 

problem can be cast into the following minimization problem,

min
θb ∈ Θb, θm ∈ Θm

∑
i ∈ I

L yi, F Bi; θb ; θm ,

where L is a scalar loss function, yi is the collection of target values in the training set, F is a 

function that maps barcodes to suitable input for the learning models, and θb and θm are the 

parameters to be optimized within the search domains Θb and Θm respectively. The form of 

the loss function also depends on the choice of metric and machine learning/regression 

model.

A function F which translates barcodes to structured representation (tensors with fixed 

dimension) can be used with popular machine learning models including random forest, 

gradient boosting trees and deep neural networks. Another popular class of models are the 

kernel based models that depend on an abstract measurement of the similarity or distance 

between the entries.

Our choices for F, defined in Eq. (12) of Sec. 3.1, will arise from looking at the distance 

from the specified barcode to the empty barcode and there is no tuning of θb. In Sec. 3.3 

where we quantitatively analyze protein residue flexibility, we evaluate our method by 

checking the correlation between each topological feature defined in Eq. (12) and the 

experimental value (blind prediction) as well as the correlation between the output of a 

linear regression with multiple topological features and the experimental value (regression). 

In the former case, there is no parameter to be optimized, while in the latter case, the specific 

minimization problem can be written as

min
θm ∈ ℝn + 1

∑
i ∈ I

yi − EHi
p1, 1, ⋯, EHi

pn, n, 1 ⋅ θm
2
,

where EHi
pk, k

 is the topological parameter by computing the pk-Wasserstein distance of the 

empty set to the kth barcode associated with the EH computation of the ith protein residue 

(node), I is the set of indexes of all residues in the protein and yi is the experimental B-factor 

for the ith protein residue which quantitatively reflects flexibility.

3 Results

This section starts with protein flexibility analysis in Sec. 3.1. The analysis of ordered and 

disordered proteins is given in Sec. 3.2. Finally, the quantitative prediction of protein B-

factors is described in Sec. 3.3.
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3.1 Protein residue flexibility analysis

Proteins have many functions in life forms. They are consisted of one or multiple chains of 

amino acid residues and often fold into specific 3D structures. The amino acid residues have 

the same basic structure and different types of residues possess different side chains (often 

referred to as functional groups). The carbon atom connected to the side chain is called the 

alpha carbon and forms the backbone of a protein and depict the protein structure at residue 

level. For many functioning proteins, such as enzymes, certain levels of flexibility at 

designated locations are required to function correctly. The ability to predict protein 

flexibility is important in tasks including drug design, protein design, and protein stability 

analysis. In this section, we combine all the methods to formulate protein residue flexibility 

analysis using the EH barcodes. Consider a protein with N residues and let ri denote the 

position of the alpha carbon (Cα) atom of the ith residue. The coupled systems defined in 

Eq. (1) are used to study protein flexibility with each protein residue represented by an 

oscillator (the Lorenz system or the Rössler system in this application). Define the distance 

for the atoms in the original space as the Euclidean distance between the Cα atoms, 

dorg ri, rj = ri − rj 2. A weighted graph Laplacian matrix is constructed based on the 

distance function dorg to prescribe the coupling strength between the oscillators and is 

defined as

Aij =
e− dorg ri, rj /μ κ

, i ≠ j,
− ∑

l ≠ i
Ail, i = j, (11)

where μ and κ are tunable parameters. The matrix Γ is set to the identity matrix I.

To quantitatively study the flexibility of a protein, one needs to extract topological 

information for each residue. To this end, we go through the process given in the previous 

sections once for each residue. When addressing the ith residue, we perturb the ith oscillator 

at a time point in a synchronized system and take this state as the initial condition for the 

coupled systems. See Fig. 5 for an example of this procedure when perturbing the oscillator 

attached to a residue for a given embedding of one particular protein.

A collection of modified trajectories ui(t) i = 1
N  is obtained with the transformation function 

defined in Eq. (8). The persistence over time for ui(t) i = 1
N  is computed following the 

filtration procedure defined in Sec. 2.4.2. Let Bi
k be the kth EH barcode obtained from the 

experiment of perturbing the oscillator corresponding to residue i. We introduce the 

following topological features to relate to protein flexibility:

EHi
p, k = dW , p Bi

k, ∅ , (12)

where dW , p for 1 ≤ p < ∞ is the p-Wasserstein distance and p = ∞ is the bottleneck 

distance. We will show that these features characterize the behavior of this particular 

collection of barcodes, which in turn, captures the topological pattern of the coupled 

dynamical systems arising from the underlying protein structure.
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The interactions among residues are a major contribution to protein stability and flexibility. 

Here each protein residue is represented by a dynamical system. Their interactions are 

modeled by coupling of these dynamical systems. When this coupled system reaches 

synchronization state, a perturbation of one of the dynamical systems is introduced which 

serves as a probe to study the flexibility of the corresponding protein residue. Specifically, 

the flexibility of any given residue is reflected by how the perturbation induced stress is 

propagated and relaxed through the interactions in the system. Such a relaxation process will 

induce the change in the states of the nearby oscillators. Therefore, the records of the time 

evolution of this subset of coupled oscillators in terms of topological invariants can be used 

to analyze and predict protein flexibility.

The difference in results of the procedure can be seen in the example of Fig. 6 where the 

control of chaotic oscillators attached to a partially disordered protein (PDB:2RVQ) and a 

well-folded protein (PDB:1UBQ) is demonstrated. Clearly, the folded part of protein 2RVQ 

has strong correlations or interactions among residues from residue 25 to residue 110, which 

leads to the synchronization of the associated chaotic oscillators. In contrast, the random coil 

part of protein 2RVQ does not have much coupling or interaction among residues. 

Consequently, the associated chaotic oscillators remain in chaotic dynamics during the time 

evolution. For folded protein 1UBQ, the associated chaotic oscillators become synchronized 

within a few steps of simulation, except for a small flexible tail. This behavior underpins the 

use of coupled dynamical systems for protein flexibility analysis.

3.2 Discovery of disordered and flexible protein regions

To illustrate the correlation between protein residue flexibility and the topological features 

defined in Eq. (12), we study several proteins with intrinsically disordered regions. 

Intrinsically disordered proteins lack stable 3-dimensional molecular structures. One such an 

example is the Tau protein that stabilizes microtubules and its malfunction is related to 

Alzheimer’s disease. Partially disordered proteins refer to the intrinsically disordered 

proteins that contain both stable structure and flexible regions. In nature, the disordered 

regions may play important roles in biological processes which requires flexibility.

In this section, we use the coupled Lorenz system parameters, perturbation method for the 

ith residue, and simulation described in Fig. 4 (δ = 1, γ = 12, β = 8/3, μ = 0, κ = 2, Γ = I3, ϵ 
= 0.12). The simulation is stopped when all oscillators go back to synchronized state. This 

process is repeated for each residue. Two NMR structures of partially disordered proteins 

PDB:2ME9 and PDB:2MT6 are studied. The reconstructing 3D structures from NMR data 

often leads to multiple structure models that are all compatible to the NMR data. We 

compute the topological features for each model of the structures and take an average over 

the models. The results are plotted in Fig. 7. The disordered regions clearly correlate to the 

peaks of EH∞,0 and the valleys of EH∞,1, EH1,0, and EH1,1. The topological features are 

also able to distinguish between relatively stable coils (the coils that are consistent among 

the NMR models) and the disordered parts (the parts that differ among the NMR models).
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3.3 Protein B-factor prediction

B-factor describes how much an atom fluctuate around its mean position in crystal 

structures. Protein B-factors quantitatively measure the relative thermal motion of each atom 

and reflects atomic flexibility and dynamics. Though B-factor is also affected by factors 

such as the refinement methods, it is still a relatively robust measurement of atomic 

flexibility in proteins. In fact, high correlation (a correlation coefficient of about 0.8) of B-

factors among homologous proteins has been reported [75]. The x-ray crystal structures 

deposited to the Protein Data Bank contain experimentally derived B-factors which can be 

used to validate the proposed method [70,64]. To analyze protein flexible regions, B-factor 

prediction is needed for protein structures built from computational models and some 

experimentally solved structures using NMR or cryo-EM techniques. Normal mode analysis 

(NMA) is one of the first methods proposed for B-factor predictions [47]. The Gaussian 

network model (GNM) [5] was known for its better accuracy and efficiency compared to a 

variety of earlier methods [95]. The multiscale flexibility-rigidity index (FRI), which is 

about 20% more accurate than GNM, has been established as the state-of-the-art in the B-

factor predictions [65].

In this section, we compute the correlation between the topological features and the 

experimentally derived protein B-factors. Two oscillators are considered, the Lorenz system 

and the Rössler system. When Lorenz system is used, the same parameters are used as in 

Section 3.2 (δ = 1, γ = 12, β = 8/3, μ = 0, κ = 2, Γ = I3, ϵ = 0.12). When Rössler system is 

used, the same coupling parameters are used (a = 0.1, b = 0.1, c = 4, μ = 0, κ = 2, Γ = I3, ϵ = 

0.12). We further test the proposed topological features by building a simple linear 

regression model with a least square penalty against the experimental B-factors. A collection 

of 364 diverse proteins reported in the literature is chosen as the validation data (The set of 

365 proteins [64] excepts PDB:1AGN due to issue in reported B-factors [65]). The size of 

the proteins ranges from tens to thousands of amino acid residues. The topological features 

in the model are the same as the setup given in Sec. 3.2. An example of the resulting 

persistence barcodes for relatively rigid and relatively flexible residues are shown in Fig. 8.

The computed topological features are plotted against a relatively small protein and a 

relatively large protein in Fig. 9. Clearly, 0-dimensional topological features, specifically 

EH∞,0, provide a reasonable approximation to experimental B-factors. The regression using 

all topological information, EH, offers very good approximation to experimental B-factors. 

A summary of the results and a comparison to other methods is shown in Table 1 for the set 

of 364 proteins. It is seen that the present evolutionary topology based prediction 

outperforms other methods in computational biophysics. A possible reason for this excellent 

performance is that the proposed method gives a more detailed description of residue 

interactions in terms of three different topological dimensions and two distance metrics. This 

example indicates that the proposed EH has a great potential for other important biophysical 

applications, including the predictions of protein-ligand binding affinities, mutation induced 

protein stability changes and protein-protein interactions.

For both dynamical systems, it was observed that the lowest topological dimension (EH∗,0) 

generally has the strongest correlation to B-factors. The higher dimensional parameters 

(EH∗,1 and EH∗,2) still carry unique and valuable information which, in a fitting model, 
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boosts the overall performance when paired with EH∗,0 information. Moreover, the higher 

dimensional parameters are especially useful in the prediction of larger proteins (medium 

and large proteins in Table 1) indicating that high dimensions can potentially play important 

roles in the analysis of very complex systems. Despite the unstable performance in small 

proteins, all parameters show robust and superior performance in medium and large proteins. 

This observation further demonstrates the usefulness of the present method in handling 

datasets with very complex structures.

4 Conclusion

Most topological tools are constructed for the global topology of an object under study. The 

direct use of dynamical systems for the construction of topological persistence is scarce in 

general. In this work, we utilize dynamical system as a means to study the topology of an 

individual component of an object. We embed internal interactions of a complex physical 

object into a set of chaotic dynamical systems to couple chaotic oscillators together, which 

leads to the eventual synchronization of the dynamics. Simplices, simplicial complexes, and 

homology groups are subsequently defined based on trajectories of individual chaotic 

dynamical systems. The resulting topological tool, called evolutionary homology (EH), is 

able to analyze the topological invariants and its persistence over time of each individual 

component of a physical object. The resulting barcode representation of the topological 

persistence is able to unveil the quantitative local topology-local function relationship of 

individual subsystems of a physical object.

We choose the well-known Lorenz system and Rössler system as examples to illustrate our 

EH formulation. An important biophysical problem, protein flexibility analysis, is employed 

to demonstrate the proposed methods. Specifically, we construct weighted graph Laplacian 

matrices from protein residue networks to regulate the Lorenz or Rössler system, which 

leads to the synchronization of the chaotic oscillators associated with protein residue 

network nodes. The synchronization process for each individual oscillator reflects the 

corresponding Cα’s interaction pattern and is translated into topological invariants of various 

dimensions and their persistence over time. The Wasserstein and bottleneck metrics are used 

to quantitatively discriminate EH barcodes of various dimensions from different protein 

residues, unveiling their thermal fluctuations. The EH model is found to outperform other 

state-of-the-art methods, namely both geometric graph and spectral graph theory based 

approaches, in the protein B-factor predictions of a commonly used benchmark set of 364 

proteins.

Finally, the proposed EH will be a powerful tool for studying the local properties of other 

physical systems, such as the impurities of solid materials and partially disordered proteins. 

By appropriately reorganization and combination of EH barcodes, the proposed EH method 

can also be applied to the study of the global properties of a physical object, such as the 

binding affinities of protein-drug, protein-protein, protein-metal and protein-nucleic acid 

interactions and the protein stability change upon mutation.
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Fig. 1. 
(a) Chaotic trajectory of one oscillator without coupling. (b) The 70 synchronized oscillators 

associated with the carbon Cα atoms of protein PDB:1E68 are plotted together.
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Fig. 2. 
Examples of simplices of different dimensions (left), and a simplicial complex with a 

function given on the vertices and edges (middle). The barcode for the given function is 

drawn at right.
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Fig. 3. 
The filtration of the simplicial complex associated to three 1-dimensional trajectories (T(u)) 

as defined in Sec. 2.4.2. Here, each vertex corresponds to the trajectory with the same color. 

A vertex is added when its trajectory value exceeds the parameter ϵp; an edge is added when 

its two associated trajectories become close enough together that the area between the curves 

after that time is below the parameter ϵsync. Triangles and higher dimensional simplices are 

added when all necessary edges have been included in the filtration.
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Fig. 4. 
An example of the construction of the EH barcode. The geometry of two embedded systems 

is shown in Fig (a) and (b). Specifically, (b) consists of six vertices of a regular hexagon with 

side length of e1; and (a) consists of the vertices in (b) with the addition of the vertices of 

hexagons with a side length of e2 ≪ e1 centered at each of the previous vertices; here, e1 = 8 

and e2 = 1. Figs. (c) and (d) are the EH barcodes corresponding to Figs. (a) and (b) 

respectively. A collection of coupled Lorenz systems is used with parameters δ = 1, γ = 12, 

β = 8/3, μ = 8, k = 2, Γ = I3, and ϵ = 12; see Eqs. (2), (11) and (1). In the model for the ith 

residue, marked in red, the system is perturbed from the synchronized state by setting ui,3 = 

2s3 with s3 being the value of the third variable of the dynamical system at the synchronized 

state and is simulated with step size h = 0.01 from t = 0 using the fourth-order Runge-Kutta 

method. The calculation of persistent homology using the Vietoris-Rips filtration with 

Euclidean distance on the point clouds delivers similar bars [corresponding to the 1-

dimensional holes in (a) and (b) which are [e1 − e2, 2(e1 − e2)) and [e1, 2e1).
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Fig. 5. 
The result of perturbing residue 31 in protein (PDB:1ABA). (a) The modified trajectories as 

defined in Eq. (8) is plotted for each residue after the perturbation at t = 0 as a heatmap. The 

residues are ordered by the (geometric) distance to the perturbed site from the closest to the 

farthest. (b) The modified trajectories as defined in Eq. (8) is plotted for each residue after 

the perturbation at t = 0 as line plots. The darker lines are closer to the perturbed site. The 

heatmap shows filtration value for the edges as defined in Eq. (10) and the order of residues 

is the same as in (a). The parameters for the coupled Lorenz system and the perturbation 

method are the same as that of Fig. 4.
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Fig. 6. 
Left: partially disordered protein, model 1 of PDB:2RVQ. Right: well folded protien, 

PDB:1UBQ. The ui,1 value of each dynamical system is plotted as heatmap. The Lorenz 

system defined in Eq. (2) is used with the parameters δ = 10, γ = 28, β = 8/3. The coupling 

matrix A defined in Eq. (11) has parameters μ = 14, κ = 2. The coupled system defined in 

Eq. (1) has parameters Γ = I3 and ϵ = 12. The system is initialized with a random value 

between 0 and 1 and is simulated from t = 0 to t = 200 with step size h = 0.01. The system is 

numerically solved using the 4-th order Runge-Kutta method. It can be seen from the 

heatmaps that the oscillators corresponding to the disordered regions behave 

asynchronously.
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Fig. 7. 
(a) Models 1–3 of PDB:2ME9 with the disordered region colored in blue, red, and yellow 

for the three models. (b) Similar plot as (a) for PDB:2MT6. (c) Topological features for 

PDB:2ME9 whose large disordered region is from residue 28 to residue 85. (d) Topological 

features for PDB:2MT6 whose large disordered region is from residue 118 to residue 151.
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Fig. 8. 
Barcode plots for two residues. (a) Residue 6 of PDB:2NUH with a B-factor of 12.13 Å2. (b) 

Residue 49 of PDB:2NUH with a B-factor of 33.4 Å2.
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Fig. 9. 
B-factors and the computed topological features. EH shows the linear regression with 

EH1,0, EH1,1, EH∞,1, EH∞,0, EH1,0
, EH1,1

, EH2,0and EH2,1 within each protein. The y-

axes of the panels have different scales to show the correlation between the variances. (a) 

PDB:3PSM with 94 residues. (b) PDB:3SZH with 697 residues.
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Table 1

The averaged Pearson correlation coefficients (RP) between the computed values (blind prediction for the 

topological features and regression for the rest of the models) and the experimental B-factors for a set of 364 

proteins [65] and three sets of proteins of different sizes [70]. Top: Prediction RPs based on EH barcodes. 

Bottom: A comparison of the RPs of predictions from different methods based on the big protein set. Here, EH 

is the linear regression using EH∞,0, EH∞,1, EH1,0, EH1,1, EH2,0, and EH2,1 within each protein. For a few 

large and multi-chain proteins, to reduce the computation time and as a good approximation, we compute their 

EH barcodes on separated (protein) chains. The proteins that were analyzed on each separate chains include: 

1F8R, 1H6V, 1KMM, 2D5W, 3HHP, 1QKI, and 2Q52 for both attractors; and additionally, 1GCO, 3LG3, 

3W4Q, 2AH1, 3SZH, 4G6C for Rössler attractor. Note that there is an estimated upper limit (correlation 

coefficient of about 0.8) for B-factor prediction [75].

All (364) Small (33) Medium (36) Large (35)

Method Lorenz Rössler Lorenz Rössler Lorenz Rössler Lorenz Rössler

EH∞,0 0.586 0.469 0.476 0.504 0.569 0.531 0.565 0.500

EH∞,1 −0.039 0.119 −0.001 −0.010 −0.059 0.158 −0.062 0.105

EH∞,2 −0.097 0.003 −0.010 0.0 −0.099 0.0 −0.065 0.0

EH1,0 −0.477 0.486 −0.092 0.486 −0.521 0.542 −0.516 0.487

EH1,1 −0.381 0.204 −0.077 0.032 −0.384 0.276 −0.401 0.210

EH1,2 −0.104 0.002 −0.013 0.0 −0.105 0.0 −0.071 0.0

EH2,0 0.188 0.486 0.171 0.502 0.154 0.552 0.185 0.507

EH2,1 −0.258 0.015 −0.033 −0.022 −0.233 0.074 −0.276 −0.035

EH2,2 −0.100 0.002 −0.010 0.0 −0.102 0.0 −0.067 0.0

EH 0.691 0.698 0.746 0.773 0.701 0.729 0.663 0.665

Method RP Description

EH (Rössler) 0.698 Topological metrics

EH (Lorenz) 0.691 Topological metrics

mFRI 0.670 Multiscale FRI [65]

pfFRI 0.626 Parameter free FRI [64]

GNM 0.565 Gaussian network model [64]
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