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Abstract: From viruses to bacteria, our lives are filled with exposure to germs. In built environments,
exposure to infectious microorganisms and their byproducts is clearly linked to human health. In the
last year, public health emergency surrounding the COVID-19 pandemic stressed the importance of
having good biosafety measures and practices. To prevent infection from spreading and to maintain
the barrier, disinfection and hygiene habits are crucial, especially when the microorganism can persist
and survive on surfaces. Contaminated surfaces are called fomites and on them, microorganisms
can survive even for months. As a consequence, fomites serve as a second reservoir and transfer
pathogens between hosts. The knowledge of microorganisms, type of surface, and antimicrobial agent
is fundamental to develop the best approach to sanitize fomites and to obtain good disinfection levels.
Hence, this review has the purpose to briefly describe the organisms, the kind of risk associated
with them, and the main classes of antimicrobials for surfaces, to help choose the right approach to
prevent exposure to pathogens.

Keywords: antimicrobial; disinfectant; surface disinfection; fomite; surface contamination; microor-
ganisms

1. Introduction

In built environment, especially considering an indoor lifestyle, touching objects
or surfaces which surround us is integral to everyday life. Such objects or surfaces if
contaminated are called fomites and, in the 21st century, their role in disease transfer is
higher than ever in human history. Indeed, most microorganisms found in the indoor
environment are inactive, dormant, or dead and either show no impact on human health
or are even beneficial. Nevertheless, fomites can become contaminated by pathogenic
organisms which have a variety of negative health consequences. In fact, microorganisms
can survive even for many months and multiply on surfaces or objects [1], leading to the
development of secondary reservoirs. As a consequence fomites can serve as a mechanism
for transfer between hosts, just think to doorknobs, elevator buttons, handrails, phones,
keyboards, writing implement, etc., that are touched by a person that afterward will handle
other objects (Figure 1).

Furthermore, experimental data show that touching a fomite carries approximately
the same risk for the acquisition of a lot of microorganisms (i.e., Methicillin-Resistant
Staphylococcus aureus—MRSA, Vancomycin-Resistant Enterococcus—VRE, and Clostridium
difficile) on hands as touching an infected patient [2–5]. Consequently, preventing trans-
mission of pathogens with disinfection procedures must be carried out not only in the
high-risk sectors, like laboratories, operating rooms, intensive care units, or food-handling
settings but also for hygienic behavior in everyday life on floors and on all the surfaces
that frequently are touched with hands.

Therefore, environmental disinfection, hygiene habits, and the consequent mainte-
nance of barriers are crucial in preventing infection from spreading. To develop effective
policies and regulations to minimize the risk of transmission is strictly necessary to evalu-
ate which organisms are present on the fomites. Furthermore, the choice of the effective
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antimicrobial agent is also based on the risk assessment of the microorganisms and the
type of fomites
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Public health emergency surrounding the COVID-19 pandemic, stressed the impor-
tance of having good biosafety measures and practices, as never before. On these bases,
this review has the purpose to briefly describe the organisms, the kind of risk associated
with them, and the major characteristic of the main classes of antimicrobials for surfaces to
help in choosing the right approach to prevent exposure to pathogens.

2. Most Common Microorganisms on Fomites and Associated Risks

The primary goal of disinfecting procedures is the inactivation of organisms on fomites.
Generally, microorganisms belong to a diverse group such as bacteria, viral, and protozoan
species [6]. These biological agents are widely found in the natural environment and,
as a result, they can be found either in many work sectors or household contexts. The
majority of these microorganisms are harmless; however, some of them or their metabolites
may cause diseases. For example, the transmission of norovirus that causes nonbacterial
gastroenteritis outbreaks is fomite-mediated as well as coccidioidomycosis. Furthermore,
some of the greatest concerns regarding antibiotic-resistant bacteria transmission occur
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via fomite as reported by Julian et al. [7] for Staphylococcus pseudintermedius. Therefore,
the knowledge of these organisms and their survival is fundamental to choose the right
antimicrobial agents and implementing effective tactics.

2.1. Bacteria

Bacteria are single-celled organisms (0.3–1.5 µm) with independent life and replication
cycle. Bacterial cells are generally surrounded by two concentric protective layers: an inner
cell membrane and an outer cell wall [8]. The cytoplasmatic membrane shares a similar
structure to the eukaryote’s one, but there are no sterols. Here, proteins involved in the
energy production can be found like some respiratory chain protein as well as photosyn-
thetic protein in photosynthetic bacteria that lack chloroplast. Among the proteins that
constitute the cell wall, the main one is peptidoglycan (PGN), also known as murein, which
provides rigidity to the structure and counteracts the osmotic pressure of the cytoplasm.
PGN is characterized by a glucidic backbone of alternating units of two azotated carbo-
hydrates, namely N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc).
Each MurNAc is cross-linked to a short amino acid chain, which can vary with different
bacterial species [9]. The differences in structural characterization of peptidoglycan define
two morphological categories: Gram-positive and Gram-negative bacteria (Figure 2).
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In Gram-positive bacteria, peptidoglycans make up about 20% of the cell wall dry
weight; while in Gram-negative bacteria the thicker peptidoglycan layer contains about
10% of the cell wall dry weight [10]. Furthermore, Gram-positive cell wall has a significant
amount (up to 50%) of teichoic and teichuronic acid, which are involved in pathogenesis
and play key roles in antibiotic resistance [11].

Certain bacteria may even have a third outermost protective layer called a capsule.
Whip-like extensions often cover the surfaces of bacteria—long ones called flagella and
short ones called pili—to become motile and seek out nutrients [12]. An alternative resource
exploited by some bacteria is the formation of endospores that are dormant and highly
resistant cells able to preserve the genetic material. This ruse helps the bacteria to survive
even without nutrients or under extreme stress [13].

Among endospore-producing bacteria, the most common are the Bacillus and
Clostridium genera [14]. Table 1 reports several endospore-forming bacteria and their
relative clinical manifestations.



Antibiotics 2021, 10, 613 4 of 29

Table 1. Common endospore-producing bacteria and their clinical manifestations.

Bacterial Species Clinical Manifestation

B. anthracis anthrax
B. cereus foodborne illness
B. subtilis not pathogen

C. botulinum botulism
C. perfringens gas gangrene

C. tetani tetanus

Another bacteria’s survival mechanism is the formation of biofilm: clusters of bacteria
that are attached to a surface and/or to each other. During biofilm development, bacteria
secrete extracellular polymeric substances (EPS) which are crucial to the production of
an extracellular matrix [15]. This network maintains cohesion between cells and the
surface and protects the accumulation of microorganisms against chemical, biological,
and mechanical stressors. In this complex arrangement of cells, there are interstitial void
spaces in which water flows so nutrients and oxygen diffuse [16]. As biofilm protects from
harsh conditions and resistance towards antibiotics, it represents a serious global health
concern. Furthermore, biofilm is involved in persistent chronic infections [17,18] and may
potentially contribute to their pathogenesis [19]. In addition, some bacteria can produce a
polysaccharide exocellular slime (the glycocalyx), which adheres to compromised tissue
or the surfaces of biomaterials [20]. In fact, the glycocalyx is a fundamental factor in the
persistence of infection linked to the prosthetic device.

2.2. Virus

Viruses are subcellular organisms with submicroscopic dimensions (nm). Their core
has either DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) as genetic material.
The core is covered by a protein coat [21], called the capsid, whose role is to protect it
from degradation. Furthermore, the protein coat allows the virus to attach to a specific
receptor of the host cell. In fact, viruses are obligate intracellular parasites [22], so they
need host ribosomes to synthesize viral proteins. Capsid proteins are codified by the viral
genome, whose short length entails a limited number of proteins with a specific function.
This leads to a capsid constituted by repetitive units of one or a few proteins combined
in a continuous structure [23], which can have a helicoidal or geometric symmetry. The
former is characterized by a helicoidal distribution around the nucleic acid while the latter
by a polyhedral or a spherical shape. Besides these styles, a few viruses have a complex
architecture like poxviruses, geminiviruses, and many bacteriophages [24] (Figure 3).
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Furthermore, some viruses show a further shell, called envelope, constituted by viral
proteins and lipids. The envelope shields the virus from the immune system’s detection
and, in addition, facilitates the fusion with the host cell membrane [23].

2.3. Fungi

Fungi are a large group of eukaryotic organisms, mono or pluricellular, that also
include yeast and molds. As these organisms have a rigid cell wall (rich in chitin and other
polysaccharides, especially glucans as depicted in Figure 4) [25], they feed themselves
secreting digestive enzymes and by absorbing organic matter from the environment: thus,
they are called heterotrophic organisms. Some fungi can live by decomposing dead organic
matter (saprobic) while others are a parasite of organisms, even fungi, or have developed
complex symbionts as in lichens and mycorrhizae [26].
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2.4. Microbiological Risk Assessment

According to the Code of Practice to the Safety, Health and Welfare at Work (Biological
Agents) Regulation 2020 [27] the biological agents can be classified into four risk groups,
reported in Table 2. The classification takes into account:

• Virulence—Ability of the microorganism to penetrate and multiplicate inside the host
organism;

• Pathogenicity—Severity of the disease that may result;
• Transmissibility—Capability of the microorganism to be transmitted from one organ-

ism to another;
• Treatment—Availability, if any, of effective prophylaxis or therapy.

Disinfection policies should be also based on risk assessment to control cross-
contamination while reducing the risk caused by exposure to infectious agents. The
evaluation of the surface’s risks and type together with the nature of the pathogen agent(s)
should lead to the use of an appropriate and effective antimicrobial agent. Such approaches
must be learned by everyone since their implementation in the routine measure improves
both cleaning performance and infection prevention [28].

However, as far as possible, the number of antimicrobials to be used should be limited
not only for healthy and economic reasons but also to reduce environmental pollution. Not
least, the discharge of waste biocides into the environment may promote the development
of both biocide and antibiotic resistance [29].



Antibiotics 2021, 10, 613 6 of 29

Table 2. Classification of biological agents.

Risk Classification Description Examples Heading

Category 1 Pathogen with a low probability of
developing diseases in the human

organism

Nonpathogenic strains of
Escherichia
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3. Factors That Affect the Activity of Antimicrobials

The activity of the antimicrobial agents depends on several factors, some of which are
intrinsic qualities of the organism, others derived from the chemicals and external physical
environment. More specifically need to be listed:

• Number and type of microorganism No disinfectant can effectively act on all microor-
ganism classes. So proper choice of chemical germicides is fundamental. Furthermore,
some microbes can persist on surfaces showing resistance to these products: for ex-
ample, the production of endospores or biofilm matrix protects the pathogens from
environmental influences [13,30].

• Type and concentration of the antimicrobial After choosing the proper disinfectant, the
concentration of the active ingredient is a key factor: the influence of changing in the
concentration of the active(s) can be measured experimentally, with the determination
of the kinetics of inactivation. Moreover, the knowledge of the effect of dilution or
concentration on the activity of a sanitizing agent provides some valuable information
that could lead to a reduction in the exposure time. Furthermore, microbicidal con-
centration is also a central concept in the microbial resistance field and it is especially
important nowadays with increasing knowledge and restrictions on the environmental
discharges of potentially harmful chemicals [31].

• pH of the solution The pH of the solution can affect the efficacy of the disinfection in
two ways: a change in the agent itself and a change in the interactions between the
microbicide and the microbial cell. For example, several microbicides are effective
in their unionized form (Table 3). Thus, the pH level would affect their degree of
dissociation and would decrease their overall activity. In contrast, other molecules
are more effective in their ionized form. Besides these considerations, it should also
be kept in mind that any alteration of the pH level could affect the compound’s
stability. As a matter of fact, disinfectant products in the sanitary field are formulated
to guarantee, at a certain level of pH, maximum germicidal efficacy.
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Table 3. Effects of pH level on antimicrobial activity.

Activity as
Environmental pH Increases Classes of Disinfectants Mechanisms

Decreased activity

Phenols and organic acids Increase in the degree of dissociation of the
molecules

Hypochlorites Undissociated hypochlorous acid is the most
fast-acting species

Iodine At low pH, iodine, the most powerful
antimicrobial species, is the dominating one

Increased activity Quaternary ammonium compounds
(QACs)

Increase in the degree of ionization of
bacterial surface groups leading to an

increase in binding

• Formulation The formulation of a disinfectant deeply affects its activity. Several excip-
ients, such as solvents, surfactants, thickeners, chelating agents, colors, and fragrances,
can be found in these products; they can interact with the microorganisms or with the
active itself and ultimately affect the activity of the formulated product. Most of the
information on the effect of different excipients on the activity of disinfectants are not
available, since they are often trade secrets.

• Length of exposure The microbicidal activity of chemicals usually increases with the
rise of contact time. However, there is not a direct correlation between contact time
and microbicidal activity, maybe due to other factors. Contact times for disinfectants
are specific for each material and manufacturer. Therefore, all recommendations for
use of disinfectants should follow manufacturers’ specifications that must be reported
on the label.

• Temperature Temperature can be an important parameter that influences the pathogen’s
survival. High temperature can impact vital proteins and enzymes, as well as the
genome. Moreover, high temperature can boost and speed up the germicidal activity
of many chemicals resulting in reduced time and improved efficacy. As a drawback,
high temperature can accelerate the evaporation of the chemicals and also degrade
them. Particular care is needed in using and in stocking such chemicals in tropical
regions, where their shelf-life may be reduced because of high room temperature;

• Type of surfaces and precleaning process The location of microorganisms must be
considered as well: to sanitize an instrument with multiple pieces or joints and
channels is more difficult than a flat surface. Only surfaces that directly contact
the germicide will be sanitized. Indeed, the presence of dirt is the principal reason
for disinfection failure, since it could interact with the microbicide, reducing its
availability or interact with the microorganisms, giving protection. Moreover, material
characteristics of the surface may influence the survival of microorganisms as well:
for example, porous surfaces are more difficult to clean and, consequently, to disinfect.
Pretreatment of surfaces, especially when visibly soiled, is fundamental to ensure or
improve the microbicidal efficacy of the disinfection procedure.

Besides the activity that is influenced by the factors listed upon, ideally, an antimicro-
bial agent should: (1) have a wide spectrum against microorganisms; (2) be rapid in its
action; (3) be compatible with many materials; (4) be safe for humans and the environment.

4. Most Common Antimicrobial Classes

At present, there are numerous substances to be used on surfaces that are claimed
as antimicrobial agents and they are formulated alone or in combination. The most com-
mon disinfectants can be roughly divided as halogens, alcohols, quaternary ammonium
compounds (QACs), peroxigens, ozone, and UV. Generally, these antimicrobials damage a
specific part of the microorganism as reported in Figure 5.
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4.1. Halogens
4.1.1. Chlorine Compounds

Historically, the most widely used antimicrobial agents belonging to halogens are
chlorine and chlorine releasing compounds.

Since elemental chlorine gas (Cl2) is hazardous it must be banned either from work-
places or household environment and substituted by chlorine-releasing agents.

The most commonly used chlorine-releasing agent is sodium hypochlorite (NaOCl),
universally known as bleach, which is characterized by high microbicidal efficacy, low
toxicity to humans, and low cost, but suffers the disadvantages of being irritant and
corrosive. Nevertheless, ceramics, methylacrylate, or cement are not sensitive to bleach.
More specifically, sodium hypochlorite is potentially bactericidal, virucidal, fungicidal,
mycobactericidal, sporicidal. Hence it plays an important role in the surface disinfection of
healthcare facilities and medical equipment.

The concentration of sodium hypochlorite sold for domestic purposes is around 5–6%,
with a pH around 11 and it is irritant; while in higher concentration, 10–15%, with a pH
around 13, it burns and it is corrosive. According to the Laboratory biosafety manual [32]
published by the World Health Organisation (WHO): “A general all-purpose laboratory
disinfectant should have a concentration of 1 g/L available chlorine. A stronger solution, containing
5 g/L available chlorine, is recommended for dealing with biohazardous spillage and in the presence
of large amounts of organic matter. Sodium hypochlorite solutions, as domestic bleach, contain 50
g/L available chlorine and should therefore be diluted 1:50 or 1:10 to obtain final concentrations of
1 g/L and 5 g/L, respectively. [ . . . ] Surfaces can be decontaminated using a solution of sodium
hypochlorite (NaOCl); a solution containing 1 g/L available chlorine may be suitable for general
environmental sanitation, but stronger solutions (5 g/L) are recommended when dealing with
high-risk situations.”

Once sodium hypochlorite dissolves in water (Equations (1)–(3)) the two compounds
that cause disinfection via oxidation are generated, namely hypochlorite ion (OCl−), a
weak base, and its corresponding acid, hypochlorous acid (HOCl), whose percentage is
determined by water’s pH and which is the most active between the two [33,34]. In fact,
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hypochlorous acid, due to no electronic charge, better penetrate the microorganism cell wall
or any protective layer and effectively kills them by oxidating the side chains of proteins’
amino acids [35,36].

OCl− + H2O � HOCl + OH− (1)

HOCl + H+ + Cl− � Cl2 + H2O (2)

2HOCl + OCl− → ClO−3 + 2Cl− + H+ (3)

It is also common to express the concentration of chlorine compounds in terms of
available chlorine or free available chlorine (FAC). The term FAC refers to the mixture of
oxidizing chlorine forms that have a chlorine atom in the 0 or −1 oxidation state and are
not combined with ammonia or organic nitrogen.

Sodium hypochlorite is characterized by high instability, therefore the FAC value is
not so significant: 0.75 grams of activated chlorine evaporate per day. This happens not
only when sodium hypochlorite gets heated up, but also when gets in touch with acids,
sunlight, specific metals, toxic and corrosive gases, included chlorine itself [37,38].

Sodium hypochlorite solution is an inflammable weak base and these characteristics
must be considered during its use and storage. Because of these reasons, formulation and
conditions for the application should minimize the formation of by-products and even
chloramines [39]. The overall stoichiometry of degradation is shown in Equation (3).

Thus disinfection’s efficacy of chlorine releasing agents depends on the water’s pH and
FAC. Chlorine disinfection against vegetative bacteria, fungi, and yeast, as well as fungal
conidia and viruses, is preferable at alkaline NaOCl solutions; although the germicidal
efficacy is even greater when pH value is around 5.5 and 8 [39,40]. Furthermore, Kuroiwa
et al. [41] proved that adjusting the pH around 5 by weak acidification with acetic acid,
resulted in a shortened killing time of all the B. subtilis JCM1465 spores by one-third. On the
contrary, this preparation killed all of the non-spore-forming bacteria within 30 seconds as
quickly as NaClO solution without acidification.The importance of the pH level is shown
in Figure 6. At a pH of 7, the concentration of hypochlorous acid is 80%, while when the
pH value is around 8, the concentration drops to 20%.
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The pH value of the solution is fundamental either for the bactericidal activity or
for the shelf life: at 25–35 ◦C, neutralized-NaOCl solutions (pH 7) expires in a few hours,
generated NaOCl (gNaOCl) solutions (produced by electrolysis of a salt (NaCl solution,
pH 9) last 6 days, while stabilized NaOCl solutions (pH 9–11) persist more than 30 days [43].
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Sodium hypochlorite is widely used, not only as a surface antimicrobial but also in
water treatment, water disinfection, and bleaching in the textile industry. Furthermore, it
can be used to avoid crustaceans and algae formation in cooling towers.

As an alternative, calcium hypoclorite (Ca(OCl)2) also known as HTH (high test
hypochlorite) can be used as well. HTH is sold in granular form that, once in solution,
achieves a pH of 9–11 and it is as stable as NaOCl [43].

Another chlorine releasing agent that has been explored as an alternative to sodium,
or calcium, hypochlorite is sodium dichloroisocyanurate (NaDCC). This compound is the
sodium salt of a chlorinated hydroxytriazine (Figure 7).
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This disinfectant is available as a stable powder that produces solutions that have a
pH level of around 6 and expire within hours [43]. These solutions are more susceptible
to inactivation by organic matter than NaOCl [44–46]. NaDCC is often used as a broad-
spectrum disinfectant since it has been reported to generally achieve similar disinfection
activities to chlorine, while results to be less corrosive. On stainless steel, Bloomfield
et al. [47] reported lower ME (microbiocidal effect) values following a 5-min exposure to
250 ppm NaDCC compared to NaOCl at the same concentration against S. aureus
(2.4 vs. 4.9 to <6.2 log reduction), Pseudomonas aeruginosa (3.7 vs. 3.7–4.3 log reduction),
and Enterococcus faecium (2.2 vs. 3.1 log reduction). At 2500 ppm, both NaDCC and NaOCl
achieved at least a 6 log reduction in each tested organism. Gallandat et al. [48] observed
similar efficacies of NaOCl, gNaOCl, NaDCC, and HTH (5000 ppm) against both E. coli and
Pseudomonas phage Phi6 after 10–15 min on several nonporous surfaces, with minimum 5.9
and 3.1 log reductions, respectively. At higher concentrations, Aarnisalo et al. [49] observed
3.1 and 0.5 log reductions (without/with 2% pork meat) in Listeria monocytogene after 30 s
exposure to 0.04%(w/v) NaDCC and >3.6 and 0.3 log reductions (without/with 2% pork
meat) after 30 seconds exposure to 0.2% (w/v) NaOCl. Interestingly, the entry containing
hypochlorite as an antibacterial agent and anionactive tensides as cleaning compounds
were considered to be much more efficient (3.8 and 2.2 log reductions, without/with 2%
pork meat) than the hypochlorite disinfectant, probably due to the inactivation of the
NaOCl by the organic matter.

To be effective against bacteria and spores, an adequate concentration of HOCl is
required; in Table 4 are reported the recommended dilutions of each chlorine releasing
compound mentioned until now to significantly reduce the risk of transmission. The
surface conditions, the main advantages, and drawbacks have also been considered.

4.1.2. Iodine Compounds

Although less reactive than chlorine, iodine solution has a broad spectrum of antimi-
crobial activity against both gram-negative and gram-positive bacteria, fungi, protozoa,
and even bacterial spores [12], while it is not so effective as virucidal [50]. Many investiga-
tions identified elemental iodine I2 and hypoiodous acid (HIO) as the two most powerful
antimicrobials agents among the several iodine species.

I2 + H2O � HIO + I− + H+ (4)

HIO � IO− + H+ (5)

3HIO + 3OH− � IO−3 + 2I− + 3H2O (6)
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Table 4. Recommended dilutions of commonly used chlorine releasing compounds.

Chlorine Type
Use Condition

Advantages Disadvantages
Clean Condition Dirty Condition

Sodium hypochlorite
solution (5% available

chlorine)
20 mL/L 100 mL/L

Can be local (stabilized form)
Can be on-side

(no stabilized form)
Does not clog pipes

Shorter shelf life
Difficult to ship

Low stability
(no stabilized form)

High-test hypochlorite
(70% available chlorine) 1.4 g/L 7.0 g/L Easy to ship

Long shelf life Explosive

Sodium
dichloroisocyanurate

powder (60% available
chlorine)

1.7 g/L 8.5 g/L
Easy to ship

Long shelf life
Does not clog pipes

Smell

Sodium
dichloroisocyanurate
tablets (1.5 g available

chlorine per tablet)

1 tablet per L 4 tablets per L
Easy to ship

Long shelf life
Does not clog pipes

Smell

The dissociation constant of hypoiodous acid is 4.5 × 10−13 and it reveals that the
formation of hypoiodite ion (IO−) in an aqueous solution is insignificant. The percentages
of the species (see Equations (4)–(6)) are directly related to the pH level of the solution and,
to a much lesser extent, to the temperature.

Figure 8 shows I2 hydrolysis data at different pH values and it is clear that the highest
concentrations of the antimicrobial species are present in the acid range. In fact, when the
solution is alkaline, several iodine species that have no apparent antimicrobial activity can
also be generated. Iodate formation could not be a problem if the pH value stays below 8
and the contact time of disinfection is accomplished in the first 30 min.
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Historically iodine solutions or tinctures have been primarily used by health profes-
sionals as antiseptics on skin or tissue. Unfortunately, aqueous solutions are generally
unstable so a combination of iodine and a solubilizing agent or carrier has been formulated.
These combinations, called iodophor, have been used both as antiseptics and disinfectants,
retaining the germicidal efficacy of iodine but being more stable and relatively free of
toxicity and irritancy [39]. They have been developed to slowly release iodine (I2) from the
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complex, which can be a cationic surfactant, non-ionic, polyoxymer, or polyvinylpyrroli-
done [52].

The most known and widely used iodophor is povidone-iodine, Figure 9. Regarding
this complex, Block et al. observed 3.14, 3.49, 3.47, and 3.78 log reduction, after 1.5 min
for VRE, E. faecalis, and methicillin-resistant and methicillin-sensitive S. aureus, respec-
tively [53].
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Surfactant iodophor, when used, may add a further detergency activity, even though
iodine is chemically less reactive than chlorine. Moreover, surfactant iodophor is less
affected by the presence of organic matter than chlorine.

An iodophor, when used at 25 ppm (parts per million of available iodine), is considered
to act as a sanitizer, however, when the same product is applied at 75 ppm falls into the
disinfectant category.

After its release, iodine can quickly penetrate the cell wall of a microorganism and
oxidize thiol groups leading to disruption of proteins and nucleic acids structures [39].

4.2. Alcohols
4.2.1. Alifatic Alcohols

Among the several aliphatic alcohols that exhibit microbicidal properties ethyl alco-
hol (ethanol), isopropyl alcohol (isopropanol, propan-2-ol), and n-propanol are the most
commonly used (Figure 10).
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These disinfectants are rapid bactericidal rather than bacteriostatic against vegetative
bacteria, included mycobacteria but have no effect on spores. The bactericidal properties of
ethanol were examined against several microorganisms for different ranges of time [54]:
P. aeruginosa, Serratia marcescens, E. coli, and Salmonella typhy were killed in 10 s by all
concentrations of ethanol from 40% to 100% (30% for the E.coli entry). S. aureus and
Streptococcus pyogenes were slightly more resistant, being killed in 10 s with concentrations
of 60%–95%. Isopropyl alcohol resulted slightly more bactericidal than ethyl alcohol for
E. coli and S. aureus [55]. Furthermore, this category of biocides shows limited fungicidal
and virucidal activity especially on lipophilic viruses such as herpes virus, influenza virus,
and hepatitis B and C viruses [56,57]. Literature data demonstrate that isopropyl alcohol
shows its antimicrobial activity against lipid viruses but it is not active against the nonlipid
enteroviruses [58]

These alcohols exert their antimicrobial activity by causing protein denaturation [59,60].
Water plays an important role in the formulation of alcoholic disinfectants because, in its
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absence, proteins are not readily denatured by alcohol. Therefore a 70% solution of alcohol
is a much more effective sanitizer than the pure (99%) product [61], but when the concen-
tration drops below 50% there is no practical value [62]. Concentration can be expressed
both by weight/weight percentage (%w/w) and, most frequently, by volume/volume per-
centage (%v/v). This value is important since it is linked to the evaporation rate: a higher
concentration of alcohol evaporates quickly. The evaporation speed could be an issue if a
longer contact time is requested, but the addition of surfactants [63], or combination with
alkali, mineral acids, and hydrogen peroxide could overcome this problem [12,24].

Alcohols are fast-acting, easy to use but are not free from limitations that are due to
poor detergent properties, toxicity, and, of course, their flammability, which is a big concern.
The minimum temperature at which vapors above a volatile combustible substance ignite
in air when exposed to flame defines the flashpoint. The higher the concentration, the
lower the flashpoint. For example, the flashpoints of 70% ethyl and 70% isopropyl alcohol
are 20.5 ◦C and 21.0 ◦C, respectively, while the flashpoint of 30% ethyl alcohol is 29 ◦C [64].
Moreover, even if alcoholic disinfectants are neither corrosive nor staining, they could
damage some instruments, by swelling or hardening rubber.

4.2.2. Aromatic Alcohols

Besides aliphatic alcohols, also aromatic ones exhibit antimicrobial properties being
effective in sanitization and disinfection, even in the presence of biological fluids. Phe-
nols are the reference standard for the Rideal–Walker (RW) and Chick–Martin tests for
disinfectant evaluation [65].

Phenol (C6H5OH) is an organic compound that consists of a benzene ring bearing a
single hydroxy substituent. It appears as a white crystalline solid, which is partially water-
soluble (1 g/15 mL water) [66] and it has a pKa value of 10, which means it is classified as
a weak acid.

Phenol exerts its antimicrobial activity against vegetative bacteria, both Gram-positive
and negative, fungi and viruses but it is not so effective as sporicidal and against
acid-fast bacteria.

The biological activity is related to the undissociated molecule, which induces progres-
sive leakage of essential metabolites, including the release of K+ [67], leading to membrane
damage and consequentially cell lysis, while acting like a protoplasmic poison causing
coagulation of the cytoplasm [68].

Phenol is the parent compound but the chemical structure can be modified by replacing
one of the hydrogens on the aromatic ring with a different functional group (halogen, alkyl,
phenyl, benzyl, etc.). Figure 11 represents several microbicidal phenols.

The structure-activity relationship in the phenol series was investigated by Suter [69].
Regarding the results, it is interesting to notice that the microbiocidal activity increases
in derivatives with alkyl chain in the para position, constituted by a maximum of six
carbon atoms, since for longer chain the activity drops probably due to the decrease of
water solubility. Nitrophenols were evaluated as well; unfortunately, the toxicity increased
towards both bacteria and humans and there is also a trend to be inactivated by organic
matter. Finally, bisphenolic compounds show activity if they are connected by a methyl
linker, sulfur, or oxygen atom, and even if they are directly linked. Augmentation of the
efficacy can also be achieved by halogen substitutions.

Among all the derivatives, o-phenylphenol and 2-benzyl-4-chlorophenol are widely
used as healthcare disinfectants.

As disclosed by published reports, commonly used phenolic compounds show, at their
use dilution, antimicrobial efficacy against bacteria, fungi, viruses, including HIV [70–73].
However, literature reports also that the phenolic disinfectants ‘Stericol’ and ‘Lysol’ show a
limited effect on Coxsackie B4, Enterovirus 11, and Poliovirus [74].
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Phenols react with certain types of plastic surfaces and are adsorbed by porous
material. If not rinsed thoroughly with water, the alcohol residue can cause skin irritation or
depigmentation [75]. Moreover, another disadvantage is that phenols are quite expensive,
and literature reports demonstrated that they are associated with idiopathic neonatal
hyperbilirubinemia in infants [76,77].

4.3. Quaternary Ammonium Compounds (QACs)

Quaternary ammonium compounds (QACs) may be considered as amphiphilic substi-
tuted compounds, which carry a permanent positively charged nitrogen, counterbalanced
by a halide or sulfate moiety. QACs are classified according to the nitrogen substituents,
which can include either the type of the carbon chains or the presence of aromatic moieties
(Figure 12). The numerous investigations on these chemical structures have increased
efficacy while reducing costs.

Demand for these disinfectant agents has increased over the decades, furthermore,
their use is not only limited as a germicidal, but they have been widely used also in a
variety of industrial, agricultural, clinical applications, and consumer products [78–81].
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Their microbicidal activity is due to their adsorption on proteins or acidic phospho-
lipids in the membrane that leads to the formation of hydrophilic voids. The denaturation
of essential cell protein causes cytoplasmic membrane permeability and eventually leads to
cell disruption [82]. QACs seems also to be involved in the inactivation of energy-producing
enzymes, furthermore, they can bind to DNA [83].

Their hydrophobic activity makes them more effective against lipophilic microor-
ganisms. Therefore QACs are solid bactericidal agents, especially against Gram-positive
bacteria, and virucidal against enveloped viruses (e.g., herpes simplex, adenovirus, vac-
cinia) whilst they are not sporicidal and generally not tuberculocidal or virucidal against
hydrophilic viruses [84].

QACs are commonly used in ordinary environmental sanitation of noncritical surfaces,
such as floors, furniture, and walls. Scientific literature reports that quaternary ammonium-
based disinfectants are effective in removing and/or inactivating S. aureus and P. aeruginosa
from computer keyboards, while are not so active against VRE species [85]. Moreover, a
recent work by Brown et al. [86] demonstrated that the microbial reduction due to QAC’s
activity on glass continues after contact and wetness time.

However, it is important to point up that the efficacy is influenced not only by the
compound and surface combinations but even by the product formulation and the water
hardness [87]. Indeed, anionic surfactants and high mineral content could lead to insol-
uble precipitates. Therefore, QAC’s formulation is restricted to nonionic or zwitterionic
surfactants, which typically are less effective as cleaning ingredients. Furthermore, some
materials, like cellulose-based wipers and gauze pads, absorb these actives, lowering the
microbiocidal efficacy [88]. On the other hand, QACs have many advantages like high sta-
bility, low color, odorless, and relatively low toxicity (unlike phenols and chlorine bleach).
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Nevertheless, spraying or fumigation of this chemical disinfectant is not recommended
because a few cases disclose occupational asthma as a result of exposure [89–91]. When
used, these disinfectant agents are often applied with a cloth or wipe that has been soaked
in disinfectant, which may contain mixtures of QACs. Benzalkonium chloride (BAC) is
one of the most extensively applied QACs, especially in surface disinfection [92]. BAC’s
concentration is usually between 0.01 and 1% but can rise at 15% [93]. Other QACs found
in disinfection products have similar concentrations.

4.4. Hydrogen Peroxide and Peracids

Over the years, hydrogen peroxide (H2O2, HP), represented in Figure 13, has exten-
sively been recognized to have antimicrobial properties against a wide variety of microor-
ganisms, such as bacteria, viruses, spores, and fungi [94,95]. The mechanism involved
in the antibacterial effect of HP ascribes to the release of oxygen free radicals (hydroxyl
radical). These radicals are potent oxidizing agents that can quickly react with bacterial
biomolecules, such as thiol groups of proteins, causing irreversible structural modifica-
tions and subsequent cellular death [96]. HP represents one of the most used biocides for
different antimicrobial applications, such as disinfection and sterilization, and is colorless
and odorless, and associated with low ecotoxicity. It is a versatile disinfectant, due to the
possible employ in several environments including air, water, and surfaces [97].
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The most employed formulations of hydrogen peroxide are liquid and gas. Hydrogen
peroxide liquid formulations are widely used for sterilization and disinfection processes.
Usually, a 6% aqueous solution of hydrogen peroxide is employed for laboratory surface
cleaning, but its bactericidal and sporicidal efficacy is lower against resistant bacterial
spores and protozoan cysts, because of the short exposure time [98]. Hydrogen peroxide
solutions are unstable thus suitable stabilizing agents such as benzoic acid are usually
added. On the other hand, the production of non-toxic and biodegradable decomposition
products (oxygen and water) emerges as an important advantage compared to other
disinfectants [99].

Many studies revealed the effectiveness of the vaporized form of HP (HPV) for
surface disinfection [100]. This system inactivates nonenveloped viruses, mycobacteria, and
some multidrug-resistant microorganisms present in hospital room surfaces, reducing the
number of contaminated porous and nonporous surfaces to 5–0% [101]. In particular, HPV
resulted to be efficient against enteric and respiratory pathogens, including adenovirus
type 5, poliovirus Sabin 1, rotavirus SA11, but also Mycobacterium tuberculosis and C. difficile
spores [102]. In addition, HPV is often found in combination with heavy metals like
silver ions, which showed an interesting bactericidal activity, resulting as a useful agent
for surface disinfection in hospital settings [95,97]. The hydrogen peroxide solution in
nebulization systems was also evaluated for surface disinfection. It provides a better
decrease of microbial contamination on vertical surfaces compared to horizontal ones.
However, the use of aerosol form is limited to the hospital’s empty spaces, excluding
patient rooms, intensive care units, and other occupied areas [103].

Peracetic acid (CH3COOOH), Figure 13, is an organic peroxide with activity against
mycobacteria, viruses, spores, molds at low concentrations. It results to be a more potent
antimicrobial agent than hydrogen peroxide [104,105]. Peracetic acid is a strong oxidizing
agent that provides innocuous decompositions by-products: acetic acid and hydrogen
peroxide. Generally, it is employed as a surface disinfectant and for medical device
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sterilization [106]. A 15% aqueous solution of a mixture of peracetic acid, acetic acid,
hydrogen peroxide, and water is commonly commercially available for the application as a
disinfectant [99].

Figure 13 reports also performic acid (CH2O3), which is another well-known disin-
fectant characterized by virucidal, bactericidal, sporicidal, and fungicidal activity, useful
in hospital environments and the food industry [107]. In a similar way to peracetic acid,
performic acid liquid formulation includes formic acid, hydrogen peroxide, and water,
with the production of non-toxic by-products. The main limit of performic acid solution
application is due to its instability, which requires instant preparation before use [108].

4.5. Ozone

Ozone (O3) is an inorganic gas, an allotropic form of oxygen, that represents one of the
most potent oxidizing agents, mainly used for the disinfection of water systems but also for
the decontamination of surfaces in healthcare settings and medical
industries [109–111]. Ozone effectively inactivates bacteria, viruses, molds, and proto-
zoa by producing hydroxyl free radicals that can react with glycoproteins; disrupting
the integrity of the cell membrane; oxidizing enzyme’s thiol groups thus interfering with
their activity; damaging DNA [112]. P. fluorescens, S. aureus, enteropathogenic E. coli,
S. typhimurium, stomatitis virus, encephalomyocarditis virus, Vibrio cholerae, and Shigella
flexneri are among the most sensitive microorganisms to the ozone treatment. Moreover, a
quicker inactivation is observed when they are suspended in phosphate-buffered saline
solutions [113].

O3 spontaneously decomposes into oxygen (O2) and a single reactive oxygen atom,
associated with antimicrobial activity. On the other hand, the use of the gaseous form
for disinfection is not convenient for operator safety, due to the exposure time to high
concentrations of the gas [114]. Ozone solutions in water (ozonated water) allow one
to obtain a liquid form useful for safe and effective surface disinfection, even if its low
stability limited the applications [112]. In fact, the aqueous form shows a short half-life at
20 ◦C, approximately 20–30 min, after which it converts into an oxygen molecule; while the
gaseous form results in having more stability and a longer half-life (12 h) [115]. The main
aspects that affect ozone stability are temperature, pH, and ozone-oxidizable materials.
To reduce the decomposition rate of the gas, several ozone generators were designed to
produce a stabilized form of aqueous O3 and to extend its half-life up to a few hours [114].

The effectiveness of aqueous and gaseous O3 against manure-based pathogens (MBP)
were assessed for several contaminated surfaces. Aqueous ozone achieved a good reduc-
tion of MBP contamination on plastic and metal surfaces after 4 min of exposure, but
not in more complex surfaces [112]. In a recent study, aqueous ozone demonstrated its
efficacy also against several isolates of SARS-CoV-2 after 5 min of incubation, resulting
in a new potential alternative for the disinfection of outdoor surfaces contaminated by
this virus [114,116]. Synergistic effects have been shown between ozone and ultraviolet,
hydrogen peroxide, or negative air ions, to increase the production of hydroxyl radicals
and to improve the antimicrobial activity [117]. Zoutman et al. evaluated the efficacy of
ozone in combination with hydrogen peroxide in vapor form for steel surface disinfection,
demonstrating a high level of decontamination in short exposure time against the most
common hospital-associated microorganisms [118]. The combination of O3 at low con-
centration and ultraviolet also demonstrated synergistic effects on E. coli and Escherichia
virus MS2 inactivation, highlighting the potential antimicrobial properties of this mixture
couple for the development of new disinfectants [119]. The use of ozone generators may
be associated with the production of negative air ions (NAI) and nitrogen oxides that
displayed bacteriostatic properties and a reduction of microbial populations, alone and in
combination with the O3 [120].
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4.6. UV

Ultraviolet (UV) is electromagnetic radiation characterized by a wavelength from 10
to 400 nm, longer than X-rays but shorter than visible light. Three bands of UV light have
been identified: UVA (400–315 nm), UVB (315–280 nm), and UVC (280–100 nm). UVC is
also called ultraviolet germicidal irradiation (UVGI) for its antimicrobial properties [121].
In fact, for many years UV radiation has been employed for disinfection and sterilization,
mainly the wavelength of 250 nm that has revealed better performance [122]. Nevertheless,
different inactivation responses have been observed for several pathogens types including
bacteria, viruses, fungi, and spores, even multidrug-resistant (MDR) strains of Acinetobacter
baumannii, and C. difficile spores [123]. The efficacy of the decontamination is also related
to the UVC amount and exposure time. For example, the best inactivation response for
bacteria is at 254 nm, while higher wavelengths are required for viruses and protozoa
(260–270 nm) [124].

The mechanisms involved in the antimicrobial effects of UV light are based on photo-
chemistry. Microorganism biomolecules, mainly nucleotides, absorb the photon energy
emitted by UV light which causes chemical modifications and cellular damage through
three potential routes: photohydration of DNA, photosplitting (breaking the DNA), or
photodimerization [121]. Usually, when thymine bases adjacent to other ones are excited by
a UV light, several covalently linked dimers are generated, blocking the DNA replication
process. Anyway, UV is not able to kill microorganisms but make them unable to duplicate
and induce infections [125].

During the years the use of several UVC light-based devices for cleaning and disin-
fection especially in hospital settings is increased because of its associated advantages,
among which the absence of residues after treatment, the broad-spectrum activity, and
rapid exposure times [126]. Today, mercury vapor arc lamps and xenon lamps represent
the most frequently used UVC devices (100–280 nm). The first one emits a continuous UVC
light at low pressure (approximately 254 nm), while xenon lamps generate a pulsed light at
high intensity [127]. However, UV irradiation at 254 nm can cause eyes and skin damages,
so the treatment must be performed in unoccupied rooms. Alternatively, 222 nm UVC
light could be used as it is poorly absorbed by the eyes and skin. Hiroki Kitagawa et al.
validated the effectiveness of UVC radiation at 222 nm against SARS-CoV-2 contaminations,
highlighting the possibility to carry out the disinfection process also in occupied rooms
and spaces [128].

New technologies have been reported with the aim to improve the effectiveness of
surface decontamination using UVGI. A novel portable UVC device has been assessed on
several surfaces including plastic, bedrail, stainless steel, chrome-plated, and porcelain ob-
jects. A high level of bacterial inactivation has been observed against MRSA on the bedrail
and against VRE on chrome and stainless steel [129]. Another study has described the
efficacy of a new portable pulsed ultraviolet (UV) radiation generator for surface cleaning,
towards the most common nosocomial bacteria, including P. aeruginosa, A. baumannii, S.
aureus, and B. cereus. A potent antibacterial activity has been detected after a short exposure
time, revealing an advantageous new method of sanitation [130,131]. Moreover, the UV
technology leads to the development of the UVC reflective wall, aimed to reduce the time
of irradiation. The exposure time decreases from 25 to 5 min for MRSA and 43 to 9 min
for C. difficile spores if a UVC generator (254 nm) is located in a room coated by a specific
reflective agent for UVC light [132].

The different mechanisms of action, the antimicrobial and cellular effects of the de-
scribed antimicrobial agents are summarized in Table 5 together with the main advantages
and disadvantages.
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Table 5. Summary of advantages and disadvantages of common surface disinfectant.

Disinfectant Mechanism of Action Cellular Effect Antimicrobial Effect Advantages Disadvantages

Chlorine compounds Oxidation of side chains amino
acids in proteins

Unfolding tertiary structure and
protein aggregation

Bactericidal, fungicidal,
virucidal sporicidal

-Not flammable
-Fast-acting
-Low-cost

-Resistant to water hardness
-Relatively stable

-Salt residues
-Corrosive to metals

-Affected by organic matter
-Fabric discoloration

-Potential production of trihalomethane
-Irritating odor at high concentrations

Iodine compounds Oxidation of thiol groups to
disulfides in proteins

Modification of structural protein
and/or alterations in enzyme

activities
Bactericidal, virucidal -Not flammable

-Limited spectrum of activity
-Degradation of silicone catheters

-Staining for surfaces

Alcohols
Denaturation and precipitations
of cytoplasmic and membrane

proteins

Alteration in metabolic processes,
membrane damage

Bactericidal, fungicidal,
virucidal

-Fast-acting
-Noncorrosive
-Nonstaining

-Suitable for small surfaces
disinfection

-Not sporicidal
-Affected by organic matter

-No cleaning properties
-Deterioration of some instruments

-Flammable
-Rapid evaporation

Phenols Denaturation of cytoplasmic and
membrane proteins

Leakage of essential metabolites,
release of K+, membrane damage,

cytoplasmic coagulation

Bactericidal, fungicidal,
virucidal

-Low costs
-Not flammable

-Nonstaining

-Rapid absorption by porous materials
and irritate tissues

-Potential depigmentation of skin
-Hyperbilirubinemia in infants

Quaternary ammonium
compounds

Binding to phosphates and fatty
acid chains in phospholipids of

cell membrane and DNA

Depolarization, membrane
damage, cytoplasmic coagulation

Bactericidal, fungicidal,
virucidal (enveloped viruses)

-Good cleaning agents
-Surface compatible

-Long antimicrobial activity
-Low costs

-Not sporicidal
-Affected by water hardness

-Asthma after benzalkonium chloride
exposure

-Affected by organic matter

Hydrogen peroxide and
peracids

Oxidation of thiol groups to
disulfides in proteins

Modification of structural protein
and/or alterations in enzyme

activities

Bactericidal, fungicidal,
virucidal

-Fast-acting
-Safe for workers

-Non-toxic
by-products

-Surface compatible
-Nonstaining

-Odorless
-Not flammable

-More expensive compared to other
disinfectants

-Not sporicidal at low concentrations

Ozone
Oxidation of thiol groups in

proteins and interaction with
purine and pyrimidine bases

Modification of structural
protein, alterations in enzyme

activities, and/or DNA damages

Bactericidal, moldicidal,
virucidal, protozocidal

-Fast-acting -Gaseous form not safe
-Low stability solutions form
-Reacted with organic matter

UV light
chemical modifications of

nucleotides caused by photon
energy emitted

DNA damages (photohydration,
photosplitting,

photodimerization)
bacteria, fungi, viruses, spores

-Absence of residues or
by-products
-Fast-acting

-No microbiocidal effect
-Eyes and skin damages for UV

irradiation at 254-nm
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5. Antimicrobial Surfaces

To date, several strategies have been proposed to prevent microorganisms from adher-
ing to the surface or to kill the ones that manage to attach them. Furthermore, minimizing
biofilm formation should be a further goal [133]. Nonetheless, it is necessary to take into
account that bacterial colonization of surfaces is a key process of corrosion, infection,
fermentation, and fouling [134].

New strategies to control and hopefully avoid the adhesion of microorganisms on
surfaces (Figure 14) are inspired by nature, a source that appears to be almost unlimited,
and it has attracted a large amount of interest in the past decades. Indeed a current trend
is based on natural materials such as plant leaves and insect cuticles. For example, the
leaves of Nelumbo nucifera, commonly known as lotus, exhibit superhydrophobicity, and
self-cleaning abilities. The characteristics that afford this self-cleaning capability are the
lipid layer that covered the surface. This results in a high water contact angle (θ > 150◦)
and a low tilting angle (θ < 10◦), which are parameters needed to lead the water droplet to
roll off [135]. In this way, the water droplets collect dirt as they move over the leaf. Many
other plants exhibit very similar properties to that of the lotus leaf, Indian canna, taro, and
cabbage leaves.
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Similarly, insect surfaces are covered by a layer of lipophilic cuticle. Some insects,
e.g., dragonflies or cicada, self-assemble this barrier into three-dimensional nanoarray
structures, which enable air to be trapped in and hence exhibit a high water contact
angle [136,137]. Furthermore, the turbulent conditions during their flight enhance these
self-cleaning properties. Artificial surfaces can be produced to possess similar properties,
causing water to behave in a similar way, therefore bacterial cells could be removed before
they could adhere to the surface [134,138].

Other interesting approaches use bio-functionalization or surface coatings to give or en-
hance antibacterial properties: solid heavy metals, such as silver [139,140], copper [141–143]
or zinc [144,145], and its alloys have been widely used as antimicrobial agents for millennia
due to their intrinsically strong antibacterial activity.

Usually, these approaches focus on a nano-size particulate form of the metal: a larger
surface allows better contact with the target microbe cells while enabling a more efficient
release of the particles. Among these materials, copper is one of the most frequently used
due to its efficiency in “contact killing”: microorganisms survive only a few minutes on
these kinds of surfaces [146,147]. Obviously, the higher the copper concentration, the faster
and more efficient is the antimicrobial activity. Nevertheless, to promote the activity other
factors have to be taken into account: both extrinsic, such as protocols and operators, and
intrinsic [148].

The major issue with the use of metallic ions is that their interactions are non-specific,
which is a major concern from a biocompatibility and cytotoxicity point of view. Further-
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more, the leaching components may contaminate and accumulate in the environment,
promoting bacteria’s resistance.

Further studies are still required to find the best enhancing parameters like high
temperature or high humidity, the metal’s physical form, or coating techniques [149].

More recently, another innovative approach based on photosensitizer compounds has
been developed for preventing bacterial colonization. These biocides exert their action after
activation by a light source [150]. UVA-induced antimicrobial activity can also be achieved
with metals [151,152]; the main mechanisms driving the activity are the formation of highly
reactive species like superoxide and hydroxyl radicals and the slow release of metal ions.

The most common techniques that can be applied to incorporate biocides in the
surface involve the impregnation of the antimicrobial into the coating. The simultaneous
encapsulation of different antimicrobials in one matrix has proven to be more efficient than
entrap only one [153]. The layer by layer (LbL) technique is another powerful strategy
for surface engineering, which allows one to control the leaching characteristics of a
biocide [154].

In addition, slow-releasing systems, release-on-command systems, and non-leaching
systems have also been developed. Commonly employed polymers are polyoxazolines
with methyl (PMOZ), ethyl (PEOZ), and propyl (PPOZ) [155], polyacrylamide [156], or poly
ethylene glycol-PEG [157] ). It has been experimentally proven that antimicrobial properties
are also shown by surfactant type polymers and some naturally derived polymers, like
chitosan [158]. Different molecules used to chemically modify the surface are described in
Figure 15. The building blocks of these polymers can differ in nature, molecular weight,
and chain length. These are critical parameters that need to be optimized with other factors
which may influence the effectiveness of the antimicrobial, like the surface charge density
and the hydrophilic/hydrophobic balance.
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The physical principle is that polymer brushes act as a steric barrier against bacterial
attachment. Indeed some polymers provide an unfavorable surface for bacterial interaction,
especially cationic polymers. They have shown effectiveness against bacterial infection
but their long-term use discloses toxicity as a concern. Their mechanism totally relies
on their charge that attracts and “captures” negatively charged bacterial cells, and this
interaction damages the bacterial membrane, giving a bacteriostatic, and eventually a
bactericidal effect.

To improve the antimicrobial efficacy several agents, such as small compounds, pep-
tides, and enzymes, can be introduced into polymer molecules [159]. Probably, polymers
of QACs represent the class that has received more attention over the years [160,161].

Ideally, a coating of the antimicrobial polymer must exhibit a broad antimicrobial
spectrum in a brief contact time and it must remain effective over the lifespan’s article while
avoiding leaching into the environment or decomposition in toxic products. Furthermore,
it shouldn’t be toxic nor irritating to those who are handling it and not water-soluble (for
water disinfection application) [162].

Figure 16 summarizes all the approaches that involve changes in the chemical and/or
physical properties of the surface to have a biocide effect.
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6. Current and Future Issues

Antimicrobials are a precious resource that effectively keeps harmful microorganisms
at bay. Unfortunately, nowadays, biocidal products are perceived as either direct and
indirect threats. The direct one is due to the dissemination of resistant strains: the concept
of bacterial resistance to biocides is not novel and the first evidence has been reported
in the early 1950s [163]. This phenomenon has been associated with the increasing expo-
sure to biocides; furthermore, several investigations describe a possible linkage between
antimicrobial agents and the occurrence of antibiotic cross- and co-resistance [164,165].
The indirect threat regards the transfer of genes which confers resistance to a susceptible
strain, enhancing its resistance level. Among the several routes for the transfer of genes,
horizontal gene transfer (HGT) [166,167] enables the exchange of transposons, integrons,
and plasmids where antibiotic resistance genes are generally located. Lu et al. [168] demon-
strate that high environmental concentrations of triclosan promote HGT of multidrug
resistance genes between bacteria providing resistant strains. Another example regards
the extensive use of QAC that has been blamed for the spread of QAC-resistance bacteria,
both Gram-positive and negative. Resistance’s mechanisms to this class of compounds are
underexplored, however, efflux pump and alteration of membrane composition are among
the predominant ones [169,170].

Another example of antimicrobial resistance can be found in the tolerance to ox-
idizing biocides, like chlorine, hydrogen peroxide, and peracetic acid, which has also
been described [171]. Resistance to these agents can result from the overproduction of
enzymes which increases the defense towards radical-mediated damage or protects from
biofilm’s alterations.

The selective pressure towards disinfectants may occur also when biocides are dis-
charged into the environment, themselves, or their residues [172,173]. McBain et al. [174]
investigate the effects of triclosan use on the domestic-drain biofilm ecosystems. They
found out that the biocide did not significantly lower the total counts but altered the
bacterial composition, due to innate resistance or insusceptibility of some species able to
degrade triclosan. Hospital wastewaters have been investigated as well [175,176] as they
are characterized by a high concentration of antibiotics and disinfectants.
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However, the lack of data on the majority of antimicrobial compounds prevents
one from clearly identifying the risk arising from the increase and indiscriminate use of
these biocides.

In conclusion, the consciousness that the perfect antimicrobial agent may not yet
exist the right choice and the appropriate use of the current chemicals are necessary to
avoid both resistance and environmental issues. For this purpose, a deep knowledge of
the antimicrobial agent together with the type of surface would result in an effective and
suitable disinfection level.
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