
micromachines

Article

A Novel Modified Super-Twisting Control Augmented
Feedback Linearization for Wearable Robotic Systems
Using Time Delay Estimation

Brahim Brahmi 1,* , Ibrahim El Bojairami 1, Tanvir Ahmed 2, Asif Al Zubayer Swapnil 2,
Mohammad AssadUzZaman 2, Inga Wang 3, Erin McGonigle 4 and Mohammad Habibur Rahman 2

����������
�������

Citation: Brahmi, B.; El Bojairami, I.;

Ahmed, T.; Swapnil, A.A.Z.;

AssadUzZaman, M.; Wang, I.;

McGonigle, E.; Rahman, M.H. A

Novel Modified Super-Twisting

Control Augmented Feedback

Linearization for Wearable Robotic

Systems Using Time Delay

Estimation. Micromachines 2021, 12,

597. https://doi.org/10.3390/

mi12060597

Academic Editors: Nicola Pio Belfiore

and Nam-Trung Nguyen

Received: 1 March 2021

Accepted: 18 May 2021

Published: 21 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Mechanical Engineering Department, McGill University, Montreal, QC H3A 0G4, Canada;
ibrahim.elbojairami@mail.mcgill.ca

2 Biomedical Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
tanvir@uwm.edu (T.A.); aswapnil@uwm.edu (A.A.Z.S.); assaduz2@uwm.edu (M.A.);
rahmanmh@uwm.edu (M.H.R.)

3 Rehabilitation Sciences and Technology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
wang52@uwm.edu

4 Physical Medicine & Rehabilitation Department, Medical College of Wisconsin (MCW),
Wauwatosa, WI 53226, USA; emcgonigle@mcw.edu

* Correspondence: brahim.brahmi@mcgill.ca

Abstract: The research presents a novel controller designed for robotic systems subject to nonlinear
uncertain dynamics and external disturbances. The control scheme is based on the modified super-
twisting method, input/output feedback linearization, and time delay approach. In addition, to
minimize the chattering phenomenon and ensure fast convergence to the selected sliding surface, a
new reaching law has been integrated with the control law. The control scheme aims to provide high
performance and enhanced accuracy via limiting the effects brought by the presence of uncertain
dynamics. Stability analysis of the closed-loop system was conducted using a powerful Lyapunov
function, showing finite time convergence of the system’s errors. Lastly, experiments shaping
rehabilitation tasks, as performed by healthy subjects, demonstrated the controller’s efficiency given
its uncertain nonlinear dynamics and the external disturbances involved.

Keywords: super-twisting control; time delay estimation; feedback linearization; uncertain dynamics

1. Introduction

Survivors of strokes usually suffer paralysis and loss of physical strength, often on
one side of the body, such as the upper extremity [1]. Upper-limb dysfunctions create
difficulties in conducting daily activities such as eating, dressing, and cleaning, resulting
in a significant influence on the victim’s everyday life [2]. In such cases, rehabilitation
treatments are practiced to remedy lost functional capacity, gain new skills, and enhance the
quality of life [1]. Those are usually rehab therapies consisting of a set of medical exercises
guided by a therapist to increase the range of motion and muscle strength. Recently, a new
method of rehabilitation has emerged, namely, robotic rehabilitation. This has attracted a
lot of attention in the scientific community due to robots’ ability to supplement treatments
provided by conventional physiotherapy. The importance of rehabilitation robots lies in
their ability to provide intensive physiotherapy, for a prolonged period of time, regardless
of the availability of a therapist [2].

Rehabilitation robots are novel devices designed to overcome conventional physiother-
apy limitations, as well as create new, user-specific rehabilitation exercises [2–4]. Typically,
such robots are designed in a way to adjust and be identical to human arm configura-
tions [2]. For patients with upper-limb impairments, exoskeletons are usually worn on the
upper-limb lateral side [5]. With multiple degrees of freedom (DOFs), the exoskeleton is
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capable of achieving several arm configurations in its workspace [3]. However, when a
robot’s DOFs are increased, obtaining the robot’s dynamic model becomes arduous due to
its complex mechanical structure, actuator intricacy, as well as other involved parameters
such as nonlinear friction forces and backlash. This is not to mention that variation of
subjects’ physiological conditions, such as nonlinear musculoskeletal system characteristics,
upper limb weights, spasticity dystonia, and muscle weakness in neurological patients,
contribute to uncertainty in exoskeleton robot’s dynamics and control. In other words, the
manipulator is potentially subjected to both parametric uncertainties and unknown nonlin-
ear functions [3]. Besides, the nonlinear uncertain dynamic model and external forces can
transform to an unknown function, which in turn deteriorates a robot’s performance [3].
In this case, to better achieve the therapeutic activity, a solid adaptive controller becomes
essential to estimate dynamic model uncertainties and external forces.

Uncertain nonlinear dynamics control is an interesting, highly challenging topic in the
nonlinear control engineering field. A commonly used technique to resolve the problem
of nonlinear decoupling control is Feedback Linearization (FL). FL aims to algebraically
transform a nonlinear system to its equivalent linear one in order to apply the straight-
forward linear control theory. Despite this technique being applicable for some practical
control problems, the presence of hard nonlinear parameters, and/or system uncertainties,
prevents conventional linear control representations from appropriately describing the
original system, which deteriorates a system’s performance and accuracy. On the other
hand, numerous nonlinear control systems, such as the conventional adaptive control [6],
H∞ control [7], and sliding mode control [6,8] with backstepping [3,4,9,10], have been
designed to overcome the effects of uncertain nonlinear dynamics and unexpected external
disturbances. That being said, sliding mode control (SMC) is considered one of the most
robust nonlinear controllers developed to overcome uncertain dynamics. SMCs are funda-
mentally based on high switching gain values, forcing a system’s trajectory to converge to
a selected sliding surface [6,8,9]. However, such high switching gains create “chattering”, a
common problem in robotics that potentially damages robots’ actuators [11].

Numerous solutions have been proposed to reduce chatterings, such as the exponential
reaching law controller [5], high-order sliding mode [12], super-twisting algorithm [13],
and the modified super-twisting [14]. Involved intelligent sliding mode controllers were
also proposed, whereby the fuzzy system and neural network are integrated with the
sliding mode [15,16]. Nevertheless, such approaches involve heavy computations, making
their implementation questionable. Regardless, the super-twisting control method has the
potential to significantly reduce undesired chattering [17]. Yet, when system states are far
from the desired sliding surface, the finite-time convergence to the selected surface cannot
be guaranteed [18]. Furthermore, the super-twisting control law is based on the power rate
reaching technique [19,20], which is potentially beneficial and practical for the design of
structure variable control systems. Despite this law’s ability to reduce chattering [20,21],
it still suffers from numerous shortcomings, with probably the most critical one being the
power rate reaching law sensitivity to nonlinear modeling uncertainties [20,21]. That is, even
if uncertainty dynamics satisfy the smooth and bounded matching condition with known
boundaries [22–26], the system remains highly sensitive [20]. In addition, when the selected
surface is close to zero, the time derivative of the desired surface also converges to zero, to
which the control input becomes unable to intercept uncertain dynamics and unexpected
disturbances anymore. Besides, defining uncertainty boundaries and external disturbances’
exact margins is a frustrating limitation of super-twisting control [22–26]. The overestimation
of such boundaries causes higher control gains than ultimately desired [22–26].

In light of the challenges above, a new Modified Super-Twisting Augmented Feedback
Linearization based on Time Delay Control (MSTFLTDC) is designed. The present research
proposes the solution of transforming the nonlinear model to its equivalent linear, via
input/output Feedback Linearization (FL). Thereafter, a nonlinear super-twisting control
and Time Delay Estimation (TDE) are integrated to estimate a system’s hard nonlinearities,
represented by uncertain nonlinear dynamics and external disturbances. TDE is employed
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due to its strong ability to significantly limit uncertainty effects [18,19]. This is achieved
via employing a time-delayed knowledge from the previous state response and control
input. Instead of any prior accurate knowledge of the exoskeleton robot parametric model,
it rather estimates the uncertain dynamic model and external perturbations. In effect, the
proposed controller, “MSTFLTDC”, provides increased robustness and enhanced accuracy,
without being sensitive to involved uncertain dynamics and disturbances. In addition, to
avoid the effect of uncertainty overestimation involved with super-twisting gains, a new
exponential reaching law is utilized [5]. This law is considered an adaptation technique to
potentially provide a fast system reaching response, increase control scheme reachability,
and limit chattering—that is, the proposed control scheme aims to globally reduce the
chattering problem. Lastly, the Lyapunov’s theory was implemented to potentially prove
closed-loop form stability, whereby the asymptotic convergence of the output tracking
errors would be ensured on finite time. The main contributions of this paper can be
summarized in the following points:

1. In the feedback linearization approach adopted in this paper, the dynamic model of the
robot is transformed into a simpler form. Based on this form, the control law is derived.
By employing a suitable transformation to this control law, it becomes usable to the
original physical system, while it is excellent for trajectory planning/following tasks.

2. Develop a control law based on a modified super-twisting controller with Time
Delay Estimation (TDE) that supplies an approximation of uncertainties and external
disturbances by using a step into the past of the inputs and the output of the system.

3. An adaptive exponential term function of the switching surface called exponential
reaching law (ERL) is integrated with the proposed reaching law. The ERL presents
a kind of adaptation of the switching gains. If the tracking error value becomes
large, the switching gains become large too, such as a faster convergence during the
reaching phase is realized. The switching gains become small, e.g., the phenomenon
of chattering is reduced during the sliding phase.

4. Experimental studies conducted using a new exoskeleton robot named Smart Robotic
Exoskeleton (SREx) to evaluate the proposed control scheme’s performance with re-
spect to providing excellent tracking, small steady-state error, and reduced chattering.

The rest of the paper is organized as follows: Section 2 presents the manipulator’s
dynamic characterization as well as the problem formulation. Section 3 demonstrates the
proposed controller (MSTFLTDC) objective and a detailed description of the control strategy.
Section 4 illustrates the modeling of an exoskeleton robot, named SREx, and provides its
experimental results. In this section, the proposed controller is experimentally evaluated
via healthy subjects upon implementing a designed trajectory tracking corresponding to a
specific passive physical therapy. Finally, conclusions and future work are presented in
Section 5.

2. Manipulator Robot Mathematical Characterization
2.1. Robot Modelling

The dynamics of a fully actuated manipulator robot with n DOFs can be expressed in
joint space, using the Lagrangian approach, as follows:

M(θ)
..
θ + C

(
θ,

.
θ
) .

θ + G(θ) + F
(

θ,
.
θ
)
= τ + τex (1)

where θ,
.
θ and

..
θ ∈ Rn are, respectively, the joints’ position, velocity, and acceleration

vectors. M(θ) ∈ Rn×n is the symmetric, positive definite, inertia matrix. C
(

θ,
.
θ
) .

θ ∈ Rn

represents the centrifugal and Coriolis effects. G(θ) ∈ Rn is the gravitational vector, τ

is the torques vector, τex is the external disturbances, and F
(

θ,
.
θ
)
∈ Rn is the nonlinear
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friction vector. Without loss of generality, the robot system dynamic model can be rewritten
as follows: 

M(θ) = M0(θ) + ∆M(θ)

C
(

θ,
.
θ
)
= C0

(
θ,

.
θ
)
+ ∆C

(
θ,

.
θ
)

G(θ) = G0(θ) + ∆G(θ)

(2)

where M0(θ), C0

(
θ,

.
θ
)

and G0(θ) are, respectively, the known parts of the inertia matrix,

Coriolis and centrifugal matrix, and gravity vector. The terms ∆M(θ), ∆C(θ,
.
θ), and ∆G(θ)

represent the uncertainties. Introducing the variable x = [x1, x2]
T =

[
θ,

.
θ
]T
∈ R2n, the

dynamic model, expressed by (1), can be rewritten in state representation as follows:{ .
x = B(x)u + F(x) + H(x)
y = P(x) = Cx

(3)

where u = τ; y is the output vector and C =
[

In×n 0n×n
]

is the output matrix with
In×n being the identity matrix. The vectors B(x), F(x), and H(x) are defined as follows:

B(x) =
[

0n×n
b(x)

]
; F(x) =

[
x2

f (x)

]
; H(x) =

[
0n×1
h(x)

]
With b(x) = M−1

0 (θ) and it is assumed to be bounded and invertible matrix, f (x) =

M−1
0 (θ)(−C0

(
θ,

.
θ
) .

θ − G0(θ)), and h(x) = M−1
0 (θ)(τex − ∆M(θ)

..
θ − ∆C

(
θ,

.
θ
) .

θ − ∆G(θ)−

F
(

θ,
.
θ
)
). For simplicity, let us denote f (x) = f (t) and h(x) = h(t), where, x is the variable

related to time.

2.2. Robot Manipulator Input/Output Linearization

In order to investigate the system’s performance accuracy as well as finite time errors’
convergence in the presence of uncertainties and external perturbations, a new Modified
super-twisting augmented feedback linearization with TDE is applied. For this purpose,
the dynamic system is first linearized based on the one input/output feedback linearization
approach. This is achieved via two loops: the first is an inner loop designed to realize the
linearization of the system input/output state relation and build a nonlinear control law.
The second is an outer loop aimed to control the linear system and realize closed-loop
system stability [6,9,27]. The global structure of the control system is shown in Figure 1.
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The objective of the input-output linearization technique is to obtain a direct rela-
tionship between the system output y and the control action input u. This is achieved via
differentiating the output, y, r times (r being the relative degree) using Lie derivatives to
obtain an expression between the system’s input and output. To better understand the
linearization procedure, Lie derivatives are first introduced and defined.

Definition 1. Consider the system represented by Equation (3), with its vectors being of a relative
degree [r1, . . . ., rn]. The relative degree is assigned for n subsystems such that:

yk
i = L(k)

F Pi; f or 0 ≤ k ≤ ri−1

y(ri)
i = L(ri)

F Pi +
n
∑

j=1
LBj

(
L(ri−1)

F Pi

)
ui

(4)

Applying the Lie derivative on the known part of system (3), in which case the relative
degree r is 2, the output vector then becomes:

.
y = LFP(x) = x2

..
y = L(k)

F P(x) + LBLFP(x)u
= f (x) + b(x)u

(5)

According to Equation (5), there is an explicit relation between the system’s input and
output. Hence, the control input is chosen as:

u = b(x)−1(ν− f (x)) (6)

As observed in Equation (6), the input vector is controlled by an external parameter ν.
In such a case, the relation between the novel control ν and the system output can be found
as follows: ..

y = f (x) + b(x)u
= ν

(7)

From the proposed feedback linearization given by Equations (6) and (7), and comparing
against the system Equation (3), it becomes straightforward to obtain the following system:{ .

x1 = x2.
x2 = h(x) + ν

(8)

Denoting h(x) = h(t), Equation (8) can then be expressed by:

.
z = Az + B(h(x) + ν) (9)

where z = [z1, z2]
T = [x1, x2]

T , A =

[
0n×n In×n
0n×n 0n×n

]
, and B =

[
0n×n
In×n

]
.

2.3. Problem Formulation

The present research addresses the challenge of developing a robust adaptive con-
troller capable of providing excellent trajectory tracking under an unknown robot dynamic
model, the presence of uncertain nonlinear dynamics, and a system subjected to external
disturbances. The objective is to further show finite time convergence of the dynamic errors
to zero, as well as to provide a stability analysis under the following assumptions:

Assumption 1: Joint position and velocity are measurable.
Assumption 2: The matrix M0(θ) is assumed to be bounded and invertible.
Assumption 3: The pseudo-Jacobian matrix is non-singular.
Assumption 4: Desired trajectory is bounded.
Assumption 5: The uncertain functions h(t) are continuously differentiable concerning the
time variable and do not vary largely during a small ts period.
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Assumption 6: The velocity and the acceleration outputs of the system are bounded.

2.4. Control Design

The control scheme aims to develop a robust adaptive controller able to provide satis-
factory trajectory tracking even though the dynamic model of the robot is not completely
known. Additionally, even under unknown uncertainty boundaries, the control system
should be potentially insensitive to bound uncertain dynamics and external disturbances.
Lastly, upon integrating a new reaching law, the controller aims to eliminate the chattering
problem, as well as ensure system dynamic errors’ convergence to zero in a finite time.

The standard super-twisting control is given by:{
.
si = −λ1i(|si|)

1
2 sign(si) + wi.

wi = −λ2isign(si); i = 1 . . . .n
(10)

where λ1i > 0; λ2i > 0 are positive constants.
Prior to designing the proposed control scheme, consider zd ∈ R2n and z ∈ R2n being

the desired and measured trajectories, respectively, where e = z− zd and
.
e =

.
z− .

zd. The
sliding surface is then selected as follows:

s = ϕ

[
.
e +

[
In×n
0n×n

]
e
]

(11)

where ϕ =
[

ρIn×n In×n
]
∈ Rn×2n is a full row rank constant matrix, and ρ is a positive

constant. It then follows that ϕB = In×n and ϕ

[
In×n
0n×n

]
= ρIn×n.

Taking the derivative of Equation (11) results in:

.
s = ϕAz2 + h(x) + ν− ϕ

.
zd

+ ρIn×n
.
e (12)

Theorem 1. Consider the robot system described by Equation (8). To ensure: (1) the system’s global
asymptotic stability, (2) chattering elimination, and (3) the finite-time convergence of the tracking
errors to zero, a new adaptive controller using TDE is proposed as follows:

ν = λ1(s)sign(s) + ϕ
.
zd − ϕAz− ρ

.
e− h(t)−

∫ t

0
λ2(s)sign(s) (13)

where λ1(s) = diag
(
−λ1i

Qi(si)
(|si|)

1
2
)

, sign(s) = [sign(s1) . . . . . . sing(sn)]
T , λ2(s) =

diag
(

λ2i
Qi(si)

)
, and ρ(e) = diag

(
ρi

Qi(si)

)
, for i = 1 . . . . . . . . . n.

sign(si) is a signum function, which can be defined such that:

sign(si) =


1 f or si > 0
0 f or si = 0
−1 f or si < 0

(14)

The term Qi(si) is a new reaching law function designed to reduce the effect of
chattering [5]. This function is defined as follows:

Qi(si) = δi + (1− δi)e(−αi |si |pi ); 0 < δi < 1 and αi, pi > 0 (15)

The function Qi(si) is variable positive, with this variation being bounded between 1
and δi. Generally, the variation of the control gain is considered an adaptation technique
to provide a fast system reaching response. Theoretically, as the system reaches the
sliding surface, |si| → 0 , which means that λ1i/Qi(si)→ λ1i and λ2i/Qi(si)→ λ2i . On
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the other hand, as |si| increase, the term Qi(si) decreases; hence, λ1i/Qi(si)→ λ1i/δi and
λ2i/Qi(si)→ λ2i/δi , bringing about a controller able to quickly reach the sliding surface.

Since h(t) is an uncertainty, this might influence the robot tracking performance. In
such case, the control input (13) can be rewritten as:

ν = λ1(s)sign(s) + ϕ
.
zd − ϕAz− ρ

.
e− ĥ(t)−

∫ t

0
λ2(s)sign(s) (16)

Taking into account the validity of Assumption 5, it becomes possible to use TDE [18]
to obtain an estimate of h(t) using Equation (8) as follows:

ĥ(t) ∼= h(t− ts) =
.
x2(t− ts)− ν(t− ts) (17)

where ts is the estimation time delay. It is obvious that for a very small ts, ĥ(t) converges to
h(t) and in real-time, the smallest possible value of ts is mostly selected to be the sampling
time period.

Prior to proving system stability, it is essential to define the uncertain dynamics
estimation errors. Utilizing Assumption 4 and Equation (17), those become:

h̃(t) = h(t)− ĥ(t)
= h(t)− h(t− ts)
≤ σ|x(t)− x(t− ts)| ≤ σ|ts|

(18)

where σ is the Lipchitz constant.
Substituting control law (16) in system (9), and using the selected sliding surface (12),

the proposed modified Super-Twisting control STC for n-subsystems can then be expressed
as follows: 

.
si =

−λ1i
Qi(si)

(|si|)
1
2 sign(si) + ∆hi + wi

.
wi =

−λ2i
Qi(si)

sign(si); i = 1 . . . .n
(19)

where λ1i > 0; λ2i > 0 are positive constants.
∆h = [∆h1 . . . .∆hn]

T is the time delay estimation error, subject to the inequality

∆h ≤ $|s|
1
2 as referenced in [22–26], with $ being the uncertainty boundary. Accordingly,

∆h can be redefined as follows:

∆h = σ|x(t)− x(t− ts)| ≤ σ|ts|
≤ $|s|

1
2

(20)

For the above inequality to hold, Lipchitz constant σ is chosen to be σ = 1

(1+ 1
t )

2 > 0,

where t is the running time of the desired trajectory and ts is the sampling time (refer to
Appendix A.1 for justification).

Proof. To ensure system convergence, consider the following quadratic Lyapunov function:

V = γT Rγ (21)

where γ = [γ1i, γ2i]
T , γ1i = (|si|)

1
2 sign(si), and γ2i = wi. The Lyapunov function (21) is

chosen to be continuous but not differentiable at si = 0 [12]. It is positive definite and
radially bounded by choosing an appropriate matrix R ∈ R2×2 such that:

R =

[ 1
2 λ2

1i + 2λ2i
−1
2 λ1i

−1
2 λ1i 1

]
with

αmin{R}‖γ‖2 ≤ V ≤ αmax{R}‖γ‖2 (22)
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where αmin{R} and αmax{R} are the minimum and maximum eigenvalues of {R}, while
‖γ‖2 is the Euclidian norm of γ. Taking the derivative of the Lyapunov function (21) gives:

.
V =

.
γ

T Rγ + γT R
.
γ (23)

The time derivative of γ can be defined as follows:{ .
γ1i =

1

2|si |
1
2

.
si

.
γ2i =

.
wi

(24)

Using Equations (19) and (24),
.
γ can be rewritten in matrix form, with γ1i = |si|

1
2 ,

as follows:
.
γ =

1

|si|
1
2

[ −λ1i
2Qi(si)

1
2

−λ2i
Qi(si)

0

][
γ1i
γ2i

]
+

1

|si|
1
2

[ 1
2
0

]
∆hi (25)

In the stability analysis, based on Equation (15), the function Qi(si) always fulfills the
following inequality: 0 < Qi(si) ≤ 1. Let us assume that Qi(si) = 1; hence, the equation
above can be rewritten in the form:

.
γ =

1

|si|
1
2
(Asγ + Bs∆h) (26)

where As =

[ −λ1i
2

1
2

−λ2i 0

]
and Bs =

[ 1
2
0

]
.

Substituting Equation (26) into (23), the following is obtained:

.
V =

1

|si|
1
2

γT
(

AT
s R + RAs

)
γ +

2

|si|
1
2

∆hiBT
s Rγ (27)

Thereafter, substituting Equation (20) into (27):

.
V =

1

|si|
1
2

γT
(

AT
s R + RAs

)
γ +

2

|si|
1
2

σitsBT
s Rγ (28)

Since the inequality 2BT
s Rγ ≤ γT Mγ is valid, Equation (28) can be reformulated as:

.
V ≤ 1

|si |
1
2

γT(AT
s R + RAs

)
γ + 1

|si |
1
2

σitsγT Mγ

≤ 1

|si |
1
2

γT(AT
s R + RAs + σits M

)
γ

(29)

where M =

[ 1
2 λ2

1i + 2λ2i
−1
4 λ1i

−1
4 λ1i 0

]
.

Equation (29) can be rewritten as:

.
V ≤ 1

|si|
1
2

γT Dγ (30)

where D is by definition:
D = −

(
AT

s R + RAs + σits M
)

(31)

and is calculated by:

D =
λ1i
2

[
λ2

1i + 2λ2i − σits(λ1i + 4 λ2i
λ1i

) 1
2 σits − λ1i

1
2 σits − λ1i 1

]
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The function
.

V is negative definite. If σi > 0, λ1i > 2σits, and λ2i >
σ2

i t2
s λ1i

8λ1i−16σits
,

this will ensure that det(D) > 0 [12]. Under such conditions, matrix D is positive and
symmetric. In such case, Equation (29) can be rewritten as:

.
V ≤ −1

|si|
1
2

αmin{D}‖γ‖2
2 (32)

where αmin{D} is the minimum eigenvalue of D.
Equation (32) proves that the Lyapunov function is negative. Therefore, the stability

of the robot system is proved.
It is now essential to define the finite-time convergence of the sliding surface. As such,

utilizing Equation (22), the following is obtained:

V
1
2

α
1
2
max{R}

≤ ‖γ‖2
2 ≤

V
1
2

α
1
2
min{R}

(33)

It is straightforward that |si|
1
2 ≤ ‖γ‖2. Combining this with Equations (32) and (33):

.
V ≤ −1

|si |
1
2

αmin{D}‖γ‖2
2

≤ −1
‖γ‖2

αmin{D}‖γ‖2
2

≤ αmin{D}

α
1
2
max{R}

V
1
2

(34)

Accordingly, the maximum convergence time of the sliding surface can be defined
as follows:

T =
2α

1
2
max{R}

αmin{D}
V

1
2 (γ(0)) (35)

In the case that 0 < Qi(si) ≤ 1, refer to Remark 1 in Appendix A.2. The global
structure of the control system is shown in Figure 1. �

3. Experimental Results
3.1. Smart Robotic Exoskeleton (SREx) Model

SREx is a redundant (7DOFs) robot of serial manipulator type designed to be worn on
the lateral side of the subject’s right upper limb. The seven degrees of freedom (7DOFs) of
the exoskeleton makes it a redundant robot capable of achieving several arm configurations
in its workspace. This robot is designed to rehabilitate impaired human upper-limbs,
as shown in Figure 2. The design of SREx has followed the anatomy and joints of the
human upper limb to mimic natural upper limb motion when worn by the subjects during
rehabilitation tasks. Its shoulder part comprises three joints: the first two are designed to
aid in horizontal and vertical extension/flexion movements, while the third aims to conduct
external/internal rotations. The elbow part consists of one joint designed to perform elbow
flexion/extension movements. The last part of the upper limb is the wrist, which further
consists of three joints: the first is designed to carry out forearm pronation/supination
movements; the second and third joints, on the other hand, are designed to perform
radial/ulnar deviation and flexion/extension of the wrist, respectively [3–5]. The system is
equipped with a virtual interface, for which patients and therapists can track the progress
of the rehabilitation exercises. The interface can further provide task-oriented exercises
in joint space and Cartesian space [28]. The Denavit-Hartenberg (DH) parameters and
workspace of the robot are given in Appendix A.3.
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3.2. Real-Time Setup

The exoskeleton robot system architecture is presented in Figure 3. National Instru-
ments, USA PXI was used to control the SREx. As seen in Figure 3, three blocks made the
overall experimental setup: The first block is the user interface, used to select and determine
controller parameters and define rehabilitation exercise specifications. In addition, it pro-
vides the measured robot data, permitting the operator to evaluate the human-exoskeleton
system performance accurately. The second block is a PXI-8108 card, where the proposed
control was implemented with a sampling time of 1.25 ms. The robot operating system
also runs in the PXI processor (Intel Core 2 Duo). The controller outputs are joints torques,
which are transformed to currents and then to desired voltages in order to command the
motor drivers. Finally, the last block consists of an FPGA (field programmable gate array)
that runs with a sampling time of 50 µs. It is utilized to execute two loops concurrently:
The first loop holds a simple proportional-integral (PI) action for controlling the motor’s
current as a function of the calculated reference current. The second loop is designed to
obtain the measured data (position angles) [3,4,29].

Since the control is executed in joint space, to switch the exoskeleton operation into
Cartesian space, the inverse Jacobian matrix method is applied. Due to the redundant
characteristics of SREx, the inverse kinematics can be obtained using the Jacobian matrix
pseudo-inverse, represented as follows [27]:

z2 = (JT(J JT)
−1

)
.

X (36)

where
.

X is the desired Cartesian velocity, z2 is the calculated joint velocity, and J is the
robot Jacobian matrix.

In the experimental part, all physical therapy tasks were performed by two subjects
(age: 27 ± 4.6 years; height: 170 ± 8.75 cm; weight: 75 ± 18 Kg). The trajectories were
generated in Cartesian space in the form of a triangle. In the last section, a comparison
analysis against the conventional super-twisting controller (STSMC) proposed in [13] is
conducted to confirm the superior efficiency (in terms of trajectory tracking and chattering
reduction) and feasibility of the proposed controller. In all subsequent experiments, the
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initial position of SREx starts with the elbow joint at 90 degrees. Furthermore, controller
gains given in Table 1 were experimentally chosen using the trial–error method as follows:

Table 1. Controller Parameters.

Constants Value (i = 1:7)

ϕ 3.2

λ1i 10

λ2i 2

δi 0.5

αi 1/2

pi 15
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3.3. Experiment Results of the Proposed Controller

In the first test, the proposed exercise consists of a Cartesian triangle trajectory. This
exercise was performed by subject-A (age: 30 years; height: 177 cm; weight: 75 kg). Experi-
ment results of the proposed control are given in Figures 4–8. Figure 4 presents the trajectory
tracking performance of the SREx robot in Cartesian space, and Figure 6 illustrates the
results of Joint space. In all the presented results in Figures 4–8, the desired/reference
trajectories are represented by the red line, and the measured trajectories are represented
by the blue line. From the results presented in Figures 4–8, it can be safely assumed that the
proposed controller provided excellent performance, as described by Cartesian tracking
errors in Figure 5 and joint tracking errors in Figure 7, where the controller was capable
of maintaining system stability with a maximum discrepancy of 2 to 3 degrees for all
joints. Figure 8 represents the control input, which turned out to be smooth (no chattering)
for all runs. Besides, one key observation was that the chattering phenomenon did not
appear at all. It can be concluded that the controller showed high robustness and precision,
whereby even in the presence of unknown parameters, the controller provided highly
satisfactory performance.
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3.4. Experiment Results of the Conventional Super-Twisting Controller (STSMC)

Similar results corresponding to the same task performed by subject-A were extracted
further to explain the robot’s efficiency and outstanding performance. The results of
this task, which was completed by subject-B (age: 28 years; height: 176 cm; weight:
80 kg), are illustrated in Figures 9–13 under the conventional super-twisting controller
(STSMC) proposed in [13]. As described by Figures 9 and 11, it can be readily remarked
that for the explained Cartesian and joint movements, respectively, the desired trajectory
realistically overlapped on top of the measured trajectory. The controller’s outstanding
performance, whereby stability was absolutely maintained across all trajectories, with
the small margin of error, is shown by Figures 10 and 12. However, a key observation
was that the controller STSMC presented a significant chattering, as shown in Figure 13,
compared to the proposed controller that gives a very smooth control input in Figure 8.
The smoothness provided by the proposed controller is a result of, firstly, the estimation of
the uncertainties, which made the controller design avoid using high gains to reject these
uncertainties. Secondly, the adaptive control law (15) helped significantly in reducing the
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chattering by providing suitable gains based on the position of the system’s trajectory from
(close/far) the selected surface.
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4. Comparative Study

In order to judge whether the proposed control scheme was effective and practical
or not, the controller’s performance was compared with the tasks performed by different
subjects (different arm weights, physiological conditions, and states of mind), as well as
against a conventional super-twisting (STSMC) proposed in [13]. Comparison was carried
out by calculating the root mean square (RMS) of each error and the total energy consumed
in Cartesian space.

Table 2 clearly suggests that the proposed controller MSTFLTDC provided consistent
performance with different subjects, as explained by the small RMS error and torque input
values, compared to the STSMC controller. Examining previous similar studies conducted
on SREx, the proposed, based on time delay estimation and feedback linearization, pre-
sented similar performance to the virtual decomposition controller, but relatively better
than both the PID and the Computed Torque Controller [29]. These are extremely desirable
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results for the next phase of this project: tests with patients suffering from strokes. For ex-
ample, for the study entitled [30,31] “a clinical trial on upper-limb rehabilitation performed
with 15 stroke patients and proving efficiency on assisted rehabilitation task”, the average
RMS tracking error, with similar range of motion, was characterized at about 20 degrees
(estimated from the different plots in the paper). Using Table 2, the controller tracking
error, considering external disturbances and different subject’s physiological characteristics,
would account for only 1.4% of that total error. Similar clinical trials’ average RMS error
results could be found in other studies [30,32]. This greatly supports the efficiency and
suitability of the proposed controller scheme.

Table 2. Controller evaluation.

Subjects

Root Mean Square (RMS)

MSTFLTDC Controller STSMC Controller

‖e‖RMS error ‖τ‖RMS Torque ‖e‖RMS error ‖τ‖RMS Torque

Subject-A 0.0150 2.6908 0.0588 3.2147

Subject-B 0.0129 2.5811 0.0544 3.3827

5. Conclusions

In this research, a robust modified super-twisting controller strategy, using feed-
back linearization and time delay estimation approaches, was proposed. This allowed
a redundant exoskeleton robot to overcome uncertain nonlinear dynamics and external
disturbances. In addition, a new reaching law is incorporated with the designed control
law to provide fast convergence while reducing the chattering phenomenon. The key
advantage of the designed controller is the ability to operate without the need for any
information pertaining to the robot’s dynamic model. The results show robust behavior as
well as excellent performance tracking for the designed controller, perceived by conducting
a rehabilitation task with different subjects. Furthermore, using the Lyapunov theory,
system stability was proved in the closed-loop form. Lastly, the experimental results show
that the proposed algorithm was efficient and practical. The next step is to investigate the
dynamic behavior of SREx while providing therapy to individuals suffering from stroke
problems such as spasticity, dystonia, and muscle weakness. The importance of a reliable
and robust controller with the characteristics reported in this paper is a key element for this
next step to ensure a reliable robot performance as well as to be able to obtain precise data
based on subjects’ conditions while keeping robot-related aspects and external disturbances
to a negligible margin.
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Appendix A

Appendix A.1. Definition of the Lipchitz Constant

In this work, we seek to provide a suitable Time Delay Estimation (TDE) of the
dynamic model of the robot in the presence of bounded uncertain dynamics and external
perturbations, along unknown boundaries. To address this problem, it is important to
validate the following inequality:

∆h = σ|x(t)− x(t− ts)| ≤ $|s|
1
2 (A1)

with:
σ =

1(
1 + 1

t

)2 (A2)

The smallest σ is considered the best Lipchitz constant and is named Lipschitzian
maps or contraction mapping [33]. Generally, the Lipschitz constant is chosen between
0 and 1. In such case, the Lipschitz constant, given by Equation (A2), always abides by
this condition (0 ≤ σ ≤ 1) when lim

t→0
σ = 0 and lim

t→∞
σ = 1; hence, the first condition is

verified. Next is to verify if this constant abides by the inequality given by Equation (A1).
At the initial position, when t = 0: lim

t→0
σ = 0 and lim

t→0
|s| = ∞; thus, at this stage, the

inequality holds. If the controller provides good performance, the following becomes
true: lim

t→∞
|s| = 0 while lim

t→∞
σ = 1. However, the term lim

t→0
|x(t)− x(t− ts)| ≈ 0; hence, the

inequality also holds.

Appendix A.2. Stability Condition

Remark A1. In the case that 0 < Qi(si) ≤ 1 and |si| increase, the term Qi(si) decreases;
hence, λ1i/Qi(si)→ λ1i/δi and λ2i/Qi(si)→ λ2i/δi . Let us assume that λ1 = λ1i/δi and
λ1 = λ2i/δi. By using the same procedure from Equation (26) to Equation (31), the condition of

stability will be: λ1i/δi > 2σits, and λ2i/δi >
σ2

i t2
s λ1i

8λ1i−16σits
.

Appendix A.3. The Workspace and DH-Parameters of SREx

Table A1 presents the workspace of the designed robot.

Table A1. Workspace SREx.

Joints Motion Workspace

1 Shoulder joint horizontal flexion/extension 0◦/140◦

2 Shoulder joint vertical flexion/extension 140◦/0◦

3 Shoulder joint internal/external rotation 85◦/75◦

4 Elbow joint flexion/extension 120◦/0◦

5 Forearm joint pronation/supination 85◦/85◦

6 Wrist joint ulnar/radial deviation 30◦/20◦

7 Wrist joint flexion/extension 50◦/60◦

The modified Denavit–Hartenberg (DH) parameters are given in Table A2. These
parameters are obtained from the reference frames, as shown in Figure 8, which are used to
obtain the homogeneous transformation matrices.
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Table A2. Modified Denavit–Hartenberg Parameters.

Joint (i) αi−1 ai−1 di θi

1 0 0 ds θ1
2 −π/2 0 0 θ2
3 π/2 0 de θ3
4 −π/2 0 0 θ4
5 π/2 0 dw θ5
6 −π/2 0 0 θ6 − π/2
7 −π/2 0 0 θ7

αi−1 is the angle between Zi−1 and Zi about Xi , di is the distance between Xi−1 and Xi along Zi−1, ai−1 is the
distance between Zi−1 and Zi along Xi , θi is the angle between Xi−1 and Xi about Zi−1.
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