Skip to main content
. 2021 May 21;11(6):674. doi: 10.3390/brainsci11060674

Table 4.

Comparison of methods for predicting conversion from MCI to AD between this study and similar recent studies. First row: MCI-CPS (5-fold), classification after applying SNF method from ADNI-1 dataset. Second row: Raw classifier, model without SNF in ADNI-1. Other rows list performance of compared methods.

Study Markers AUC-ROC Acc (%) Sn (%) Sp (%)
MCI-CPS (5-fold) SNP, mRNA expression data, sMRI 0.83 79.20 81.25 77.92
Raw classifier SNP, mRNA expression data, sMRI 0.78 76.00 77.08 75.32
Lu et al. (2018) PET - 81.55 73.33 83.83
Wei et al. (2016) sMRI 0.74 66.00 55.30 75.90
Gao et al. (2020) sMRI, age 0.81 76.00 80.00 73.00
Lehallier et al. (2016) CSF, sMRI, CICS 0.82 80.00 88.00 70.00
Westman et al. (2012) sMRI, CSF 0.76 68.50 74.10 63.00
Zhang et al. (2012) CSF, PET, sMRI 0.80 73.90 68.60 73.60
Young et al. (2013) PET, sMRI 0.80 74.10 78.70 65.60

AUC, area under ROC curve; Acc, accuracy; Sn, sensitivity; Sp, specificity; sMRI, structural magnetic resonance imaging; PET, positron emission tomography; CSF, cerebrospinal fluid; CICS, Clinical Information and Cognitive Scale.