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ABSTRACT Foamy viruses (FVs) are complex retroviruses that can infect humans
and other animals. In this study, by integrating transcriptomic and genomic data, we
discovered 412 FVs from 6 lineages in amphibians, which significantly increased the
known set of FVs in amphibians. Among these lineages, salamander FVs maintained
a coevolutionary pattern with their hosts that could be dated back to the Paleozoic
era, while in contrast, frog FVs were much more likely acquired from cross-species
(class-level) transmission in the Cenozoic era. In addition, we found that three dis-
tinct FV lineages had integrated into the genome of a salamander. Unexpectedly, we
identified a lineage of endogenous FVs in caecilians that expressed all complete
major genes, demonstrating the potential existence of an exogenous form of FV out-
side of mammals. Our discovery of rare phenomena in amphibian FVs has signifi-
cantly increased our understanding of the macroevolution of the complex retrovirus.

IMPORTANCE Foamy viruses (FVs) represent, more so than other viruses, the best
model of coevolution between a virus and a host. This study represents the largest
investigation so far of amphibian FVs and reveals 412 FVs of 6 distinct lineages from
three major orders of amphibians. Besides a coevolutionary pattern, cross-species and
repeated infections were also observed during the evolution of amphibian FVs.
Remarkably, expressed FVs including a potential exogenous form were discovered,
suggesting that active FVs might be underestimated in nature. These findings revealed
that the multiple origins and complex evolution of amphibian FVs started from the
Paleozoic era.

KEYWORDS foamy virus, endogenous foamy virus, expressed foamy virus, amphibian,
evolution, cross-species transmission, multiple origin, repeated infection

Retroviruses (family Retroviridae) have great medical and economic significance, as
some are associated with severe infectious disease or are oncogenic (1). Retroviruses

are notable, as they occasionally integrate into the germ line of a host and become en-
dogenous retroviruses (ERVs), which can be vertically inherited (2, 3). ERVs generated by
simple retroviruses are widely distributed in vertebrates (4–11). However, complex retro-
viruses, such as lentiviruses, foamy viruses, and deltaretroviruses, have rarely appeared
as endogenous forms.

Foamy viruses (FVs) (subfamily Spumavirinae) are complex retroviruses that exhibit
typical codivergence with their hosts, providing an ideal framework for understanding
the long-term evolutionary relationship between viruses and vertebrate hosts (12–15).
Exogenous foamy viruses are prevalent in mammals, including primates (12, 16),
bovines (17, 18), equines (19), bats (20), and felines (21). Vertebrate genomic analysis
first identified endogenous foamy viruses (EFVs) in sloths (22), and then they were
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found in several primates (23–25). The subsequent discovery of EFVs and EFV-like ele-
ments in fish and amphibian genomes indicated that foamy viruses, along with their
vertebrate hosts, have ancient origins (26, 27). Recently, the discovery of four novel
reptile EFVs and two avian EFVs demonstrated that FVs can infect all five major classes
of vertebrates (28–31).

Although a substantial number of EFVs have been found across the evolutionary
history of vertebrates (22, 24, 32), to date, only 6 EFV lineages have been found in
amphibians, and these were mainly found in salamanders (26). Most importantly, no
potential exogenous foamy viruses have been found outside of their mammalian hosts
(26, 31). In this study, by combining traditional ERV data mining with virome analysis,
we found one potential exogenous foamy virus and several novel lineages of foamy
viruses, which doubles the set of known foamy viruses in amphibians. Our work also
provides novel insight into the early evolution of foamy viruses from the Paleozoic to
the Cenozoic era.

RESULTS
Discovery and confirmation of foamy viral elements and expressed foamy

viruses in amphibians.We screened 19 amphibian genomes using a homology-based
stepwise manner as described in Materials and Methods. This led to the discovery of
18 foamy-like ERVs in Spea multiplicate (Mexican spadefoot toad), 64 in Rhinatrema
bivittatum (two-lined caecilian), and 131 in Ambystoma mexicanum (axolotl) (see Table
S1 in the supplemental material). The foamy-like elements in S. multiplicate showed
high similarity to each other. Such high similarity between copies has also been
observed in foamy-like elements in R. bivittatum. However, there were two distinct
groups of foamy-like ERVs in A. mexicanum that showed an average 64% identity with
99% coverage.

In order to discover any potential exogenous foamy viruses, we also searched all
available transcriptome sequencing data for 61 amphibians in the transcriptome
sequence assembly (TSA) database. Notably, we found 58 foamy virus-like RNA copies in
Tylototriton wenxianensis (Wenxian knobby newt), 131 in Taricha granulosa (rough-
skinned newt), and 10 in R. bivittatum. Homologous comparison with NviFLERV-1 (26)
showed that all three groups of foamy-like viral copies harbored typical major coding
regions, i.e., GAG, POL, and ENV, with an average similarity of 22% to 76%.

To examine whether these viral elements belonged to the clade of foamy viruses, a
phylogenetic tree was inferred using the reverse transcriptase (RT) protein of represen-
tative viruses from all of the genera of Retroviridae (Fig. 1; Table S2). Our RT phyloge-
netic tree revealed that novel viral elements found in amphibians were grouped within
the foamy virus clade (bootstrap value,.90%), which confirmed that they were indeed
foamy viruses. In addition, these foamy-like viral elements could be divided into three
major clades, where the viral elements found in different newts, including previously
identified NviFLERV, clustered together, while the viral elements found in R. bivittatum
and S. multiplicate formed respective monophyletic groups. Also, of note was that
foamy-like ERVs in A. mexicanum divided into two clusters, indicating the existence of
two lineages of EFVs in A. mexicanum.

Thus, in accordance with the nomenclature proposed for ERVs (33), the foamy-like
ERVs found in S. multiplicate and R. bivittatum were named ERVs-Spuma.n-Smu (n� 1
to 18) and ERVs-Spuma.n-Rbi (n� 1 to 64), respectively. Additionally, two lineages in A.
mexicanum were designated ERVs-Spuma.an-Ame (n� 1 to 104) and ERVs-Spuma.bn-
Ame (n� 1 to 18). Moreover, the expressed viral elements found in T. wenxianensis, T.
granulosa, and R. bivittatum were then named expressed NFVtwe.n (exNFVtwe) (n� 1
to 58), expressed NFVtgr.n (exNFVtgr) (n� 1 to 131), and expressed CFVrbi.n (exCFVrbi)
(n� 1 to 10), respectively.

EFV and exFV genome characterization. Fourteen ERVs-Spuma-Smu, 54 ERVs-
Spuma-Rbi, 57 ERVs-Spuma.a-Ame, and 15 ERVs-Spuma.b-Ame, of which.5 kb was
retrieved from each of their respective genomes, were used to construct a consensus
sequence for each EFV lineage (Fig. 2A; Data Set S1). The consensus genomes of novel
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EFVs all harbored pairwise long terminal repeats (LTRs) and exhibited typical foamy vi-
rus structure, containing three major genes, gag, pol, and env, and one (ERV-Spuma-
Rbi) or two (ERVs-Spuma-Smu, ERVs-Spuma.a-Ame, and ERVs-Spuma.b-Ame) putative
accessory genes. It is noteworthy that none of these accessory genes showed similarity
to any genes coding for known proteins. By searching against the Conserved Domain
Database (CDD) using CD-Search, we were able to identify two typical foamy virus con-
served domains in all four consensus EFVs: (i) the gag_spuma superfamily domain
(cl26624) (34, 35) and (ii) the Foamy_virus_env superfamily domain (cl04051) (32).
However, ERV-Spuma-Smu exclusively contained the Spuma_A9PTase superfamily do-
main (cl08397) (26) that is present in all mammalian foamy virus Pol proteins. The exis-
tence of these domains gave additional support to their classification as foamy viruses.
Other regions or domains, such as the RT_like superfamily (RT) domain (cl02808), the
RNase_H_like superfamily and RT_RNaseH_2 superfamily (RH) domains (cl14782,
cl39038), and the rve and Integrase_H2C2 and SH3_11 superfamily domains (INT)
(pfam00665, pfam17921, cl39492) were also identified in all EFVs (Fig. 2A).

In fact, a third lineage has also been found in A. mexicanum. However, we identified
only one full-length ERV-Spuma.c-Ame among multiple copies (9 copies). Accordingly,
the genome structure of this full-length ERV-Spuma.c9-Ame is presented in Fig. 2B, but
its predicted pairwise LTR was too short (215 bp) in length and it harbored only a par-
tially conserved domain (GAG, RT, and IN), which made it relatively difficult to align
with other EFV lineages.
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The genomes of exFVs were then separately annotated, and we found that all line-
ages of exFVs harbored major genes, including gag, pol, and env, and they were distrib-
uted in different contigs in most cases (Fig. 2C). Accordingly, the foamy virus conserved
domains were also identified in each lineage, including (i) the gag_spuma superfamily
domain (cl26624) (34, 35) and (ii) the Foamy_virus_env superfamily domain (cl04051)
(32) and other retroviral domains (RT, RH, and IN). We also found that most copies of
exNFVtgr contained premature stop codons or harbored only partial genes, which indi-
cated that they might be ERV-derived RNA. It is worth noting that exCFVrbi-1 (contain-
ing gag), exCFVrbi-2 (containing pol), exCFVrbi-3 (containing env), exNFVtwe -1,2,4,5
(containing gag), exNFVtwe-4 (containing pol), and exNFVtwe-5 (containing env) har-
bored major genes separately without any stop codon or indels, indicating the possible
existence of complete functional genomes for exCFVrbi and exNFVtwe.

Since both exCFVrbi and EFV have been found in R. bivittatum, we then further
checked the homology of these two viruses (Fig. 2D). By mapping the assembled exFV
contigs to a consensus ERV-Spuma-Rbi genome, we found that all exFV contigs
showed high (98% to 100%) similarity to it, indicating that they were the same foamy
virus. This suggests that all the major genes (gag, pol, env, and accessory genes) of
exCFVrbi have been completely expressed without any stop codons or indels, indicat-
ing the high probability that exCFVrbi is the first potential exogenous form of FV out-
side of mammalian hosts. Also worth noting is that such phenomena were observed in
koala retrovirus, where active endogenous koala retrovirus can be expressed to form
exogenous viral particles (36–38).

Phylogenetic analysis. To elucidate the relationship between novel exFVs and
EFVs identified here with other vertebrate FVs and EFVs, both long POL (.500 amino
acids [aa] residues in length) and ENV (.320 aa in length) protein phylogenetic trees
were generated to accommodate for their different evolutionary histories (Fig. 3). The
phylogenies of pol and env were slightly different, supporting the theory that different
genes of FVs indeed had different evolutionary histories (26, 31, 39). However, both
phylogenies indicated that the six lineages of EFVs discovered in amphibians could be
divided into three clades, giving support to the idea that amphibian FVs had multiple
origins. Two lineages of ERV-Spuma-Ame and two exNFVs found in salamanders clus-
tered together with the previously identified NviFLERV, which was consistent with our
codivergence theory. Also, ERV-Spuma.a-Ame and ERV-Spuma.b-Ame robustly clus-
tered together with a long branch, reconfirming that they independently resulted from
two different foamy virus infections. In addition, in the pol phylogeny, the novel
Gymnophiona exCFVrbi and ERV-Spuma-Rbi sequences formed a sister clade closely
related to salamander FVs, and they formed a monophyletic group with robust support
in the env phylogeny, indicating the different evolutionary histories of genes from
Gymnophiona FVs. Notably, frog ERV-Spuma-Smu formed a well-supported monophy-
letic group that was equally closely related to both avian and mammalian EFVs, indicat-
ing that ERVs-Spuma-Smu were possible acquired from cross-species transmission
rather than through virus-host divergence.

Relationship of foamy viruses with their hosts. Previous research has provided
strong evidence for the codivergence of foamy viruses and their hosts, and some
cross-species transmission events have also been observed in EFVs (12, 23, 28–30).
Here, to further investigate the deep histories and evolutionary relationships between
FVs and their vertebrate hosts, we generated a phylogenetic tree for FVs, EFVs, and

FIG 2 Legend (Continued)
to bottom) are shown under a genomic schematic diagram for each consensus genome. Putative open reading frames (ORFs) are shown in light
purple and were used to determine viral coding regions. The predicted domain or regions that encode conserved proteins are represented by
colored boxes. (B) Genomic organization of ERV-Spuma.c9-Ame. The only full-length ERV-Spuma.c9-Ame genome is drawn to scale using lines and
boxes. The predicted putative domain or regions that encode conserved proteins are represented by colored dashed boxes. (C) Representative
genomic structures of exFVs. The contigs and ORFs of exFVs are drawn to scale using lines and boxes. The predicted domain or regions that
encode conserved proteins are represented by colored boxes. (D) Mapping result of the exCFVrbi genome against the consensus ERV-Spuma-Rbi
genome. LTR, long terminal repeat; GAG, group-specific antigen gene; POL, polymerase gene; ENV, envelope gene; RT, reverse transcriptase; RH,
RNase H.

Complex Evolution of Amphibian Foamy Viruses Journal of Virology

July 2021 Volume 95 Issue 14 e00484-21 jvi.asm.org 5

https://jvi.asm.org


exFVs (Fig. 4). This tree showed that most FVs maintained a stable codivergence pat-
tern with their hosts (Fig. 4A). However, the outcomes of different settings in codiver-
gence analysis all indicated that cross-species transmission played an important role in
the early evolution of foamy viruses (Fig. 4B), specifically in amphibians, where frog
ERV-Spuma-Smu formed a single clade and was equally closely related to both avian
and mammalian EFVs rather than other amphibian FVs (Fig. 4A). In addition, exNFVtgr
clustered with exNFVtwe, which was also inconsistent with their host phylogeny. We
also noted that Gymnophiona ERV-Spuma-Rbi and exCFVrbi formed a well-supported
(bootstrap value, 88%) monophyletic clade, giving additional credence to the idea that
amphibian FVs had multiple origins and contained several paraphyletic groups.

To roughly estimate the insertion time of amphibian EFVs, an LTR divergence-based
dating method was used (40). In total, 3 ERVs-Spuma-Smu, 43 ERVs-Spuma.n-Rbi, 5
ERVs-Spuma.a-Ame, and 3 ERVs-Spuma.b-Ame were included in our dating estimation
(Table 1 and Fig. 4C). This analysis revealed that ERVs-Spuma-Smu were relatively
young, and their insertions could be dated back to 3.7 to 20.9 million years ago (MYA),
close to the estimated divergence time of S. multiplicate (18.9 MYA). However, the
insertion of ERVs-Spuma-Rbi could be traced back to as recently as 12.2 MYA, which is
much more recent than the estimated divergence time for R. bivittatum (135 to 213
MYA). The insertion of ERVs-Spuma.b-Ame could date back to 2.4 to 24.9 MYA. In con-
trast, another lineage in A. mexicanum, ERVs-Spuma.a-Ame, could be traced back to
18.9 to 56 MYA, which is more ancient. Nevertheless, as LTR dating might severely
underestimate ERV ages, these estimates should be treated with caution (41).
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Combining our coevolution analyses with our dating estimations allowed us to fur-
ther calibrate the foamy virus infection timeline in amphibians (Fig. 4C). Including pre-
vious research, it seemed that most salamander EFVs followed a codivergent pattern
(Fig. 4A). To date, all screened salamander species harbored foamy viruses, five-eighths

TABLE 1 Dating the EFV insertion based on LTR-LTR divergence

ERV name Divergence Integration time (MYA)
ERV-Spuma.10-Rbi 0.0009 0.29 0.49
ERV-Spuma.11-Rbi 0.0018 0.59 0.97
ERV-Spuma.12-Rbi 0 0.00 0.00
ERV-Spuma.13-Rbi 0.0072 2.35 3.90
ERV-Spuma.14-Rbi 0.0018 0.59 0.97
ERV-Spuma.15-Rbi 0.0009 0.29 0.49
ERV-Spuma.1-Rbi 0.0009 0.29 0.49
ERV-Spuma.21-Rbi 0.0018 0.59 0.97
ERV-Spuma.22-Rbi 0.0027 0.88 1.46
ERV-Spuma.23-Rbi 0 0.00 0.00
ERV-Spuma.24-Rbi 0.0009 0.29 0.49
ERV-Spuma.25-Rbi 0.0188 6.14 10.17
ERV-Spuma.26-Rbi 0.0143 4.67 7.74
ERV-Spuma.27-Rbi 0.0017 0.56 0.92
ERV-Spuma.29-Rbi 0.0022 0.72 1.19
ERV-Spuma.2-Rbi 0.0058 1.90 3.14
ERV-Spuma.30-Rbi 0.0058 1.90 3.14
ERV-Spuma.31-Rbi 0.0016 0.52 0.87
ERV-Spuma.32-Rbi 0.0063 2.06 3.41
ERV-Spuma.34-Rbi 0 0.00 0.00
ERV-Spuma.35-Rbi 0 0.00 0.00
ERV-Spuma.36-Rbi 0.0063 2.06 3.41
ERV-Spuma.37-Rbi 0.0036 1.18 1.95
ERV-Spuma.3-Rbi 0.0009 0.29 0.49
ERV-Spuma.41-Rbi 0.0059 1.93 3.19
ERV-Spuma.42-Rbi 0.0009 0.29 0.49
ERV-Spuma.43-Rbi 0 0.00 0.00
ERV-Spuma.45-Rbi 0.0059 1.93 3.19
ERV-Spuma.46-Rbi 0.0072 2.35 3.90
ERV-Spuma.47-Rbi 0.0018 0.59 0.97
ERV-Spuma.4-Rbi 0.0072 2.35 3.90
ERV-Spuma.52-Rbi 0.0018 0.59 0.97
ERV-Spuma.55-Rbi 0 0.00 0.00
ERV-Spuma.56-Rbi 0.0054 1.76 2.92
ERV-Spuma.57-Rbi 0.0027 0.88 1.46
ERV-Spuma.58-Rbi 0.0116 3.79 6.28
ERV-Spuma.60-Rbi 0 0.00 0.00
ERV-Spuma.63-Rbi 0.0075 2.45 4.06
ERV-Spuma.64-Rbi 0.0225 7.35 12.18
ERV-Spuma.65-Rbi 0.0027 0.88 1.46
ERV-Spuma.67-Rbi 0 0.00 0.00
ERV-Spuma.6-Rbi 0.0009 0.29 0.49
ERV-Spuma.9-Rbi 0.0089 2.91 4.82
ERV-Spuma.4-Smu 0.0386 12.61 20.89
ERV-Spuma.5-Smu 0.016 5.23 8.66
ERV-Spuma.1-Smu 0.0113 3.69 6.11
ERV-Spuma.a10-Ame 0.0713 23.30 38.58
ERV-Spuma.a37-Ame 0.1034 33.79 55.95
ERV-Spuma.a61-Ame 0.0758 24.77 41.02
ERV-Spuma.a7-Ame 0.0695 22.71 37.61
ERV-Spuma.a9-Ame 0.0579 18.92 31.33
ERV-Spuma.b11-Ame 0.0281 9.18 15.21
ERV-Spuma.b4-Ame 0.046 15.03 24.89
ERV-Spuma.b6-Ame 0.0129 4.22 6.98
ERV-Spuma.b7-Ame 0.0073 2.39 3.95
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of which were exFVs, indicating the possibility that circulation of foamy virus in
Caudata might date back to the Paleozoic era, and these viruses, together with their
hosts, appeared to have an ancient origin. In contrast, frog EFVs and exFVs (ERV-
Spuma-Smu and XtrFLERV) appeared to be the result of cross-species transmission
events (Fig. 4), and other species in the same genus of their host did not harbor such
FVs (26). Thus, they were relatively young compared to other amphibian FVs, which
emerged in the Cenozoic era. However, this was the first time we found Gymnophiona
EFV and exFV, and other related species did not harbor such FVs. Thus, infection with
these viruses could date back to sometime between the Mesozoic and Cenozoic eras.
Taking these facts into consideration, it seems that infection with foamy viruses in
amphibians began sometime between the Paleozoic and Cenozoic eras.

DISCUSSION

In this study, we report a distinct lineage of FVs in the two-lined caecilian (order
Gymnophiona) at both the DNA and RNA level, which added Gymnophiona to the list of
currently known hosts of FVs. To date, in amphibians, 8 salamanders, 2 frogs, and 1 cae-
cilian have been confirmed to carry FVs (Fig. 4A) (26). However, the evolutionary histories
of FVs in different hosts appear to be extremely different (Fig. 4). We found that all
screened salamanders harbored FVs and that they maintained a codivergence pattern
with their host within the clade of salamanders (26). It seems that FVs might have been
circulating in salamanders starting from the Paleozoic era (283 to 311 MYA). In contrast,
only 2 of 15 frogs carried FVs, indicating the rarity of FVs in frogs, and they were largely
not a reservoir for FVs. Notably, ERV-Spuma-Smu and the previously identified XtrFLERV
in frogs were acquired from cross-class transmission recently in the Cenozoic era, where
the former was from a potential unknown land retrovirus and the latter was from a ma-
rine retrovirus (26). This reconfirmed that the water-land interface was not a strict barrier
to viral transmission and that cross-class transmission occurred occasionally (5).
Although only three genomes were available for caecilians, we were able to identify a
lineage in the two-lined caecilian. Phylogenetic analysis revealed that ERV-Spuma-Rbi
was basal to all amphibians FVs, indicating the ancient origin of caecilian FVs (Fig. 4A).
Taking all these data into consideration, it seemed that amphibian FVs had multiple ori-
gins and complex evolutionary histories. However, it is possible that this pattern will
change with a larger sampling of taxa such that the EFV phylogeny expands (28).

Previous research identified one salamander (Japanese fire belly newt) and four fishes
that harbored two EFV lineages (26). Here, we identified a novel salamander (axolotl)
which harbored multiple lineages of FVs, and they were characterized at the genomic
level. In fact, we found three lineages of FVs in axolotl (Fig. 2A and B), including ERV-
Spuma.a-Ame, ERV-Spuma.b-Ame, and ERV-Spuma.c-Ame. However, we identified only
one full-length ERV-Spuma-c-Ame among multiple copies (9 copies). Accordingly, the ge-
nome structure of this full-length ERV-Spuma.c9-Ame is presented in Fig. 2B, but its pre-
dicted pairwise LTR was too short (215bp) in length, and it harbored only a partially con-
served domain (GAG, RT, and IN), which made it relatively difficult to align with other
EFV lineages. Thus, we did not include this lineage in our major analyses. But, taking this
lineage into consideration, we confirmed that amphibians could be infected with several
different FVs. These FVs, however, were more likely to integrate into host genomes at dif-
ferent periods of time (Fig. 4C). By comparing their genomes, we found that their enve-
lope proteins showed limited similarity (46%). As the envelope gene determines the host
range and binding receptor for a virus (42–45), this observation suggested that these
two lineages might bind to different receptors when they infect their host.

Transcriptome data provided us with additional resources for discovering novel exog-
enous and endogenous viruses (46). Previous research has identified an enormous num-
ber of viruses that have shown limited similarity to well-defined viruses (47), and foamy
viral contigs were also discovered in several salamanders and one caecilian (Fig. 4C) (20,
26). In our study, we improved the method by incorporating the method into virome
analyses. This led to the discovery of three lineages of exFVs in two salamanders and
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one caecilian, and these viruses showed limited similarity to known exogenous mammal
FVs (26% to 39% conservation of the POL protein). We characterized these viruses in
detail and found that all lineages harbored major proteins of retroviruses in different
segments (Fig. 2C), which could not be directly assembled at the genome level. Overall,
the efficacy of virus discovery using transcriptome analysis depends on sequencing
depth and assembly quality. However, the workflow presented here provides a new
refinement for discovering novel retroviruses.

Importantly, among all exFVs, we found that exCFVrbi contained no stop codons or
any indel in our contigs, which included complete major genes (Fig. 2C and D). As
both genome and transcriptome data were available for R. bivittatum, we made a com-
parison between exCFVrbi and ERV-Spuma-Rbi and found that exCFVrbi could be the
result of expression of ERV-Spuma-rbi. Thus, considering the fact that completely
expressed ERV could be assembled into viral particles, which has also been reported in
koala retrovirus, exCFVrbi might have been the first potential exogenous foamy virus
in amphibians. Although we could not directly examine such viral particles, this
research still supports the assumption that exogenous foamy viruses could exist in spe-
cies other than mammals.

Recently, another study identified the exaptation of foamy virus in gecko (30).
This indicated that foamy virus-derived genes could also be coopted. In our study,
we annotated exFV contigs in detail and found that 7 contigs contained gag and 3
contigs contained env in NFVtwe with no stop codon, all of which had the
capacity to be translated into proteins. In other words, they had potential as
retrovirus-derived candidates for cooption identification. Also worth noting was
that most exFVtgr-related sequences contained stop codons and their open
reading frames (ORFs) were incomplete, which might indicate that they were
likely to be ERV-derived long noncoding RNAs (lncRNAs) rather than exogenous
retroviruses. Moreover, they might also function as lncRNAs to participate in
genomic regulatory processes (48). However, this speculation should be verified
by further study.

In conclusion, by integrating genomic and transcriptomic data and performing a phylo-
genomic analysis, we discovered six lineages of FVs with different evolutionary histories,
doubling the known set of foamy viruses in amphibians. We also confirmed that amphib-
ians could be infected by multiple FVs at different periods of time. Interestingly, we identi-
fied the first potential expressed form of FV (exCFVrbi) in caecilians, which could be the
first exogenous form of foamy virus existing in species other than mammals. This research
demonstrates repeated infections and multiple origins for amphibian FVs and reveals a
complex macroevolution of foamy viruses with their hosts.

MATERIALS ANDMETHODS
Genome and transcriptome screening and EFV/exFV identification. As most EFVs showed limited

similarity to exogenous FVs and previously found EFVs, a stepwise method was used for amphibian
EFV mining. First, all 19 amphibian genome assemblies (GCA_000004195.4, GCA_001663975.1,
GCA_002915635.3, GCA_901001135.2, GCA_014858855.1, GCA_009364415.1, GCA_900303285.1, GCA_902459505.2,
GCA_002284835.2, GCA_901765095.2, GCA_000935625.1, GCA_009667805.1, GCA_009364455.1, GCA_004786255.1,
GCA_009802015.1, GCA_009364435.1, GCA_009364475.1, GCA_009801035.1, and GCA_011038615.1), excluding
genomes which had previously been found for any EFV in GenBank as of November 2020, were screened for
foamy-like viruses using tblastn (49), and conserved Pol proteins of foamy viruses, including EFVs, were used as
probes (see Table S2 in the supplemental material). A 25% sequence identity over a 40% region with an E value set
to 1E25 was used to filter significant hits. Second, potential foamy-like elements were included in phylogenetic
analysis. Hits that clustered with EFVs and FVs were considered EFVs. The flanking sequences of these EFVs were
then extended to identify viral pairwise LTRs using BLASTN (49), LTR_Finder, and LTR_harvest. In total, we were able
to identify 5 full-length (containing pairwise LTRs) EFVs in S. multiplicate, 46 in R. bivittatum, and 26 in A. mexicanum.
These full-length EFVs were then used as a query to search for EFV copies using blastn. Sequences longer than 4kb
with 85% identity were regarded as copies of each EFV lineage (Table S1). In accordance with the nomenclature pro-
posed for ERVs, EFVs found in S. multiplicate, R. bivittatum, and A. mexicanum were named ERVs-Spuma.n-Smu,
ERVs-Spuma.n-Rbi, and ERVs-Spuma.n-Ame, respectively. As there were three lineages of EFVs in A. mexicanum, they
were separately designated as ERVs-Spuma.an-Ame, ERVs-Spuma.bn-Ame, and ERVs-Spuma.cn-Ame, respectively.

To identify potential exFVs, all 61 transcriptome sequencing assemblies (TSA) (GenBank accession
no. GAEG00000000, GAEI00000000, GAQK00000000, GEBK00000000, GEGF00000000, GEGG00000000,
GEGH00000000, GEGI00000000, GEGJ00000000, GEGK00000000, GBET00000000, GDRL00000000,
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GEGL00000000, GFBS00000000, HADQ00000000, HADR00000000, HADS00000000, HADT00000000,
HADU00000000, HADV00000000, GECV00000000, GESS00000000, GFBM000000000, GFLD00000000,
GFLI00000000, GFLJ00000000, GFLO00000000, GFMT00000000, GFMY00000000, GFNJ00000000,
GENE00000000, GFOD00000000, GFOE00000000, GFOF00000000, GFOG00000000, GFOH00000000,
GFZP00000000, GGLB00000000, GGNS00000000, GGTL00000000, GDDO00000000, GGUQ00000000,
GGUR00000000, GGUS00000000, GHBH00000000, GHBO00000000, GHDZ00000000, GHKF00000000,
GHME00000000, HAML00000000, GHCG00000000, GHWT00000000, GICS00000000, GIKK00000000,
GIKS00000000, GINY000000000, GIPO00000000, GISC00000000, ICLD00000000, ICPN00000000, and
GHMZ00000000), excluding assemblies which had previously been found for any FV, were screened
using tblastn, and all three major proteins of amphibian EFVs, including the newly identified ERVs-
Spuma-Smu, ERVs-Spuma-Rbi, and ERVs-Spuma-Ame, were used as probes. A 25% sequence identity
over a 40% region with an E value set to 1E25 was used to filter significant hits. Then, the calling hit
contigs were included in the phylogenetic analysis. The viral contigs within a clade of FVs were consid-
ered. In total, three exFVs were found, and exFVs in T. granulosa, T. wenxianensis, and R. bivittatum were
named exNFVtgr.n, exNFVtwe.n, and exCFVrbi.n, respectively.

Consensus genome construction and genome annotation. EFVs longer than 5 kb in each EFV line-
age were aligned using MAFFT 7.222 (50) and then used to construct consensus sequences for each EFV
lineage. The distributions of open reading frames (ORFs) in copies of EFV and exFV contigs were deter-
mined using ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/) at NCBI and confirmed by BLASTP (49).
Conserved domains for each sequence were found by using CD-Search against the Conserved Domain
Database (CDD) (https://www.ncbi.nlm.nih.gov/cdd/) (51).

To construct putative full-length coding regions for exFVs, we used the method described below
(52, 53). If a contig mapped to the same coding gene (e.g., the pol gene) with high similarity (.85%),
then these contigs were used to construct consensus sequences for each gene. Otherwise, to decide
which contig was used to construct genomes for exFVs, we (i) compared the phylogenetic positions of
related viral proteins, (ii) compared the similarities with related proteins from a reference foamy virus,
and (iii) checked the completeness of our conserved domain. Then, the selected contigs were used to
construct putative genomes for exFVs. However, the putative genomes for exFVs were used only in con-
catenated Gag-Pol-Env phylogeny.

Molecular dating. ERV integration time can be approximately estimated using the relationship
T = (D/R)/2, in which T is the integration time (in million years [MY]), D is the number of nucleotide
differences per site between a set of pairwise LTRs, and R is the genomic substitution rate (in nucleo-
tide substitutions per site per year) (40, 54). We used a previously estimated neutral nucleotide
substitution rate for frogs (9.24� 10210 to 1.53� 1029 nucleotide substitutions per site per year) (55)
to estimate the evolution of amphibians. LTRs less than 300 bp in length were excluded from this
analysis (29, 56). In total, 3 ERVs-Spuma -Smu, 43 ERVs-Spuma.n-Rbi, 5 ERVs-Spuma.a-Ame, and
3 ERVs-Spuma.b-Ame containing a pairwise intact LTR were used to estimate integration time in this
manner (Table 1).

Phylogenetic analysis. To investigate the evolutionary relationship between FVs, exFVs, and EFVs,
protein sequences for RT, POL, ENV, and concatenated Gag-Pol-Env were aligned using MAFFT 7.222
(50) (Data Sets S2 to S5). The regions in the alignment that aligned poorly were removed using TrimAL
(57) and confirmed manually in MEGA X (58). A sequence was excluded if its length was less than 75% of
the alignments. The best-fit models (RT, VT1G; POL, LG1F1I1G; ENV, LG1F1I1G; and Gag-Pol-Env,
LG1F1I1G) were selected using ProtTest (49), and the phylogenetic trees for these protein sequences
were inferred using the maximum likelihood (ML) method in PhyML (59) or IQ-Tree (60), incorporating
100 bootstrap replicates to assess node robustness. Phylogenetic trees were viewed and annotated in
FigTree v1.4.3 (https://github.com/rambaut/figtree/).

Coevolution analysis. To assess the macroevolution of foamy viruses and their hosts, event-based
Jane 4 (61) was used. We set the cost parameters (cospeciation, duplication, duplication and host switch,
loss, and failure to diverge, respectively), based on previous research, as follows: (i) 21, 0, 0, 0, 0 (26); (ii)
0, 1, 2, 1, 1; and (iii) 0, 1, 1, 2, 0 (61). Then, statistical analyses were performed using Jane to assess
robustness by generating random parasite trees with a sample size of 500.

Data availability. All the data needed to generate the conclusions in the article are present in the
article itself and the supplementary data.
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